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Abstract—Deep Neural Networks (DNNs) have gained consid-
erable traction in recent years due to the unparalleled results they
gathered. However, the cost behind training such sophisticated
models is resource intensive, resulting in many to consider DNNs
to be intellectual property (IP) to model owners. In this era of
cloud computing, high-performance DNNs are often deployed all
over the internet so that people can access them publicly. As such,
DNN watermarking schemes, especially backdoor-based water-
marks, have been actively developed in recent years to preserve
proprietary rights. (Add that no backdoor watermark guarantee).
Nonetheless, there lies much uncertainty on the robustness of
existing backdoor watermark schemes, towards both adversarial
attacks and unintended means such as fine-tuning neural network
models. In this paper, we extensively evaluate the persistence of
recent backdoor-based watermarks within neural networks in the
scenario of fine-tuning, we propose/develop a novel data-driven
idea to restore watermark after fine-tuning without exposing the
trigger set. Our empirical results show that by solely introducing
training data after fine-tuning, the watermark can be restored if
model parameters do not shift dramatically during fine-tuning.
Depending on the types of trigger samples used, trigger accuracy
can be reinstated to up to 100%. Our study further explores how
the restoration process works using loss landscape visualization,
as well as the idea of introducing training data in fine-tuning
stage to alleviate watermark vanishing.

Index Terms—backdoor watermark, neural network, persis-
tence, privacy, fine-tuning.

I. INTRODUCTION

Recent years have witnessed eminent advancement of Ar-
tificial Intelligence (AI) in various aspects of life, ranging
from computer vision, natural language processing (NLP) to
healthcare. The use of deep neural networks has overshadowed
traditional machine learning techniques in those tasks. The
phenomenal success of Transformer [[1] paved the way to many
breakthroughs in language models and even in machine vision.
For instance, Transformer-based models such as OpenAI’s
GPT-3 [2l], GPT-4 [3]], Google’s LaMDA [4] and PaLM 2 [J5]]
have become the dominant large language models (LLMs)
and now serve as backbones in ChatGPT and Bard chatbots.
Nonetheless, these models usually consist of up to hundreds
of billions of parameters and it costs millions of dollars
to train them. Aside training cost, the infrastructure, data
acquisition and human resource payment can make up colossal
expense for the host companies. Such exorbitant cost and
enormous effort have made these models valuable intellectual
properties (IP) of the companies. Furthermore, with the growth
of machine learning as a service (MLaaS) [6], the privacy of
machine learning models is exposed to various threats. For
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example, an authorized model user may illegally distribute the
obtained model to unauthorized parties. To that end, sufficient
care for model’s privacy should be taken into consideration.

One of the effective techniques to guard DNNs from illegal
usage is watermarking, in which some special patterns are
embedded into the host documents. Watermark has been used
for a long time in digital documents like photos, videos,
sounds, etc,. In the past decade, researchers have adopted the
idea of watermarking to machine learning models, especially
DNNs. The first work in DNN watermark is from [7], whose
idea is inspired by conventional digital watermark techniques
that embeds hidden signature into the model’s parameters by
modifying the regularizer. More recent DNN watermarking
techniques are based on the idea of backdoor, which is first
proposed by Adi et al. [8]]. The idea is to train the DNNs so
that they output specific predictions for a specifically designed
dataset.

In real-world use cases, it is common that model own-
ers create their own pre-trained DNNs and distribute them
publicly, or to subscribed clients. In those situations, DNNs
do not invariably stay static. Instead, model users usually
make changes to the DNNs so that they suit better to their
particular domain by transfer learning or fine-tuning, in which
model’s parameters are modified by being trained on newer
data. This process challenges the persistence and robustness
of backdoor watermarks as the they are embedded in model’s
parameters. Recent work from [9]], [10] aims at removing
backdoor watermarks via fine-tuning. They demonstrate that
most DNN backdoor watermarks are vulnerable to removal
attack like fine-tuning, although [8], [11]] claim that fine-tuning
is not sufficient to remove backdoor watermarks.

