
1

A Practical Indexing Scheme for Noisy Shuffling
Channels Using Cosets of Polar Codes

Javad Haghighat and Tolga M. Duman, Fellow, IEEE

Abstract—The noisy shuffling channel models the conditions
encountered in DNA storage systems, where transmitted data
segments experience random permutation and substitution errors.
Reliable communication over this channel requires effective index-
ing and channel coding strategies for segment order restoration
and error correction. This paper introduces a concatenated coding
approach for communication over the noisy shuffling channel,
using Reed-Solomon (RS) codes as outer codes and polar codes as
inner codes. A coset-based indexing method, derived from polar
codes, is proposed. A joint decoder is designed to detect the
permutation pattern and perform polar decoding simultaneously.
An approximate analysis of the frame error rate (FER) using
random coding is conducted. Additionally, a mapping between
the cosets of the polar code and subsets of its frozen bits is
established to design cosets achieving lower FERs compared to
a commonly used explicit indexing method. Furthermore, a list
decoding approach is devised, providing a trade-off between the
computational complexity of the joint decoder and its performance.

Index Terms—Noisy shuffling channel, Polar code, Coset, Index-
ing, DNA storage.

I. INTRODUCTION

DNA storage systems are receiving significant attention from
the research community, thanks to their longevity and their
impressive storage density [1]-[7]. The basic idea in DNA
storage is to employ a synthesizer that takes information bits
as input and maps them to synthetic DNA strands. However,
due to technical limitations in current synthesizing technologies,
synthetic strands are limited to a few hundreds of nucleotides
in length. Therefore, data has to be divided into short segments
that are then written on short strands and are stored in a solution
known as the DNA pool.

The DNA pool has a fundamental disadvantage compared to
other storage environments such as disks and magnetic tapes;
that is, DNA pool is not capable of maintaining the order of
the stored strands (since the strands are floating in a solution
and their physical positions cannot be fixed). Consequently,
when the information is being read from the pool, there is no

J. Haghighat is with the Department of Electrical and Electronics En-
gineering, TED University, 06420 Ankara, Turkey. T. M. Duman is with
the Department of Electrical and Electronics Engineering, Bilkent Uni-
versity, 06800 Ankara, Turkey (e-mail: javad.haghighat@tedu.edu.tr, du-
man@ee.bilkent.edu.tr)

This work was funded by the European Union through the ERC Advanced
Grant 101054904: TRANCIDS. Views and opinions expressed are however
those of the authors only and do not necessarily reflect those of the European
Union or the European Research Council Executive Agency. Neither the
European Union nor the granting authority can be held responsible for them.
Part of this paper is presented in IEEE GLOBECOM 2023 [1].

guarantee that the strands are sequenced (read) in the same order
as they are synthesized (written). In short, the output of the
sequencer is a shuffled version of the strands generated by the
synthesizer. Furthermore, substitution errors are likely to occur
during the synthesis, during the storage, and while sequencing
the strands. For this reason, the end-to-end channel between the
original data and the output of the sequencer may be modeled as
a noisy shuffling channel [8]. The noisy shuffling channel model
may be further modified by noting that the strands are amplified
(copied several times) inside the DNA pool, via the Polymerase
Chain Reaction (PCR) process. Hence, the sequencing process
of a randomly selected subset of the stored strands is more
accurately represented by a noisy shuffling-sampling channel
model, in which each strand is sampled a random number of
times. These channel models and their variations are studied in
a number of recent papers including [8]-[18].

Since the ordering of the segments is not maintained by the
noisy shuffling channel, a mechanism has to be implemented
at the transmitter (i.e., during synthesis) to enable the receiver
to restore the correct order. The simplest mechanism is to
explicitly assign an index of length ⌈log2 M⌉ bits to each
segment, where M denotes the number of segments. However,
if the indexes are corrupted by channel noise, the order may be
lost. This observation motivates several works including [14]-
[18] to focus on more robust indexing methods. In [14], each
index is appended by a vector referred to as the anchor of that
index. Anchors are selected such that the Hamming distance
between two arbitrarily selected index-anchor vectors is greater
than or equal to a threshold value (by an index-anchor vector,
we refer to a vector generated by concatenating an index and
its corresponding anchor). Also, each set of anchors belongs
to a maximum distance separable (MDS) code. The receiver
may take advantage of these properties to first decode the noisy
anchors, and then employ the retrieved anchors to restore the
transmission order [14]. In [15], indexes are encoded by an error
correcting code with a minimum distance of 2K + 1, where
K is the maximum number of substitution errors imposed by
the channel. This approach enables the receiver to recover the
indexes using a minimum distance decoder. In [16] indexes are
protected by aid of specially designed short-length and low-rate
codes. The codes are defined in GF (4) and have a rate of 1

3 .
In [17], transmission over a noisy shuffling-sampling channel is
considered and the indexes are designed such that if the distance
between two particular segments is small, the distance between
their corresponding indexes is large. This property enables the
receiver to correctly cluster the channel reads, i.e., to correctly

2

identify the noisy segments that correspond to the same original
segment. In [18], a concatenated coding scheme is proposed for
transmission over noisy shuffling-sampling channels, where the
inner code is partitioned into disjoint sub-codes and each data
segment is encoded using a separate sub-code. The decoder may
identify the position of each noisy segment, given the decoder
is capable of finding the sub-code by which that noisy segment
is encoded. Therefore, [18] does not employ explicit indexes to
maintain the order of the segments; instead, the scheme relies on
the capability of the decoder to correctly identify the sub-codes
and restore the order.

In this paper, we focus on the scenario where a sequence
of information bits is sliced into a finite number of short-
length segments, and the segments are transmitted over a noisy
shuffling channel. We implement a concatenated Reed-Solomon
and polar coding scheme, where each data segment is encoded
by a separate coset of a polar code. We design a joint decoder
that decodes the received noisy segments and also detects the
permutation pattern and restores their order. Then, we establish
a one-to-one mapping between the cosets of the polar code and
subsets of its frozen bits. By employing this mapping, we argue
that explicit indexing is a special case of the proposed coset-
based indexing; hence, the designed joint decoder may also be
employed to decode explicitly indexed segments. Furthermore,
we introduce a process to select the cosets such that the
probability of error in detecting the permutation pattern is
reduced. We refer to this selection process as the coset design
process. We demonstrate that our designed cosets outperform
explicit indexing, as well as randomly selected ones. We also
propose an approach to reduce the complexity of the joint
decoder. This approach is applicable to the designed cosets,
but not to randomly selected cosets. Therefore, the designed
cosets are more suitable choices for trading off performance
for complexity. It is worth mentioning that the idea of encoding
different segments by different cosets of the polar code is
similar to the approach presented in [18], where the inner
code is partitioned into disjoint sub-codes and each segment is
encoded by a separate sub-code. However, [18] does not propose
a practical encoding or decoding scheme to implement this
idea. Instead, it assumes that a proper decoder implementation
exists; then, performs asymptotic analysis, where the number of
segments and the segment length grow arbitrarily large.

Our contributions in this paper are as follows:
• We propose an implicit indexing approach based on the

cosets of the inner code, and derive bounds on its perfor-
mance through a random coding analysis.

• We derive analytical approximations for the FER of a
concatenated RS-polar coding scheme employed to com-
municate over a noisy shuffling channel.

• We design a decoder that jointly detects the permutation
pattern imposed by the channel and performs polar decod-
ing.

• We define a one-to-one mapping between the cosets of
the polar code and subsets of its frozen bits. Then, we
employ this mapping to search for cosets that offer FERs
lower than those achieved by explicit indexing, as well as

Figure 1. Schematic of the noisy shuffling channel model.

a benchmark scheme which is based on randomly selected
cosets. We refer to this search process as the coset design
process.

• In order to reduce the computational complexity of our
originally proposed joint decoder, referred to by the full
decoder, we propose an additional low-complexity decoder
that works by a one-shot list decoding. We compare the
performance and the complexity of this low-complexity
decoder with those of the full decoder.

The paper is organized as follows. The system model is given
in Section II. In Section III we present our proposed concate-
nated coding and joint decoding scheme. Section IV provides
a performance analysis for the proposed scheme through an
approximation derived on the FER. Section V is dedicated to the
proposed coset design process and the low-complexity decoding
approach. Section VI includes numerical results and discussions.
Finally, Section VII concludes the paper.

