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Abstract
A simple numerical solution for general relativity in the Newtonian weak field regime

is provided – no tensor calculus is required. The topics under consideration are the
deflection of photons and neutrinos by the Sun, the relativistic rotation of Mercury’s
orbit plane, the Shapiro time delay, and the gravitational redshift – namely, the four
Solar System tests of general relativity. To simplify the calculations, Euler integration
is used. Hopefully, this numerical solution can be found to be an important tool,
primarily due to this simplicity.

1 Introduction

In this paper we will describe a numerical solution for the deflection of photons and neutrinos
by the Sun, for the relativistic orbit of Mercury around the Sun, for the Shapiro time delay
of photons, and for the gravitational redshift of photons.

No tensor calculus is involved – only high school Physics is required (e.g. Newtonian
gravity, the shell theorem, and the use of 3-dimensional vectors).

It is also recommended that one has already read about special relativity [1,2], and thus
kinematic time dilation. For instance, Einstein’s light clock thought experiment is helpful
for understanding kinematic time dilation, where v⃗ is the 3-dimensional velocity vector, the
speed of light in vacuum is precisely c = 299792458, and dτ/dt is the rate of time (e.g. light
clock tick rate):

dτ

dt
=

√
c2 − ||v⃗||2

c
=

√
1− ||v⃗||2

c2
. (1)

The faster one goes, the slower their rate of time – the faster one goes, the less the internal
process occurs. See Fig. 1 for a diagram of the kinematic time dilation.

Note that this solution is only valid in the weak field, where the gradient of the gravita-
tional time dilation practically vanishes, and Newton’s inverse square law holds true – where
only space is curved. Because of its simplicity however, this numerical solution can serve as
a stepping stone for further education on the subject – including tensor calculus.
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2 On the Schwarzschild solution and the shell theorem

After one understands kinematic time dilation, it is not too far a stretch for them to un-
derstand gravitational time dilation – gravitation is the interruption of internal process by
some other process at some distance away.

In this paper we rely on the Schwarzschild solution, which means that the Sun is taken
to be spherically symmetric, stationary, static, and non-rotating [1, 3–5]:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (2)

ds2 = −
(
1− Rs

r

)
c2dt2 +

dr2(
1− Rs

r

) + r2(dθ2 + sin2 θdϕ2), (3)

where Rs is the Schwarzschild radius:

Rs =
2GM

c2
, (4)

and the Sun’s mass is M = 1.98847× 1030, and Newton’s constant is G = 6.6743× 10−11.
The gravitational time dilation is:

dτ

dt
=

√
1− Rs

r
. (5)

The closer one gets, the slower their rate of time – the deeper one goes, the less the internal
process occurs.

In essence, the Schwarzschild solution is a relativistic version of the shell theorem. See
Fig. 2 for a visualization of the shell theorem.

Although hindsight is 20/20, if the Schwarzschild solution was non-existent it would not
be terribly difficult to guess the correct form of Eq. 5 through brute force trial and error – it
has something to do with radius and the speed of light as the escape velocity, raised to some
power, and we could judge its correctness via the predictions of the numerical solution.

3 On deflection

In the case of deflection of photons and neutrinos by the Sun, the timeslice that we used is:

δt = 1. (6)

The analytical solution for the deflection angle of photons or neutrinos that are just grazing
the Sun is:

δd =
4GM

c2r

(
1

π × 180× 3600

)
= 1.75 (7)

arc seconds, where r = 6.9634×108 is the distance of closest approach (e.g. the Sun’s radius).
The numerically predicted amount is like 1.75 arc seconds, which is practically identical to
the amount given by the analytical solution. See Fig. 3 for a diagram of the deflection.
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4 On precession

In the case of the precession of the perihelion of Mercury, do note that Euler integration
automatically leads to a negative rotation of Mercury’s orbit plane, but given a small enough
timeslice, this negative rotation becomes negligible. For instance, where v⃗o denotes the
orbiter’s velocity vector:

δt =
c

||v⃗o||
× 10−5. (8)

The analytical solution for the precession of the perihelion of Mercury is:

δp =
6πGM

c2(1− e2)a

(
1

π × 180× 3600

)(
365

88
× 100

)
= 42.937 (9)

arc seconds per Earth century, where e = 0.2056 is the eccentricity and a = 5.7909 × 1010

is the semi-major axis. The numerically predicted amount is like 43 arc seconds per Earth
century, which is practically identical to the amount given by the analytical solution. See
Fig. 4 for a diagram of the precession.