To this end, we focus on evaluating the persistence of
existed backdoor watermark schemes against fine-tuning, as
well as how to enhance their resilience in the event of fine-
tuning. Our contributions can be summarized as:

e We propose a data-driven method utilizing the idea of
basin of attraction of local minima. Our experiment
shows this method helps regain the watermark accuracy
after fine-tuning process, which involves retraining the
DNN with the original clean training set without further
exposure of trigger samples to the model.

o« We analyze the optimization trajectory of model pa-
rameters using loss landscape geometry. The analysis
illustrates how model parameters traverse the landscape
during re-training and how the landscape looks like with
respect to particular trigger set types.

o Lastly, we try out with the idea of blending original
training data into fine-tuning stage to investigate its
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effectiveness in reducing watermark vanishing.
This intriguing property can be applied in cases when autho-
rized model users request to perform fine-tuning or incremen-
tal training via API access. Model owners, with the proposed
fine-tuning technique, can allow the users to do so while still
able to retain the presence of watermark without risking the
secrecy of trigger samples during that process.

The paper is organized as follow, Section [[] reviews the
background of watermark requirements and related work for
DNN watermarking, Section [[II| details the theory behind our
proposed methodology, Section [[V|shows our experiments and
results.

II. BACKGROUND & RELATED WORK

DNN watermarks, though differ in terms of mechanism
compared to digital watermarks, need to fulfill some require-
ments to successfully protect the model’s privacy. Below, we
discuss the fundamental requirements for DNN watermarks.
Then we review the related work on neural network back-
doors and some notable research attempts to turn malicious
backdoors into privacy guards in neural networks.

A. Requirements for DNN watermarks

The primary difference between conventional digital wa-
termarking and DNN watermarking is that in case of digital
documents, the watermark can be injected directly into the
host documents. Whereas in the case of DNN, the watermark
cannot be directly embedded into the model weights. The
watermark embedding process must happen during training.
Despite this, both digital watermarking and DNN watermark-
ing have to satisfy a good trade-off between persistence,
capacity and fidelity (for DNN watermark) or imperceptibility
(for digital watermarking). This trade-off can be viewed as a
triangle in Figure [T} which is discussed in [12]]. However, one
downside of this watermarking scheme is that it requires an
explicit inspection of model parameters in order to verify the
ownership. Below we briefly review the key requirements for
DNN watermarks, these points are also mentioned in 7], [13].

Persistence. This is the ability of a watermark to be retained
from the host documents. In the context of DNN watermark-
ing, the presence of watermark footprint should be preserved
to a great extent in the event of model manipulations, e.g. fine-
tuning, model compression. In other words, this property is the
robustness of watermark against model attacks/modifications.

Fidelity. As regards digital watermarking, fidelity is con-
sidered equivalent to imperceptibility, in which watermarks
should not degrade the quality of host documents. In terms
of DNN watermarking, a good fidelity means that the water-
mark does not have much detrimental impact on the model
performance on its original task.

Capacity. This is the amount of information that can be
embedded into host contents, expressed as the number of bits
or payload. Most common DNN watermark schemes are either
zero-bit or multi-bit watermarks.

There are a few more requirements that a DNN watermark-
ing scheme should satisfy to be considered of good quality.
Table [I| summarizes the most common criteria to evaluate a
DNN watermark scheme.

Persistence

0

Watermark
Requirement
Trilemma

7 € >
Fidelity

Capacity
Fig. 1: Trilemma between persistence, capacity and fidelity

TABLE I: Requirements for DNN watermarks

Criterion Description

Persistence  The watermark should resist various attacks and model

modifications

Capacity The capability of embedding large amount of informa-
tion into host neural network

Fidelity The watermark should not significantly affect the per-
formance of target NN on original task

Integrity The false alarm rate (or number of false positives)
should be minimal

Security The presence of watermark should be secret and unde-
tectable

Efficiency The computational overhead of watermark construction
and verification should be negligible

Generality The watermark technique can be adaptive to various

models, datasets and learning tasks

B. Related Work

The first work on protecting the IP of neural networks
using watermark was proposed by Uchida et al. [7]. In this
work, the secret key is a specially designed vector X with 7-
bit length. The watermark embedding happens during model
training and is done by adding an embedding regularizer term
to the original loss function. This can be written as F(w) =
Ep(w) + AEr(w) where Ey(w) is the loss for original task
and ERr(w) is the additional embedding regularizer imposing
a statistical bias on the parameters w. To extract and verify the
watermark, model owners simply have to compute the project
of w onto X, which indicates the presence of watermark by
comparing with a pre-defined threshold.