II. SYSTEM MODEL

Schematics of the employed noisy permutation channel model
is shown in Fig. 1. We assume that M codewords of length
N bits, which are generated by a channel code, are input
to the noisy shuffling channel. We refer to these codewords
as the segments. First, the M segments are passed through a
noisy channel. Although in practice, DNA storage schemes may
be affected by several types of errors, including substitution,
deletion and insertion errors, different works on current DNA
storage technologies confirm that substitution errors are domi-
nant [3]-[7]. For this reason, in this paper, we focus on noisy
channels with substitution errors. Specifically, we consider a
binary symmetric channel (BSC) with crossover probability α.
The segments at the output of the BSC are shuffled before being
processed by the channel decoder.

For convenience, a list of frequently used symbols employed
in this paper, along with their definition is given in Table I.

III. PROPOSED CODING SCHEME

Due to the shuffling process, the order of segments is not
preserved at the output of a noisy shuffling channel. Therefore,
the segments must be indexed before transmission to enable
restoration of their order at the receiver. Inspired by the work
of [18], in this section, we propose a concatenated encoding
scheme along with an implicit indexing method that employs
different cosets of a polar code to encode distinct segments.
Then, we design a joint decoder that decodes the segments and
restores their order. The output of this decoder is delivered to
the outer decoder that corrects the remaining substitution errors.

3

Table I
LIST OF FREQUENTLY USED SYMBOLS AND THEIR DEFINITIONS.

Symbol Definition
α BSC crossover probability
No Codeword length of RS code
Ko Data length of RS code
q Number of bits per symbol of RS codewords
N Codeword length of polar code
K Data length of polar code
ρ Channel-reliability sequence
M Number of cosets
Cm The m-th coset of the polar code
sm The m-th segment of data
π Permutation pattern
L List size of the list decoder

L (a; ϵ) Artificial likelihood ratios
nF Number of frozen bits

The block diagram of the proposed scheme is shown in Fig.
2. Let q,Ko be positive integers. The binary input sequence,
t = (t0, . . . , tqKo−1)consisting of qKo bits, is partitioned into
q-bit symbols, and then encoded using an (No,Ko) RS code,
where No = 2q − 1. The RS codeword length is No symbols,
or equivalently qNo bits. This codeword is then zero-padded by
KM−qNo bits to form a binary vector s with length KM bits,
where K =

⌈
qNo

M

⌉
and ⌈.⌉ denotes the ceiling function. Then,

s is partitioned into M segments of length K bits, denoted by
s0 through sM−1. These M segments are encoded by M cosets
of a polar code.

Encoding the M segments by M different cosets of the polar
code provides the segments with implicit indexes; i.e., for each
received noisy segment, if the decoder is able to detect the coset
with which that segment is encoded, then it is able to detect the
position of that segment in s. Therefore, we refer to the above
encoding approach by coset-based indexing, and explain it in
detail in Section III-A.

A. Proposed Coset-based Indexing

In order to formulate the proposed coset-based indexing
method, let us denote the (N,K) polar code by C0 and let BK
denote the set of all possible binary message vectors with length
K. In order to encode a message vector b = (b0, . . . , bK−1)
by the polar code, first a vector u (b) = (u0, . . . , uN−1) is
generated where:

uρj
=

{
bj ; j ∈ {0, . . . ,K − 1} ,
0; otherwise.

(1)

The vector ρ = (ρ0, . . . , ρN−1) denotes the channel-reliability
sequence [19] which, in this paper, is assumed to be sorted from
the most reliable bit position to the least reliable bit position.
Entries uρK

, uρK+1
, . . . , uρN−1

are called frozen bits which are
taken as zero. Then, the polar codeword corresponding to the
message vector b is given by

x0 (b) = u (b)×GN , (2)

where GN denotes the polar transform [19]. In the sequel, we
drop the subscript, N , and denote the polar transform by G.

Now, let C1, . . . , CM−1 be M−1 cosets of C0. The members
of Cm are expressed as:

xm (b) = x0 (b)⊕ em, (3)

where em denotes the coset leader of Cm. Clearly, e0 = 0N ,
where 0N is an all-zero vector of length N .

In the proposed scheme, segment sm is encoded as xm (sm),
for m ∈ {0, . . . ,M − 1}, where xm (.) is defined according to
(3). Subsequently, as shown in Fig. 2, vectors r0 through rM−1

are received at the output of the noisy shuffling channel, where

rπm = xm (sm)⊕ zm, (4)

where zm is a BSC noise vector, and π = (π0, . . . , πM−1) is
the permutation pattern imposed by the channel.

B. Joint Decoder Design

In order to recover the transmitted sequence, t, the receiver
needs to accomplish two tasks, namely (i) detecting the per-
mutation pattern, π, and (ii) correcting the substitution errors
imposed by the BSC noise vectors, zm. In the following,
we design a joint decoder that simultaneously detects the
permutation pattern and performs polar decoding. The output
of this joint decoder is then delivered to the outer RS decoder
that corrects the remaining substitution errors.

In order to jointly decode and sort the received segments, we
propose to generate a Coset-Segment Distance (CSD) matrix
at the decoder, where we define an ideal CSD matrix1 as an
M ×M matrix Γ = [γm,m′] with entries:

γm,m′ = min
b∈BK

dH

(
xm (b) , rm

′
)

(5)

where dH (., .) denotes the Hamming distance function and
γm,m′ represents the minimum Hamming distance between rm

′

and members of Cm. Note that in order to generate Γ, one needs
to run M2 minimum distance decoders. Let us denote the M2

corresponding decoded information sequences as:

ŝm,m′
= argmin

b∈BK

dH

(
xm (b) , rm

′
)

(6)

and their corresponding codewords in C0 as:

x̂m,m′
= u

(
ŝm,m′

)
×G. (7)

Hence, the closest vector in Cm to rm
′

is found as:

xm
(
ŝm,m′

)
= x̂m,m′

⊕ em. (8)

1This ideal matrix is defined based on minimum distance decoding which is
not feasible in general cases. A practical approximation of this matrix will be
given based on list decoding in the sequel.

4

Let PM denote the set of all M ! permutations of
0, 1, . . . ,M − 1. Given a permutation pattern π ∈ PM , the
received vectors are reordered as rπ0 , rπ1 , . . . , rπM−1 , where
rπm corresponds to the transmitted vector xm (sm). Therefore,
rπm needs to be decoded in the m-th coset, which gives the
decoded vector x̂m,πm⊕em. Given this observation, we propose
to detect the permutation pattern as follows:

π̂ = argmin
π∈PM

M−1∑
m=0

dH (x̂m,πm ⊕ em, rπm) , (9)

i.e., as the permutation pattern that minimizes the cumulative
Hamming distance between the re-sorted received vectors and
their closest neighbors in the cosets. Note that from (5), (6),
(8), we have:

dH (x̂m,πm ⊕ em, rπm) = γm,πm , (10)

therefore:

π̂ = argmin
π∈PM

M−1∑
m=0

γm,πm . (11)

After detecting the permutation pattern as π̂, the vector ŝ =(
ŝ0,π̂0 , . . . , ŝM−1,π̂M−1

)
is delivered to the RS decoder which

generates the estimated bit stream t̂.
Since minimum distance decoding has a computational com-

plexity that exponentially grows with K, the ideal CSD matrix
defined in (5) cannot be generated with reasonable complexity,
except for very small values of K. However, one may employ a
list decoder of the polar code to generate an approximate CSD
matrix. In order to construct such an approximate matrix, first
note that by employing (3), (5) can be rewritten as:

γm,m′ = min
b∈BK

dH
(
x0 (b) , em ⊕ rm

′
)

(12)

Therefore, γm,m′ may be found by running a decoder which
finds a codeword in the polar code, C0, with a minimum
distance from em ⊕ rm

′
compared to any other codeword in

C0. Now, we may replace such an optimal minimum distance
decoder by a (suboptimal) list decoder by taking the following
approach. For a binary vector a = (a0, . . . , aN−1), and a
small positive number, ϵ, define an artificial reliability vector
L (a; ϵ) = (L0, . . . ,LN−1) such that:

Lj =

{
ϵ; aj = 0,

1− ϵ; aj = 1.
(13)

The vector L (a; ϵ) models the reliability values (likelihood
ratios) at the output of a low-noise channel (i.e., a channel that
adds a small amount of noise to its input vector, a). Therefore,
if one gives the vector L

(
em ⊕ rm

′
; ϵ
)

as an input to a list
decoder with a list size of L, one expects that codewords
with small Hamming distances from em ⊕ rm

′
appear among

the L candidate codewords produced by that list decoder. Let
Xm,m′

denote the set of the L codewords produced by the list

Figure 2. Block diagram of the proposed scheme.

decoder, and let Sm,m′
denote the set of information sequences

corresponding to these codewords. Then, we may define:


s̃m,m′

= argmin
b∈Sm,m′

dH
(
x0 (b) , em ⊕ rm

′
)

x̃m,m′
= u

(
s̃m,m′

)
×G

γ̃m,m′ = dH
(
x̃m,m′

, em ⊕ rm
′
) (14)

and employ them as approximations to ŝm,m′
, x̂m,m′

, and
γm,m′ , respectively.