5 On Shapiro time delay

In the case of the Shapiro time delay, the timeslice that we used is:

δt =
1

c
. (10)

The analytical solution for the round-trip Shapiro time delay is:

δs =
2GM

c3
log

(
Rx +Ry

Rx −Ry

)
= 10−4 (11)

seconds, where
Rx = ||(−1000× c, Rg, 0)− (0, 0, 0)|| (12)

is the distance from the sender to the Sun’s location at the origin, and

Ry = ||(−1000× c, Rg, 0)− (0, Rg, 0)||. (13)

is the distance from the sender to the Sun’s surface, which is just grazed at the Sun’s radius
of Rg = 6.9634× 108. We assume that the communication system is symmetric, and so the
distance from the receiver to the Sun’s centre is also Rx and the distance from the receiver
to the Sun’s grazed surface is also Ry. This analytical solution also relies on the fact that
Rx and Ry are likely to be much larger than Rg. The numerically predicted amount is like
10−4 seconds, which is practically identical to the amount given by the analytical solution.
Note that the analytical solution is only an approximation, and that the numerical solution
is the ground truth. See Fig. 5 for a diagram of the symmetric communication system.
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6 On gravitational redshift

In the case of the gravitational redshift, the timeslice that we used is:

δt = 1. (14)

Since we know for sure from the previous section that space is contracted around a gravitating
body, we know that gravitational redshift automatically occurs. In the case of the Sun, where
λe = 1, re = 6.9634 × 108 (e.g. the Sun’s radius), and ri is practically infinite, it is found
that λi is:

λi = λe

√
1− Rs

ri√
1− Rs

re

= 1.00000212 (15)

metres. The numerically predicted amount is like 1.00000212 metres, which is practically
identical to the amount given by the analytical solution. See Fig. 6 for a diagram of the
gravitational redshift.

7 On integration using steps in time

From here on in, we shall use Euclidean 3-dimensional space, with Cartesian coordinates,
because we will be dealing with (post-)Newtonian gravity.

Generally, in all cases, where ℓs denotes the Sun’s location at the origin, ℓo denotes the
orbiter’s location, and d⃗ denotes the direction vector that points from the orbiter toward the
Sun:

d⃗ = ℓs − ℓo, (16)

d̂ =
d⃗

||d⃗||
, (17)

the Newtonian acceleration vector is:

g⃗n =
d̂GM

||d⃗||
2 . (18)

One parameter is closely related to the kinematic time dilation:

α = 2−
√

1− ||v⃗o||2
c2

. (19)

Another parameter is the gravitational time dilation:

β =

√
1− Rs

||d⃗||
. (20)

Finally, the semi-implicit Euler integration for velocity and then location is:

v⃗o(t+ δt) = v⃗o(t) + δtαg⃗n, (21)

ℓo(t+ δt) = ℓo(t) + δtβv⃗o(t+ δt). (22)

4



Note that Newtonian gravity is the result where α = β = 1.
See Fig. 7 for a diagram of the integration of velocity. See Fig. 8 for a diagram of the

integration of location.

8 Review

1. Kinematic time dilation is introduced in Eq. 1.

2. The Einstein field equations for gravitation are given in Eq. 2, which are solved for by
Schwarzschild’s line element in Eqs. 3 and 4. Gravitational time dilation is introduced
in Eq. 5.

3. Where velocity is equal to the speed of light (or very close, like for neutrinos), we found
that in Eq. 6 that a timeslice of 1 second is suitable.

4. We found that Eq. 7 and the numerical solution both predict the same amount (e.g.
1.75 arc seconds of deflection).

5. Where velocity is variable, we found that in Eq. 8 that a variable timeslice is suitable.

6. We found that Eq. 9 and the numerical solution both predict the same amount (e.g.
43 arc seconds per Earth century of rotation).