Backdoor in neural networks. After the work in [7]], many
researchers have been actively tackling DNN watermaking
problem in various ways. A prominent technique to embed
a watermark into neural networks is backdooring. According
to [14], backdoors in neural networks corresponds to the
process of training a neural network in such a way that it
outputs wrong labels for certain input samples and is regarded
as one kind of data poisoning. The power of modern DNN
models stems from their over-parameterization, that is, the
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number of model parameters is much more than the number
of training samples so that the models have more capability
to solve their original task. However, this characteristic paves
the way for backdooring, hence a security weakness in DNN
models.

Traditionally, backdoors are considered undesirable to Al
security. Nevertheless, Adi et al. [8] turned this “badness”
into a “privacy guard”. The idea is straightforward since the
training method is similar to usual neural network training,
except that the backdoor trigger data is introduced to the
model during training process. In this work, trigger data is
a set of abstract images which are completely unrelated to
clean samples, and are mislabeled with random classes. The
watermark embedding process happens either during fine-
tuning or training from scratch via data poisoning. Zhang et
al. [15] proposed a similar watermark scheme but with differ-
ent watermark generation techniques, i.e. embedded content,
unrelated data and pre-specified noise. In the first approach,
the trigger images are sampled from the original training
data and overlaid with a special string. The second approach
involves using images from different domains than original
training data. In the final approach, Gaussian noise is added
to the images to generate trigger data. Rouhani et al. [13]]
proposed DeepSigns framework, which introduces a hybrid
method to embed NN watermark. The framework has two
steps, first, it embed a N-bit string b into intermediate layers
of target neural network. The loss function is modified as
L = OrigLoss 4+ A1.loss; + As.lossa, where the additive
lossy and lossy can be viewed as regularizers enforcing the
hidden layers’ activation to fit better to a Gaussian distribution
and embedding the watermark string b via projection, which
is pretty similar to that of [7]]. In the second step, DeepSigns
watermarks the network’s output layer by selecting watermark
keys, or input samples, whose activation lies in the rarely
explored area of intermediate layers. In other words, the neural
network produces incorrect predictions for these samples. The
target network is then fine-tuned with these samples so that the
final watermarked model classifies the samples correctly. This
step is similar to most backdoor-based watermark schemes,
except for the type of trigger set.

A few studies make use of adversarial examples to generate
trigger data. Frontier Stitching [16] is the first watermark
scheme to leverage adversarial examples. In this algorithm,
the trigger data contains true adversaries, which are perturbed
samples that fool the model into outputting wrong predictions.
It also includes false adversaries, where adversarial noises
are applied to the original samples to the level that they do
not affect the classification results. Both types of adversarial
samples are generated in such a way that they lie close to
the decision boundaries, or frontiers. This condition ensures
the decision frontiers of watermarked classifier do not deviate
significantly from the non-watermarked one’s. ROWBACK
scheme [17] also adopts adversarial example for trigger set
generation, but differs in the labeling procedure. The algorithm
uses FGSM [18] to create adversarial samples, then each
sample’s label is chosen to be different from its ground-
truth label and predicted label. Another novel contribution of
ROWBACK is uniform watermark distribution. In other words,

at every iteration, only a specific set of layers are trained while
other parts of the model are frozen. Which set of layers are
trained alternates by iteration. According to the work, this
ensures the watermark footprint is evenly distributed across
the whole neural network’s parameters.