Remark 1. We note that one may take an alternative indexing
approach, which we refer to as explicit indexing, where an
index of length ⌈log2 M⌉ bits is appended to each segment
and the indexed segment is encoded by an (N,K + ⌈log2 M⌉)
polar code. In Section V-A we show that this explicit indexing
is equivalent to a special case of the proposed coset-based
indexing; hence, the above joint decoder is applicable to explicit
indexing as well.

IV. PERFORMANCE ANALYSIS OF THE PROPOSED SCHEME

In this section, we analyze the FER of the proposed scheme
for a scenario where the outer decoder is a minimum dis-
tance decoder. Since the RS code has a minimum distance of
No −Ko + 1 symbols, a minimum distance decoder definitely
corrects up to No−Ko

2 symbol errors in every RS codeword
(selecting No−Ko even). According to Fig. 2, if zero-padding is
neglected, the sequence of symbols delivered to the RS decoder
is ŝ. Therefore, if a minimum distance decoder is applied to
decode the RS codeword, the probability of a frame error event
is less than or equal to the probability of observing more than
No−Ko

2 symbol errors in ŝ.
Let us assume that a permutation pattern π ∈ PM is imposed

by the channel and a permutation pattern π̂ is detected at the
receiver. Define a correct detection event, Ed, as the event that
π̂ = π; i.e., π̂m = πm for all m; and denote a detection
error event by Ed. When Ed occurs, rπm is assigned to its
matched coset, i.e., Cm, for all m. In this case, the bit error
rate (BER) at the output of the inner decoder, which is defined
as E

(
dH(s,ŝ)
KM

)
, is equal to the BER of the polar code (E (.)

denotes the expectation operator). Therefore, since each symbol
of an RS codeword consists of q consecutive bits, the symbol
error rate at the input of the outer decoder can be evaluated as:

5

ps = 1− {1− pb}q , (15)

where pb denotes the BER of the polar code.
Note that (15) is applicable when Ed has occurred, in which

case rπm is always assigned to its matched coset, Cm. On the
other hand, when Ed occurs, there exist values of m for which
rπm is assigned to a mismatched coset, e.g., coset Cm′′

where
m′′ ̸= m. This mismatched assignment is expected to increase
the BER at the input of the outer decoder; therefore, it is likely
that the outer decoder cannot correct these excessive bit errors
and makes a frame decoding error; i.e., maps ŝ to a t̂ ̸= t.
Following the above discussion, we assume that given Ed, a
frame error event always occurs. This is equivalent to bounding
the FER by 1 when Ed occurs. Therefore, the FER achieved by
a minimum distance decoder can be upper bounded as:

Pe ≤ pd + (1− pd)

×
(
1−

∑No−Ko
2

j=0

(
No

j

)
pjs (1− ps)

No−j

)
(16)

where pd = Pr (Ed) and ps is expressed in (15) in terms of pb,
the BER of the polar code.

To evaluate the right hand side of (16), one needs the values
(or estimates) of pb and pd. To estimate pb, one may either
employ existing bounds on the error probability of polar codes
(e.g., the bounds provided in [20]-[22]), or employ Monte-Carlo
simulations. Since the M cosets of the polar code are correlated,
it is not clear how to derive analytical approximations for pd
in case of polar codes. Therefore, we obtain a random coding
bound as follows. We replace the M cosets by M independently
generated random codes. Then, we derive an upper bound on
pd for such a scenario, and take the derived bound as an
approximation for pd when the cosets belong to a polar code.

Before proceeding, let us prove the following lemma which
is later employed to derive the bound on pd.

Lemma 2. Assume that the channel has imposed a permutation
pattern π and the CSD matrix Γ = [γm,m′] is generated at the
decoder. Define Eπm

as the event that γm,πm
< γm′′,πm

for
all m′′ ̸= m, i.e., the event that the smallest entry of column
numbered πm appears in the m-th row and all other entries
in that column are greater than this minimum value. If Eπm ’s
jointly occur for all m, then Ed occurs, i.e., then the permutation
pattern detected by (11) is equal to π.

Before proving Lemma 2, let us clarify its statement by
providing an example. Assume that M = 3 cosets are employed,
the permutation pattern π = (1, 0, 2) is imposed by the channel,
and the following CSD matrix is generated by the joint decoder:

Γ =

 γ0,0 γ0,1 γ0,2
γ1,0 γ1,1 γ1,2
γ2,0 γ2,1 γ2,2

 =

 5 3 6
2 7 8
8 5 2

 (17)

The minimum entries in columns numbered 0, 1, 2 of Γ are
γ1,0, γ0,1, γ2,2. Since π = (1, 0, 2), we have π0 = 1, π1 =
0, π2 = 2; hence, we may rewrite the minimum entries as
γ1,π1

, γ0,π0
, γ2,π2

. Therefore, Eπ1
, Eπ0

, Eπ2
jointly occur. Also,

since the summation on the right hand side of (11) is minimized
by picking γ0,1, γ1,0, γ2,2, it is clear that π̂ = (1, 0, 2) is
detected; i.e., π̂ = π, hence Ed occurs.

Proof of Lemma 2: For clarity of notation, let us rewrite (11)
as:

π̂ = argmin
σ∈PM

M−1∑
m=0

γm,σm . (18)

Define µ = σ−1◦π where−1 denotes inversion of a function
and ◦ denotes composition of two functions. It is clear that
µ ∈ PM and also σµm

= πm for all m ∈ {0, 1, . . . ,M − 1}.
Hence, we may write:

π̂ = argmin
µ∈PM

M−1∑
m=0

γµm,πm
. (19)

Since µ ∈ PM , the summation on the right hand side of (19)
is constrained to pick only one entry from each row of Γ. By
removing this constraint, we may derive a lower bound for the
summation as follows:

M−1∑
m=0

γµm,πm
≥

M−1∑
m=0

min
m′′∈{0,...,M−1}

γm′′,πm
. (20)

Since it is assumed in the lemma that Eπm ’s jointly occur,
we have:

min
m′′∈{0,...,M−1}

γm′′,πm = γm,πm (21)

for all m.
Replacing (21) in (20) gives

∑M−1
m=0 γµm,πm

≥∑M−1
m=0 γm,πm

, where the lower bound is achieved by
choosing µm = m for all m. Since according to the definition
of Eπm , all entries γm′′,πm , m′′ ̸= m, are strictly larger than
γm,πm , then for all other choices of µ,

∑M−1
m=0 γµm,πm is

strictly larger than the lower bound; i.e., the optimal choice
of µ is unique and is given by µm = m for all m. Since
σµm

= πm, we conclude that the optimal choice of σ is
unique and is given by σm = πm for all m. In other words,
the summation on the right hand side of (18) is minimized
for σ = π, which gives the detected permutation pattern as
π̂ = π. Therefore, Ed occurs and the proof is complete.

Using Lemma 2, we observe that joint occurrence of Eπm
’s

is a sufficient condition for occurrence of Ed. Therefore, we
may write:

Pr
(
Ed

)
≥ Pr

(
M−1
∩

m=0
Eπm

)
(22)

Now, we may employ (22) along with the union bound to find:

Pr (Ed) ≤ Pr

(
M−1
∪

m=0
Eπm

)
≤

M−1∑
m=0

Pr (Eπm
) (23)

6

where Eπm
is the complement of Eπm

. In the following, we
derive an upper bound on Pr (Eπm

) when the cosets are random
codes; then, we replace it in (23) to find an upper bound on
Pr (Ed). For this purpose, we follow the approach taken in [23]
to find the exact average error probability of a random code
ensemble over a BSC.