7. Where velocity is equal to the speed of light for the Shapiro time delay, we found that
in Eq. 10 that a timeslice of 1/c seconds is suitable.

8. We found that Eqs. 11, 12 and 13 and the numerical solution both predict the same
amount (e.g. 10−4 seconds of delay).

9. Where velocity is equal to the speed of light for the gravitational redshift, we found
that in Eq. 14 that a timeslice of 1 second is suitable.

10. We found that Eq. 15 and the numerical solution both predict the same amount of red-
shift of the photons that escape the gravitational field (e.g. an increase in wavelength
from 1.0 to 1.00000212 metres).

11. We found the direction vector and its unit length version in Eqs. 16 and 17.

12. We found the Newtonian acceleration in Eq. 18.

13. Eq. 19 goes to show that internal process is equal to a resistance to gravitation, and
that the effects of gravity are stronger the faster one goes. It also goes to show that
2G is the fundamental constant, not G. To be honest, Eq. 19 was first guessed at, and
only then did we judge its correctness and actual meaning via the predictions of the
numerical solution.

14. Eq. 20 goes to show that internal process is overcome by gravitational time dilation,
and that the effects of gravity are stronger the closer one gets to the gravitating body.
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15. With regard to Mercury in particular, Eq. 21 goes to show that part of the relativistic
precession is due to the kinematic time dilation (e.g where 1 ≤ α ≤ 2). Mercury is
gravitated more than it would be using Newtonian gravitation alone, for Newtonian
gravity alone does not take velocity into account.

16. With regard to Mercury in particular, Eq. 22 goes to show that the planet dwells longer
when it’s closer to the Sun (e.g. where 0 ≤ β < 1), causing the rest of the relativistic
perihelion precession. Mercury is gravitated more than it would be using Newtonian
gravitation alone, for Newtonian gravity alone does not take the contraction of space
around the gravitating body into account.

17. In the end, we have simulated the deflection of photons and neutrinos by the Sun,
the relativistic rotation of Mercury’s orbit plane, the Shapiro time delay, and the
gravitational redshift. All numerical solutions predict the same values as the analytical
solutions.

9 Conclusion

The numerical solution to Einstein’s field equations that is provided in this paper requires
a mastery of only high school-level mathematics and software development. This allows
the student to become gently acquainted with general relativity and numerical algorithms,
before having to master the required tensor calculus.

The solution calculated the deflection of photons and neutrinos by the Sun, the relativistic
orbit of Mercury, the Shapiro time delay, and the gravitational redshift. For instance, the
solution calculated the deflection angle of 1.75 arc seconds. As well, the solution calculated a
precession angle of 43 arc seconds per Earth century. Also, the solution calculated a Shapiro
time delay of 10−4 seconds. Finally, the solution calculated an increase in wavelength from
1.0 to 1.00000212 metres because of gravitational redshift. Thus, the solution correctly
calculates all four Solar System tests of general relativity.

The C++ / OpenGL codes are available upon request.
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Figure 1: A diagram showing kinematic time dilation as a right triangle of constant hy-
potenuse length of c. Thus, only the Pythagorean theorem is required to understand kine-
matic time dilation, where c2 = ||v⃗||2 + (cdτ/dt)2. Note that ||v⃗|| < c, except for massless
particles where ||v⃗|| ≡ c.

Figure 2: A diagram showing the shell theorem – from the outside, a homogeneous shell is
gravitationally equivalent to a point particle.
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Figure 3: A diagram showing deflection.
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Figure 4: A diagram showing precession, where the orbit does not quite form a closed ellipse.
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Figure 5: Symmetric communication system, for predicting the Shapiro time delay. Note
that the round-trip time in the absence of the Sun is ζ = 4Ry/c, and that the time in the
presence of the Sun is ζ + δs, which is just a little bit longer.

10



Figure 6: A diagram showing gravitational redshift. A blue photon is emitted normal to the
surface of a body. The photon’s wavelength increases as it escapes the gravitational field,
causing it to redden.

11



Figure 7: A diagram of the integration of velocity.

Figure 8: A diagram of the integration of location.
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