Most of the trigger-based watermark schemes claim their
robustness to removal attacks with little theoretical guarantee.
Recently, Bansal et al. [[19] proposed a certifiable trigger-
based watermark that utilizes random noises to enhance ro-
bustness. The training algorithm employs a two-staged process
every epoch: 1) model is trained normally on training set
X. 2) k noised copies of model’s parameters 6 are samples
{0+Aili =1,--- ,kAA; ~ N(0, 0%)} where A; are the
added Gaussian noises. These cloned models are trained on
trigger data Xi,;gger then their gradients get averaged and
accumulated to the original parameters for updating. The paper
theoretically shows that certification guarantees watermark’s
robustness within a [y-norm ball of parameters modification.

III. LoCAL MINIMA AND WATERMARK RESTORATION

In this work, we focus on fine-tuning watermarked neural
networks. A model owner trains their model fj, where § € RY
is model’s parameters, on clean dataset Dy,q;, to perform a
specific classification task 7. To verify model ownership, a
set of trigger samples Dyyjgqer are embedded into fy during
training and extracted during verification process. To achieve
this goal, the optimization process tries to solve:

0" = argmin L(y, fo(z)) (1

where © € Dirqin U Dirigger. Here, we assume the water-

mark is embedded during pre-training phase and samples from

Dirain and Dypigger significantly differ in probability distri-
d d

bution, which is either Zirain # Tirigger OF Ytrain 7 Yerigger-
This optimization ensures that a basic watermark scheme must
at least satisfy two crucial properties: 1) functional preserving:
PT(ytTain = fQ(xtTain)) ~ Pr(ytrain = f/(xtrain)) and 2)
verifiability: Pr(ytm'gger = f@(xtrigger)) > Pr(ytrigger =
Jo(xtrigger))-

Fine-tuning and watermark removal. Work from Good-
fellow et al. [20] empirically shows watermark footprint gets
eroded when an adversary further fine-tunes the marked model
with their custom data D ¢;petune. After fine-tuning, watermark
footprint can be successfully removed from model since the
fine-tuning data does not include trigger samples. This phe-
nomenon is also known as catastrophic forgetting.

Watermark restoration. To achieve objective as Eq. [I}
model parameters # must converge to the local minimas
that allow fy to give good performance on both Dy,..;n and
Dirigger- During fine-tuning stage, the parameters shift to
locations farther away from the local optimum. It is expected
that the new minima still result in good classification outcomes
on Dy,qin. Nonetheless, model will suffer to maintain a good
trigger accuracy. It is because Dyipetune and Dirqqn are from
the same domain, whereas Dy,;gqer is often sampled from a
very different domain or probability distribution. How far 6
shift during fine-tuning depends on a variety of aspects, e.g.,
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learning rate, weight decay, optimizer type, difference level
between Dyyigger and Dyyqin, etc,. From loss surface geometry
viewpoint, if a fine-tuning attack does not completely move
the parameters out of the basins of attraction, there is high
chance that the model owner can shift the parameters towards
previous local minimas again, without re-training the model
with trigger data. This can simply be done by introducing
original Dy, 4, into re-training phase. The intuition behind this
is when 6 are still trapped in the previous basins optimized
for Dirain U Dirigger, further re-training fp solely on Dyyqin
allows 6 to follow the steepest descent to converge towards
these local minima, given appropriate hyper-parameters ap-
plied. Watermark restoration is useful to claim ownership of
a suspected model after it is fine-tuned by an adversary.

Fine-tuning with less watermark degradation. Following
the intriguing property of local minima, we propose a tech-
nique that alleviates watermark removal from fine-tuning. This
is a useful concept, especially in scenarios where model owner
distributes their watermarked model to authorized clients via
API access but still allows the clients to fine-tune the model
further with their own data to suit their needs without involving
trigger samples in that phase. In each iteration, we mix a batch
of Tfinetune With a batch of training samples Z¢pqin. This
ensures a balance between incorporating new knowledge and
retaining the watermark without further exposing Diyigger t0
fo. Our fine-tuning strategy is detailed in Algorithm [I]