A. Random Coding Analysis

Let C =
{
C0, . . . , CM−1

}
be a set of (N,K) random codes

where each code has 2K codewords and each codeword is drawn
uniformly at random (with replacement) from BN . Recall that
rπm = xm (sm) ⊕ zm where sm ∈ BK is the m-th data
segment. From (5) it is clear that:

γm,πm
≤ dH (xm (sm) , rπm) = WH (zm) (24)

where WH (zm) denotes the Hamming weight of zm. There-
fore, given WH (zm) = w, a sufficient condition for Eπm

to
occur, is that dH

(
xm′′

(b) , rπm

)
> w, for all m′′ ̸= m and

all b ∈ BK . This condition is satisfied if for all codewords
x′ ∈ C − Cm it is true that dH (x′, rπm) > w. Using the
above discussion and by noting that codewords x′ are selected
uniformly at random from BN , we may write:

Pr
(
Eπm
|WH (zm) = w

)
≥ (Pr (dH (x′, rπm) > w))

|C−Cm|

(25)
Now, let us assume that xm (sm) = x0 for a fixed x0 ∈ BN .
Then, rπm = x0 ⊕ zm; and we may write:

dH (x′, rπm) = WH (x′ ⊕ x0 ⊕ zm) (26)

Let us define:

G (zm) = {b ∈ BN s.t. WH (b⊕ zm) > w} , (27)

by noting that x′ ⊕ x0 is uniformly distributed over BN , from
(26) and (27) we will have:

Pr (dH (x′, rπm) > w) = Pr (x′ ⊕ x0 ∈ G (zm)) =
|G (zm) |
|BN |

(28)
To find |G (zm) |, we show that there exists a one-to-one map-
ping between |G (zm) | and the set of vectors with a Hamming
weight greater than w, defined as:

Aw = {b ∈ BN s.t.WH (b) > w} (29)

To show the one-to-one mapping, we note that:
(i) If b ∈ G (zm), then from (27) it is known that

WH (b⊕ zm) > w; i.e., b⊕ zm ∈ Aw.
(ii) If b ∈ Aw, WH (b) = WH (zm ⊕ (b⊕ zm)) > w; i.e.,

b⊕ zm ∈ G (zm).
Using this one-to-one mapping, we write:

|G (zm) | = |Aw| = 2N −
w∑

j=0

(
N

j

)
(30)

By replacing (30) in (28) and noting that |BN | = 2N we
derive Pr (dH (x′, rπm) > w); then, we plug it in (25), and
also replace |C − Cm| = (M − 1) 2K , to find:

Pr
(
Eπm |WH (zm) = w

)
≥

1− 2−N
w∑

j=0

(
N

j

)(M−1)2K

(31)
Now, we may employ (31) along with the law of total

probability and the distribution function of the Hamming weight
of the BSC noise vector, i.e.,

Pr (WH (zm) = w) =

(
N

w

)
αw (1− α)

N−w (32)

to obtain:

Pr
(
Eπm

)
≥

∑N
w=0

(
N
w

)
αw (1− α)

N−w

×
(
1− 2−N

∑w
j=0

(
N
j

))(M−1)2K (33)

To simplify the calculations, we employ the inequality:

(1− y)
n ≥ (1− ny)× u−1 (1− ny) , −1 < y < 1, n ≥ 1

(34)
where u−1 (.) is the unit step function. Using (33), (34), and by
noting that Pr (Eπm) = 1− Pr

(
Eπm

)
, we obtain Pr (Eπm) ≤

1− ζ (N,K,M,α) where:

ζ (N,K,M,α) =
∑N

w=0

(
N
w

)
αw (1− α)

N−w

×
(
1− 2−(N−K)

∑w
j=0

(
N
j

))(M−1)

×u−1

(
1− 2−(N−K)

∑w
j=0

(
N
j

)) (35)

Note that ζ (N,K,M,α) does not depend on specific choices
of x0 and m. By plugging this result into (23) and by noting
that pd = Pr (Ed), we conclude:

pd ≤M × (1− ζ (N,K,M,α)) , (36)

The right hand side of (36) may be replaced in (16) as an
approximation for the FER as follows:

Pe ≈M (1− ζ (N,K,M,α))
+ (1−M +M × ζ (N,K,M,α))

×
(
1−

∑No−Ko
2

j=0

(
No

j

)
pjs (1− ps)

No−j

) (37)

Note that one cannot claim that (37) gives an upper bound
on the FER, since (36) is derived by random coding analy-
sis; whereas, in the proposed scheme, polar codes and their
corresponding cosets are employed. Nonetheless, this analysis
provides insights on the performance of a concatenated coding
scheme that employs the proposed coset-based indexing method.

V. COSET DESIGN AND COMPLEXITY REDUCTION

In this section, we show that there is a one-to-one mapping
between the 2N−Kcosets of an (N,K) polar code and the

7

2N−K subsets of its frozen bits. Using this one-to-one mapping,
we define explicit indexing as a specific type of coset-based
indexing. Then, we define the minimum pairwise distance
(MPD) between two cosets and propose a search method to find
a set of cosets that maximize the MPD. We refer to this search
method as the coset design process. We show that our coset
design approach has the potential to reduce the FER compared
to random coset selection.

We also study solutions to reduce the computational complex-
ity of the joint decoding method presented in Section III-B. As
discussed, M2 list decoders are required to generate the CSD
matrix; furthermore, M ! permutations must be examined before
selecting the most likely permutation pattern. This imposes a
high computational complexity for large values of M . In this
section, by employing the one-to-one mapping between the
subsets of frozen bits and the cosets, we introduce a method
that generates each column of the CSD matrix by running a
single list decoder, such that the whole matrix can be generated
by running M list decoders. Also, we propose a suboptimal
iterative method to infer a permutation pattern from the CSD
matrix, without the need to examine all the M ! patterns.

A. Relationship between Cosets and Frozen Bits

In (1) we defined a bit reliability pattern, ρ =
(ρ0, . . . , ρN−1), in descending reliability order, such that the
bits numbered ρj , K ≤ j ≤ N − 1, denote the frozen bits
that are set to zero. To establish a one-to-one mapping between
cosets of the polar code and the subsets of its frozen bits,
let us define a set of 2N−K vectors denoted by ũ (f) =
(ũ0, . . . , ũN−1) for f ∈ BN−K such that:

ũρj
=

{
0; 0 ≤ j ≤ K − 1,

fj−K; K ≤ j ≤ N − 1,
(38)

i.e., ũ (f) is a vector for which all information bits are set
to zero; whereas the frozen bits are set according to f . It is
clear that ũ (f)×G is not a codeword except for the case f =
0N−K which gives the all-zero codeword. Otherwise, ũ (f)×G
belongs to a coset of the polar code other than C0. Also, for each
pair f ,f ′ ∈ BN−K , it is clear from (38) that ũ (f)⊕ ũ

(
f ′) =

ũ
(
f ⊕ f ′). Hence, we may write:

(ũ (f)×G)⊕
(
ũ
(
f ′)×G

)
= ũ

(
f ⊕ f ′)×G, (39)

for all f ,f ′ ∈ BN−K . Therefore, ũ (f) ×G and ũ (f ′) ×G
belong to the same coset, if and only if f = f ′ (since that is the
only case where their addition leads to a codeword). In other
words, for every f ̸= f ′, the vectors ũ (f)×G and ũ

(
f ′)×G

belong to two different cosets. Since |BN−K | = 2N−K which is
equal to the total number of cosets, we conclude that there is a
one-to-one mapping between the 2N−K vectors f ∈ BN−K and
the 2N−K cosets of the polar code. In summary, corresponding
to each coset Cm with coset leader em, there exists a unique
vector in BN−K denoted by fm, for which ũ (fm)×G ∈ Cm
and subsequently:

(em ⊕ ũ (fm)×G) ∈ C0 (40)

where C0 denotes the polar code. Hence, the set of M cosets
C0, . . . , CM−1 can be represented by their M corresponding
vectors denoted by f0, . . . ,fM−1.

The above observation enables us to categorize explicit
indexing as a special case of coset-based indexing, for which
fm is generated by setting the first ⌈log2 M⌉ bits according to
the binary representation of the decimal number m (and setting
the remaining bits to zero). For example, for M = 4, explicit
indexing is equivalent to a coset-based indexing with:

f0 = (0, 0, 0, ..., 0)

f1 = (0, 1, 0, ..., 0)

f2 = (1, 0, 0, ..., 0)

f3 = (1, 1, 0, ..., 0)

(41)

Note that since ũ (fm) ×G ∈ Cm, its summation with any
codeword such as x0 (b) is also in Cm. Therefore, by noting
that x0 (b) = u (b)×G (Eq. (2)), we may write:

Cm = {(u (b)⊕ ũ (fm))×G for b ∈ BK} (42)

Remark 3. From (1) and (38) and by noting that for explicit in-
dexing only the first ⌈log2 M⌉ bits can be set to non-zero values,
we conclude that for explicit indexing case, u (b)⊕ ũ (fm) is
a vector for which bits numbered ρK+⌈log2 M⌉, . . . , ρN−1 are
forced to zero. Hence, (u (b)⊕ ũ (fm))×G can be regarded
as a codeword of an (N,K + ⌈log2 M⌉) polar code, which we
refer to as the supercode. From this conclusion and using (42),
we observe that for the explicit indexing scheme, all cosets
Cm are subsets of this supercode. This is also clear from the
nature of explicit indexing, where the K information bits are
appended by ⌈log2 M⌉ index bits and then are encoded by an
(N,K + ⌈log2 M⌉) polar code (see Remark 1).

Also, we note that a random selection of cosets is equivalent
to selecting a set of vectors f0 through fM−1 uniformly at
random out of the set BN−K . This observation is helpful when
we study benchmark schemes consisting of randomly selected
cosets, in Section VI.

1) Finding the Coset Leaders: Although we have established
the one-to-one mapping between Cm’s and fm’s, it remains to
explain how to find the coset leader corresponding to fm, which
we denoted by em. When K is small such that generating all
2K codewords, x0 (b), is feasible; then em is found as:

em = x0
(
b′
)
⊕ ũ (fm)×G (43)

where:

b′ = argmin
b∈BK

dH
(
x0 (b) , ũ (fm)×G

)
(44)

i.e., we find the codeword with the minimum Hamming distance
from ũ (fm) ×G and then add it to ũ (fm) ×G to find the
coset leader.

8

When K is such that generating all 2K codewords is not
feasible, we take an iterative approach to search for the coset
leader. For this, we initialize em as ũ (fm)×G, then we repeat
the following steps.

(i) We generate the artificial reliability vector L (em, ϵ)
defined in (13).

(ii) L (em, ϵ) is given to a list decoder of the (N,K) polar
code which provides a list of L codewords.

(iii) We search in the list for the codeword with a minimum
Hamming distance from em. Let us denote this codeword by
x′.

(iv) If dH (em ⊕ x′) < WH (em), we update em ← em⊕x′

and return to Step (i).
(v) The final value of em is declared as the coset leader.
Note that by increasing the list size, L, and choosing a proper

value for ϵ, one may improve the accuracy of the above search
process.

B. Designing Good Cosets

In this section, we devise a systematic approach to search
for sets of cosets that provide small detection error probabilities,
denoted by pd = Pr (Ed). In particular, we look for good cosets
that reduce Pr (Ed) compared to a benchmark scheme, where
for the benchmark scheme the cosets are randomly selected and
are regenerated for transmitting each data sequence, t (but their
realizations are known at the decoder). To search for such good
cosets, we employ the MPD between the cosets Cm and Cm′

which we define as:

δm,m′ = min
b,b′∈BK

dH
(
xm (b) ,xm′ (

b′
))

(45)

Let ∆ = [δm,m′] denote the MPD matrix, which is a symmetric
matrix with diagonal entries δm,m = 0. We refer to the
minimum positive-valued entry in ∆ as the minimum MPD
(MMPD) and define it as:

δ̌ = min
m,m′ :m′ ̸=m

δm,m′ . (46)

By noting that xm (b) = em⊕x0 (b), and by straightforward
manipulations, we may rewrite (45) as:

dH
(
xm (b) ,xm′ (

b′
))

= dH
(
em ⊕ em

′
,x0 (b)⊕ x0

(
b′
))
(47)

Also, since the polar code is a linear code (when the frozen
bits are set to 0), we have x0 (b) ⊕ x0

(
b′
)
= x0

(
b′′

)
for a

b′′ ∈ BK . Therefore:

δm,m′ = min
b′′∈BK

dH

(
em ⊕ em

′
,x0

(
b′′

))
(48)

i.e., the MPD of Cm and Cm′
can be found by employing a

minimum distance decoder to find the closest codeword in C0
to the vector em ⊕ em

′
.

Recall the definition of the CSD matrix, Γ = [γm,m′],
according to (5), and let Em→m′ denote the event that γm′,πm

<
γm,πm ; i.e. the event that rπm which is a noisy version of

xm (sm) ∈ Cm, is closer to a vector xm′ (
b′
)
∈ Cm′

(compared
to all vectors in Cm, including xm (sm)). It is clear that
in the worst-case scenario where dH

(
xm (sm) ,xm′ (

b′
))

=

δm,m′ , Pr (Em→m′) is maximized. This maximum value can
be bounded as follows:

max (Pr (Em→m′)) ≤ 1−
⌊
δ
m,m′−1

2 ⌋∑
j=0

(
N

j

)
αj (1− α)

N−j

(49)
where α is the BSC crossover probability and ⌊.⌋ denotes the
floor function. Now, we may employ the union bound to obtain:

Pr (Ed) = Pr

 ∪
m,m′

m′ ̸=m

Em→m′


≤

∑
m,m′

m′ ̸=m

Pr (Em→m′)

≤
∑

m,m′

m′ ̸=m

max (Pr (Em→m′))

≤
∑

m,m′

m′ ̸=m

(
1−

∑⌊
δ
m,m′−1

2 ⌋
j=0

(
N
j

)
αj (1− α)

N−j

)
(50)

Therefore, by noting that the right hand side of (49) is a
decreasing function of δm,m′ , and using the definition of δ̌
which is given in (46), we conclude that:

Pr (Ed) ≤M (M − 1)

1−
⌊ δ̌−1

2 ⌋∑
j=0

(
N

j

)
αj (1− α)

N−j


(51)

Since the bound provided in (51) is a decreasing function of
δ̌, we propose to search for a set of cosets with large MMPD, δ̌.
For this search, we take a systematic approach as follows. We
select an integer nF such that nF > log2M . Then, we form a
search space consisting of 2nF cosets corresponding to the com-
binations of frozen bits denoted by vectors

{
f0, . . . ,f2nF −1

}
,

where for fm we set the first nF bits according to the binary
representation of the decimal number m, and the rest of the
bits to zero. For example, we set f5 = (1, 0, 1, 0, . . . , 0). We
generate the 2nF × 2nF MPD matrix ∆ = [δm,m′] for these
cosets. Then, we run a sequential algorithm given in Algorithm
1 to find a set of M cosets with the maximum achievable
MMPD in this search space.

In Algorithm 1, Y
(
m; δ̌

)
identifies the set of all cosets Cm′

with an MPD greater than or equal to δ̌ from the coset Cm; i.e.,

Y
(
m; δ̌

)
=

{
m′ ∈

{
0, . . . , 2NF−1

}
| δm,m′ ≥ δ̌

}
(52)

The algorithm initiates δ̌opt as the maximum achievable MMPD;
then follows a sequential process which iteratively extends a
search tree. The variable τj denotes the number of remaining
nodes at stage j to be examined for a possible extension, which
we refer to as non-examined nodes. When the tree is extended

9

to stage j, a path from a leaf node to the root of the tree
represents a set of j +1 cosets with an MMPD greater than or
equal to δ̌opt. This is clear from Step 1 of the algorithm, where
node νj,τj−1 generates τj+1 child nodes; where the child nodes

are picked according to the set
j
∩

j′=0
Y
(

val
(
νj′,τj′−1

)
; δ̌opt

)
.

Therefore, the child nodes of νj,τj−1 correspond to the cosets
that have an MPD greater than or equal to δ̌opt from the
coset corresponding to νj,τj−1 (that is Cval(νj,τj−1)) as well as
the cosets corresponding to the ancestors of νj,τj−1 (that are

C
val

(
νj′,τ

j′−1

)
for j′ ∈ {0, . . . , j − 1}). This confirms that each

child node of νj,τj−1 along with its ancestors introduces a set
of cosets with an MMPD greater than or equal to δ̌opt.

Step 2 of Algorithm 1 indicates that if νj,τj−1 has child
nodes that have MPDs greater than or equal to δ̌opt from all
of their ancestors (including νj,τj−1), then the node νj,τj−1 can
be extended by running Steps 7 and 8 of the algorithm. After
completing this extension, the algorithm moves to Step 9 where
it checks whether the tree has reach stage numbered M−1 (i.e.,
whether a set of M cosets with an MMPD greater than or equal
to δ̌opt are found). If not, j is incremented and the algorithm
attempts to extend the tree to the next stage by returning to Step
1. Otherwise, the algorithm moves to Step 10 where the set of
M cosets with an MMPD greater than or equal to δ̌opt is given
as the search result.

If the algorithm reaches a node νj,τj−1 for which the number
of child nodes is equal to zero (i.e., τj+1 = 0), νj,τj−1 cannot
be extended. In such a case, the algorithm attempts to extend the
next available node at stage numbered j. For this, the algorithm
runs its Steps 3 and 4 to decrement the number of non-examined
nodes at the j-th stage, and check whether this number is still
positive, i.e., if τj > 0. If τj > 0, then the algorithm goes to
Step 1 and considers the next non-examined node at the j-th
stage of the tree. For example, if τj = 5 and node νj,4 cannot
be extended, running Steps 3, 4, and 1 replaces νj,4 by νj,3
in (53), where vj,3 is the next non-examined node (note that
the algorithm examines the nodes in descending order of their
indexes).

Step 5 of Algorithm 1 considers the case where there are
no further non-examined nodes at stage j (i.e., τj = 0). In this
case, the algorithm needs to move back to stage j−1 and check
whether there are remaining non-examined nodes at that stage.
This task is fulfilled at Step 5 by decrementing j and returning
to Step 3. Step 6 of the algorithm indicates that if the root
node of the tree has no further non-examined child nodes (i.e.,
if τ1 = 0), it is no longer possible to extend the tree and the
search process for the given value of δ̌opt has failed. In such a
case, the algorithm decrements δ̌opt and initiates a new search
by going back to Step 0.

1) Examples: Figure 3 demonstrates an example of the
sequential search process, where the search space consists of
6 cosets with an MPD matrix ∆ shown in the figure. The goal
is to find 4 cosets with an MMPD greater than or equal to 10.
The value corresponding to each node is denotes in parentheses
below the node name. Steps taken by Algorithm 1 are shown by

Algorithm 1 Sequential Search for a Subset of Cosets with
largest achievable MMPD.

Initialization: Let δ̌opt ← max
m,m′∈{0,1,...,2nF −1}

δm,m′ .

(0) Generate ν0,0 as the root node of a search tree, and assign

the value of val (ν0,0) = 0 to it. Set j = 0, and τ0 = 1.

(1) Let:

τj+1 ← |
j
∩

j′=0
Y
(

val
(
νj′,τj′−1

)
; δ̌opt

)
| (53)

(2) if τj+1 > 0, go to Step 6.

(3) Let τj ← τj − 1.

(4) If τj > 0, go to Step 1.

(5) If τj = 0 and j > 1, let j ← j − 1, then go to Step 3.

(6) If τj = 0 and j = 1, let δ̌opt ← δ̌opt − 1 then go to Step 0.

(7) Extend νj,τj−1 by generating its τj+1 child nodes as

νj+1,0, . . . , νj+1,τj+1−1.

(8) For l ∈ {0, . . . , τj+1 − 1}, let val (νj+1,l) = ỹl, where ỹl

denotes the l-th element of the ordered set found by sorting the

set
j
∩

j′=0
Y
(

val
(
νj′,τj′−1

)
; δ̌opt

)
in ascending order.

(9) If j < M , let j ← j + 1 and go to Step 1.

(10) Output the set
{

val (ν0,τ0−1) , . . . , val
(
νM−1,τM−1−1

)}
and terminate the algorithm.

Figure 3. Example of the sequential search process for finding 4 cosets with
an MMPD greater than or equal to 10.

10

red arrows. The algorithm terminates after running for 5 steps.
At Step 1, the algorithm intends to extend the tree from Stage
numbered j = 0 to Stage numbered j+1 = 1. From (52), (53)
it is found that C0 has τ1 = 4 child nodes represented by the
set Y (0; 10) = {2, 3, 4, 5}. Therefore, the tree is extended by
generating the 4 child nodes ν1,0, ν1,1, ν1,2, ν1,3 and assigning
the values 2, 3, 4, 5 to them. At Step 2, the algorithm attempts
to extend node ν1,3 from Stage j = 1 to Stage j + 1 = 2.
For this, using (52) the algorithm finds Y (5; 10) = {0, 2, 3, 4},
then using (53) it finds τ2 = |Y (0; 10)∩Y (5; 10) | which gives
τ2 = 3. Therefore, ν1,3 is extended by generating its 3 child
nodes named as ν2,0, ν2,1, ν2,2. The values of these nodes are
assigned after sorting the set Y (0; 10)∩Y (5; 10), which gives
their corresponding values as 2, 3, 4. Step 3 in Fig. 3 shows
the situation where the algorithm attempts to extend ν2,2 from
Stage j = 2 to Stage j + 1 = 3. However, by noting that
Y (4; 10) = {0, 1, 5}, from (53), the number of child nodes
available for ν2,2 is found as:

τ3 = |Y (0; 10) ∩ Y (5; 10) ∩ Y (4; 10) | = 0 (54)

i.e., ν2,2 cannot be extended to Stage j = 3. Therefore,
the algorithm returns to the parent node of ν2,2, i.e., ν1,3, and
attempts to extend its next child node which is ν2,1. Note that
when τ3 = 0, the condition at Step (2) of Algorithm 1 is
not satisfied; therefore, the algorithm moves to Step (3) and
updates τ2 as τ2 = 2. Then, since the condition in Step (4)
of the algorithm is satisfied, it returns to Step (1) and attempts
to find a new value for τ3, as the number of child nodes for
ν2,1. This time, Y (4; 10) in (54) is replaced by Y (3; 10) where
Y (3; 10) = {0, 1, 2, 5}. Therefore, in this case τ3 = 1 and
ν2,1 may be extended to Stage 3 by generating its child node,
ν3,0. Since the tree has reach stage numbered 3, four cosets
with MMPD greater than or equal to 10 are found by following
the path from the root node to the leaf node ν3,0, as cosets
numbered (0, 5, 3, 2).

Now, let us demonstrate the potential of the proposed coset
design method by giving a toy example in which 4 cosets of
(32, 16) polar code are employed to encode data segments of
length 16 bits. For coset design purposes, we set nF = 5; hence,
the search space consists of 32 cosets denoted by C0 through
C31, out of which 4 cosets with maximum possible MMPD will
be selected using Algorithm 1.

Using (43), (48), it is straightforward to show that δm,m′ is
equal to the minimum distance between the codewords of the
polar code and the vector

(
ũ (fm)⊕ ũ

(
fm′

))
× G. After

finding all values δm,m′ , m,m′ ∈ {0, 1, . . . , 31}, which give
the MPD matrix, ∆, we run Algorithm 1 and find 4 cosets with
the maximum achievable MMPD. We refer to these 4 cosets by
the designed cosets.

The probability of detection error, i.e., pd = Pr (Ed), for
the 4 designed cosets is plotted in Fig. 4. The curve is found
by Monte Carlo simulation where 4 randomly generated data
segments of length 16 bits are encoded by the 4 cosets, then
the encoded vectors are permuted according to a permutation
pattern π which is drawn from PM uniformly at random. Then,

0.01 0.015 0.02 0.025 0.03 0.035 0.04

BSC crossover probability

10
-2

10
-1

P
d

Designed cosets

Randomly selected cosets

Figure 4. Performance of the proposed coset design method for a toy example
with 4 cosets of (32, 16) polar code.

BSC noise is added to the permuted vectors to obtain the
received vectors rπ0 , . . . , rπ3 . Finally, the permutation pattern,
π̂, is detected by the proposed joint decoding method. This
process is repeated for several times, and pd is estimated by
dividing the number of tries for which π̂ ̸= π, by the total
number of tries.

In Fig. 4 we also plot the curve for a benchmark scheme for
which the cosets are randomly selected and are re-generated
at each try, but their realizations are known at the decoder.
It is observed that the designed cosets significantly reduce
the probability of detection error compared to this benchmark
scheme with randomly selected cosets.

Remark 4. For the toy example considered in this section, it
is feasible to generate all 216 codewords and find the exact
value of δm,m′ . However, when K is large, generating all 2K

codewords is not feasible. For the case of large K, we generate
the artificial reliability vector, L (a, ϵ), according to (13) by
letting a =

(
ũ (fm)⊕ ũ

(
fm′

))
× G. Then, we give this

reliability vector to a list decoder with a list size of L. If x′

denotes the codeword on the list with the minimum Hamming
distance from a, then δm,m′ can be approximated as dH (a,x′).
By increasing the list size L (e.g. L = 1024), and adjusting the
value of ϵ, one may improve the accuracy of this approximation.

C. Reducing the Complexity of Joint Decoder

Constructing the CSD matrix requires running M2 decoders,
that imposes a large computational complexity. However, when
the cosets are designed based on the frozen bits, we may take
a lower complexity approach to construct a CSD matrix, albeit
with lower accuracy. For this, we note that by making arguments
similar to those provided in Remark 3, one may show that
the designed cosets are subsets of an (N,K + nF) polar code,
which we refer to as the supercode. Hence, each rm

′
can be

regarded as a noisy codeword of this supercode and can be
decoded over this supercode. To implement such an approach,
at the decoder we unfreeze the nF frozen bits that contribute
to the coset design process. Then, we run a list decoder to find
L codewords of the supercode, which we refer to by super-
codewords. We partition the set of L super-codewords into M

11

disjoint subsets denoted by X̌m,m′
such that the j-th codeword

in X̌m,m′
is expressed as ǔm,j×G, where ǔm,j has the property

that its nF unfrozen bits are identical to the first nF bits of fm,
i.e.,

(
ǔm,j
ρK

, ǔm,j
ρK+1

, . . . , ǔm,j
ρK+nF −1

)
=

(
fm
0 , fm

1 , . . . , fm
nF−1

)
(55)

for j ∈
{
0, 1, . . . , |X̌m,m′ |

}
.

Due to the one-to-one mapping between Cm and fm, for
every x′ ∈ X̌m,m′

we have x′ ∈ Cm, i.e., X̌m,m′ ⊂ Cm.
Therefore, the vectors x′ ∈ X̌m,m′

may be employed as
candidates to approximate the CSD between Cm and rm

′
by

defining:

γ̌m,m′ =


min

x′∈X̌m,m′ (L)
dH

(
x′, rm

′
)
; X̌m,m′ ̸= ∅

dH

(
em, rm

′
)

; otherwise
(56)

The second condition in (56) indicates that when X̌m,m′
is an

empty set, i.e., when none of the L decoded super-codewords is
in Cm, we estimate the CSD as the Hamming distance between
rm

′
and the coset leader of Cm. Note that by definition, the

CSD is the minimum distance of the members of Cm from
rm

′
; hence, it may be bounded as dH

(
em, rm

′
)

2.

Now, we may generate a CSD matrix Γ̌ = [γ̌m,m′] and
employ it in the joint decoding process. Although this CSD
matrix leads to a suboptimal decoding, it can be generated by a
significantly lower computational complexity. The reason is that
for generating each column of Γ̌, a single list decoder is em-
ployed over the (N,K + nF) super-code, whereas each column
of Γ is generated by running M list decoders over the (N,K)
polar code (see Eq. (14)). Therefore, this proposed approach
may be employed to trade-off performance for computational
complexity.

Note that the above proposed low complexity decoder is
only applicable to designed cosets and not to randomly selected
cosets. The reason is that for randomly selected cosets, vectors
f0 through fM−1 are picked uniformly at random from the set
BN−K ; therefore, the number of active frozen bits is not limited
(unlike the designed cosets for which this number is nF). In
other words, for randomly selected cosets, the supercode will
have rate 1 and decoding over it will give no information (unlike
designed cosets for which the supercode has a rate K+nF

N < 1).
1) Limiting the Number of Examined Permutations: A fur-

ther complexity concern is that according to (19), the joint
decoder examines all M ! permutation patterns in PM in order
to infer the most likely pattern from the CSD matrix, Γ. When
M is large, the complexity of this search is prohibitive. To
overcome this drawback, we propose a low-complexity (but
suboptimal) iterative search method that produces a permutation
pattern, π̂, by taking only M iterations. The proposed search
method works as follows. In each column of the CSD matrix,

2One may tighten this bound by including ũ (fm) × G which is another
member of Cm.

we find the difference between the minimum valued entry and
the entry that has the next smallest value. Then, we select the
column that maximizes this difference. Let us assume that the
maximum difference occurs for the m′

0-th column in which the
m0-th row contains the minimum valued entry. We assign the
m′

0-th received segment to m0-th coset; then, we exclude the
m0-th row and the m′

0-th column from the matrix, and proceed
to the next iteration.

The justification for taking this approach is that if Cm is
the coset with the minimum CSD to rm

′
, with a CSD of

γm,m′ , and if Cm′′
is the second closest coset to rm

′
with

a CSD of γm′′,m′ , then, roughly speaking, a larger value of
γm′′,m′ − γm,m′ implies a larger possibility that rm

′
belongs

to Cm. Hence, it is reasonable to find the segment for which
the difference is maximized and make a decision about that
segment.

Let us demonstrate the above-proposed process by giving an
example. Consider the following CSD matrix corresponding to
three cosets and three received vectors:

Γ0 =

 γ0,0 γ0,1 γ0,2
γ1,0 γ1,1 γ1,2
γ2,0 γ2,1 γ2,2

 =

 4 0 2
17 10 9
14 5 16

 (57)

where the index 0 in Γ0 indicates the initial state, i.e., iteration
numbered 0. In Γ0, the differences between minimum and next
smallest entries for r0, r1, r2 are 10, 5, 7. Therefore, r0 is
selected and since C0 has the minimum CSD from r0, r0 is
mapped to C0. Then, r0 and C0 are excluded from the search
by excluding their corresponding column and row, and updating
the CSD matrix as follows:

Γ1 =

[
γ1,1 γ1,2
γ2,1 γ2,2

]
=

[
10 9
5 16

]
(58)

where the index 1 in Γ1 indicates that we have moved to
iteration numbered 1. For Γ1, the differences of entries for the
columns corresponding to r1 and r2 are 5 and 7, respectively.
Therefore, r2 is selected and since C1 has the minimum-valued
CSD from r2, r2 is assigned to C1. Then, the CSD matrix is
updated by excluding the column and the row corresponding to
r2 and C1, respectively. The updated CSD matrix is expressed
as Γ2 = [γ2,1] = [5]. In the final iteration, the only remaining
segment in Γ2, which is r1, is mapped to the only remaining
coset in Γ2, which is C2. Therefore, the received sequence
is sorted as

(
r0, r2, r1

)
which is equivalent to detecting a

permutation pattern π̂ = (0, 2, 1).

VI. NUMERICAL RESULTS

In this section, we provide numerical examples to quantify
the performance of the proposed scheme, and compare it with
that of the explicit indexing method. We also compare the per-
formance of designed cosets against the benchmark scheme that
employs randomly selected cosets. In addition, the performance
of the low-complexity joint decoder is compared with that of the
optimal joint decoder through these numerical results. The 5G

12

standardization unique channel-reliability sequence is employed
for polar coding [24].

We study two setups, denoted by Setup A and Setup B. For
Setup A, the (255, 225) RS code is employed as the outer code
and 32 cosets of the (128, 64) polar code are employed as the
inner code. Also, a list decoder with a list size of L = 4 is
employed for generating the CSD matrix. For Setup B, the outer
code is the (63, 35) RS code while inner encoding and indexing
are performed by 9 cosets of the (64, 42) polar code. The CSD
matrix is generated by aid of list decoders with a list size of
L = 1.

Figure 5 shows FER curves for Setup A, when explicit
indexing and designed cosets are employed, respectively. For the
coset design process, we take nF = 8 frozen bits. The analytical
approximation found for random coding is also plotted in the
figure. It is observed that the designed cosets outperform explicit
indexing and also achieve FERs lower than those predicted by
the analytical approximation.

Figure 6 shows the performance of the low-complexity de-
coding method. The curve labeled as “full decoding” shows
the case where the CSD matrix is constructed by running M2

decoders with a list size of 4; whereas for low-complexity
decoding case, the matrix is constructed by running M list
decoder with a list size of 128. Although the results suggest
a suboptimal performance for the low-complexity decoder,
this low-complexity method offers a choice for trading off
the performance for the computational complexity. Also, since
M = 32 cosets are employed in Setup A, searching over all
M ! permutations is infeasible; therefore, in both cases of full
and low-complexity decoding, the method proposed in V-C1 is
employed to deduce π̂ from the generated CSD matrix.

Figure 7 shows the frame error rate and the probability of
detection error, pd, for Setup B, for two cases that correspond
to the benchmark scheme with randomly selected cosets, and
the designed cosets with nF = 12, respectively. It is observed
that the designed cosets outperform random cosets in terms of
both FER and pd; however, their advantage is more significant
for the case of pd.

Figure 8 shows the FER curves for Setup B, when designed
cosets with nF = 6 are employed. For the low-complexity
decoding, the matrix is generated by running M = 9 list
decoders of list size L (where both cases of L = 8 and L = 32
are examined. For the full decoding, M2 = 81 list decoders with
a list size of 4 are employed to generate the CSD matrix. It is
observed that by increasing the list size, L, the low-complexity
decoder is capable of offering a performance which is close to
the one offered by the full decoder.

VII. CONCLUSIONS

We propose an implicit indexing approach for data transmis-
sion over a noisy shuffling channel, where data is encoded by an
outer RS code, then the RS codeword is sliced into short-length
segments, which are encoded by separate cosets of a polar code.
We design a joint decoder that detects the permutation pattern
and performs polar decoding. The joint decoder generates a
coset-segment distance matrix and infers the permutation pattern

0.025 0.03 0.035 0.04 0.045 0.05

BSC Crossover Probability

10
-4

10
-3

10
-2

10
-1

10
0

F
ra

m
e

E
rr

o
r

R
a

te

Analysis with random codes

Designed cosets

Explicit indexing

Figure 5. FERs achieved for Setup A by employing explicit indexing and
designed cosets, respectively. The analytical approximation found for random
coding is also plotted as a reference.

0.03 0.035 0.04 0.045 0.05

BSC Channel Crossover Probability

10
-3

10
-2

10
-1

10
0

F
ra

m
e

E
rr

o
r

R
a

te

Full decoding

Low-complexity decoding

Figure 6. FERs achieved for Setup A when full decoding and low-complexity
decoding are applied to generate the CSD matrix.

from this matrix. We establish a one-to-one mapping between
the subsets of the frozen bits and the cosets of the polar code;
then we employ this mapping to design cosets offering low
probabilities of detection error. Furthermore, a low-complexity
decoding method is proposed that trades off the performance
of the joint decoder for its computational complexity. Through
random coding analysis, an analytical approximation is derived
for the frame error rate of the proposed scheme. We also
show that explicit indexing is equivalent to a special case of
the proposed coset-based indexing, and is outperformed by the
designed cosets.

Performance analysis of the proposed scheme for noisy shuf-
fling channels with insertion, deletion and substitution errors,
and design of suitable inner codes for those channels, are among
interesting directions for future research.

REFERENCES

[1] J. Haghighat and T. M. Duman, “A practical concatenated coding scheme
for noisy shuffling channels with coset-based indexing,” in proceedings
IEEE GLOBECOM, December 2023.

[2] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital information
storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628, Sep. 2012.

13

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036

BSC crossover probability

10
-2

10
-1

FER: random cosets

FER: designed cosets

P
d
 : random cosets

P
d
 : designed cosets

Figure 7. Frame error rates and probabilities of detection error for Setup B
when the benchmark scheme with randomly selected cosets, and the designed
cosets with nF = 12 are employed.

0.015 0.02 0.025 0.03 0.035 0.04

BSC crossover probability

10
-4

10
-3

10
-2

10
-1

10
0

F
ra

m
e

E
rr

o
r

R
a
te

Full decoding

Low-complexity decoding: L=8

Low-complexity decoding: L=32

Figure 8. FER curves for Setup B, when designed cosets are employed. The
CSD matrix is generated either by full decoding or by the low-complexity
decoding method.

[3] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B.
Sipos, and E. Birney, “Towards practical, high-capacity, low- maintenance
information storage in synthesized DNA,” Nature, vol. 494, no. 7435, pp.
77–80, 2013.

[4] S. Kosuri and G. Church, “Large-scale de novo DNA synthesis: Technolo-
gies and applications”, Nature Methods, vol. 11, no. 5, pp. 499-507, May
2014.

[5] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error
correcting codes,” Angew. Chem. Int. Ed., vol. 54, no. 8, pp. 2552–2555,
2015.

[6] L. Organick et al., “Random access in large-scale DNA data storage,”
Nature Biotechnology, vol. 36, pp. 242–248, Feb. 2018.

[7] Heckel, R., Mikutis, G., and Grass, R.N. A characterization of the DNA
data storage channel. Sci Rep 9, 9663 (2019).

[8] I. Shomorony and R. Heckel, “Capacity results for the noisy shuffling
channel,” 2019 IEEE International Symposium on Information Theory
(ISIT), 2019, pp. 762-766.

[9] A. Lenz, P. H. Siegel, A. Wachter-Zeh and E. Yaakobi, “Coding over sets
for DNA storage,” in IEEE Transactions on Information Theory, vol. 66,
no. 4, pp. 2331-2351, April 2020.

[10] I. Shomorony and R. Heckel, “DNA-based storage: Models and funda-
mental limits,” in IEEE Transactions on Information Theory, vol. 67, no.
6, pp. 3675-3689, June 2021.

[11] M. Kovačević and V. Y. F. Tan, “Codes in the space of multisets – Coding
for permutation channels with impairments,” in IEEE Transactions on
Information Theory, vol. 64, no. 7, pp. 5156-5169, July 2018.

[12] J. Sima, N. Raviv and J. Bruck, “On coding over sliced information,” in

IEEE Transactions on Information Theory, vol. 67, no. 5, pp. 2793-2807,
May 2021.

[13] K. Levick, R. Heckel and I. Shomorony, “Achieving the capacity of a
DNA storage channel with linear coding schemes,” 2022 56th Annual
Conference on Information Sciences and Systems (CISS), Princeton, NJ,
USA, 2022, pp. 218-223.

[14] A. Lenz, P. H. Siegel, A. Wachter-Zeh and E. Yaakobi, “Anchor-based
correction of substitutions in indexed sets,” 2019 IEEE International
Symposium on Information Theory (ISIT), Paris, France, 2019, pp. 757-
761.

[15] J. Sima, N. Raviv and J. Bruck, “Robust indexing - Optimal codes
for DNA storage,” 2020 IEEE International Symposium on Information
Theory (ISIT), Los Angeles, CA, USA, 2020, pp. 717-722.

[16] L. Welter, I. Maarouf, A. Lenz, A. Wachter-Zeh, E. Rosnes and A. G. I.
Amat, “Index-based concatenated codes for the multi-draw DNA storage
channel,” 2023 IEEE Information Theory Workshop (ITW), Saint-Malo,
France, 2023, pp. 383-388.

[17] T. Shinkar, E. Yaakobi, A. Lenz and A. Wachter-Zeh, “Clustering-
correcting codes,” in IEEE Transactions on Information Theory, vol. 68,
no. 3, pp. 1560-1580, March 2022.

[18] N. Weinberger, “Error probability bounds for coded-index DNA storage
systems,” in IEEE Transactions on Information Theory, vol. 68, no. 11,
pp. 7005-7022, Nov. 2022.

[19] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” in
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073,
July 2009.

[20] B. Shuval and I. Tal, “A lower bound on the probability of error of
polar codes over BMS channels,” 2017 IEEE International Symposium
on Information Theory (ISIT), Aachen, Germany, 2017, pp. 854-858.

[21] G. Ricciutelli, M. Baldi, F. Chiaraluce and G. Liva, “On the error probabil-
ity of short concatenated polar and cyclic codes with interleaving,” 2017
IEEE International Symposium on Information Theory (ISIT), Aachen,
Germany, 2017, pp. 1858-1862.

[22] S. Seyedmasoumian and T. M. Duman, “Approximate weight distribution
of polarization-adjusted convolutional (PAC) codes,” 2022 IEEE Interna-
tional Symposium on Information Theory (ISIT), Espoo, Finland, 2022,
pp. 2577-2582.

[23] S. J. MacMullan and O. M. Collins, “A comparison of known codes,
random codes, and the best codes,” in IEEE Transactions on Information
Theory, vol. 44, no. 7, pp. 3009-3022, Nov. 1998.

[24] V. Bioglio, C. Condo and I. Land, “Design of polar codes in 5G new
radio,” in IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp.
29-40, Firstquarter 2021.