Algorithm 1: Fine-tuning strategy

Data: watermarked model fy, training samples Dy.qin,
with batch size B, fine-tuning samples
D inetune With batch size By, number of
epochs N
// Dirainr Dfinetune are sampled randomly
NumBatchy = length(Dyinetune)/Byf;
for epoch <+ 1 to N do
for i <— 1 to NumBatch; do
Xt7 Yi < Dtuzzn[z D Bt];
Xfyr < Dfinetune[i D+ Bf};
X = CONCATENATE(X ¢, X});
y = CONCATENATE(y ¢, y+);
TRAIN(fo, X, y);
end

end
Output: fy

IV. EXPERIMENTS AND RESULTS

We conducted extensive experiments, first to evaluate the
resistance of the three watermark schemes [8I, [17], [19]
to fine-tuning. In our second experiment, we investigated
whether the watermark can be restored, by re-training the
neural networks solely with the original training data from
the first training phase. We found that the original training
data, interestingly, helps bring the watermark back without the
presence of trigger data in re-training phase. This intriguing
results lead us to the third experiment, in which the original
training data are mixed with fine-tuning data, to mitigate the
erosion of watermarks.

Trigger type Label

Unrelated
Embedded text
Random noise

All examples are assigned the same fixed label

Each example is assigned a random label different

Adversarial from its ground-truth label and adversarial label

TABLE II: Labeling schemes for trigger data

Noise Unrelated

Adversarial Embedded text

Fig. 2: Types of trigger samples

A. Experimental Design

We use CIFAR-10 dataset [21] consisting of 50K training
images across 10 object classes. 100 random samples from
original training data are chosen to generate trigger set, whose
generation process is detailed in the later part. In the remaining
subset of original training set, half are used for model pre-
training and the remaining half are used for fine-tuning. We
denote the subsets for pre-training, watermark embedding and
ﬁne'tuning Dt'r‘ain:Dfinetune and ,Dtm'gge'r’ respectively, A
batch size of 256 is used for Diruin, Dfinetune and batch
size of 64 is used for Diyigger-

Trigger samples generation. There are many ways to gen-
erate trigger set. Zhang et al. [[15] proposed three techniques
such as adding random noise, embedding contents (logo, text,
etc,.) or using out-of-distribution samples for trigger data. In
this study, we experiment with all these methods as well as
the one proposed in [17]], where trigger samples are adversarial
images created from clean training data. Table [[I] details the
labeling scheme for each trigger set type. Figure [2] visualizes
examples of trigger types for object airplane.

CNN model. We pre-train ResNet-18 model with Dy;.qip,
and embed the watermark into it using the trigger set Dy;gger--
During training, Dy,q;p 1S poisoned with trigger samples and
the model is trained with this mixed data. In terms of training
mechanism, three different training techniques are employed
to embed the watermark as proposed by Zhang et al. [15],
N. Chattopadhyay & A. Chattopadhyay [17] and Bansal et
al. [19]. We denote these watermark embedding techniques
as My, Mo, M3 respectively. This results in 12 pre-trained
models in total because for every watermark technique we
experiment with 4 trigger set types as mentioned. In our study,
the models are trained using Adam optimizer with learning
rate descending every 30 epochs. In particular, models with
My are trained for more epochs than the others as the pre-
training method in [17] trains solely one layer at a time,
leading to slower convergence. Additionally, scheme M3 has
much longer training time per epoch than M; and M. This
is because M3’s training procedure requires calculating mean
gradient of many noised copies of the original parameters. The
details for hyper-parameters are in Appendix [A]
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TABLE III: Models performance after initial training phase

Pre-train method Trigger type

Test acc (%)  Trigger acc (%)  Smoothed trig. acc (%)

Unrelated 85.87 100.00 0.00
. 5 Embedded text 85.92 100.00 0.00
M (Adi et al. [B)) Noise 85.94 100.00 0.0
Adversarial samples  86.41 100.00 8.68
Unrelated 85.32 100.00 0.00
Embedded text 85.21 100.00 0.00
Mz (ROWBACK [IT)) Noise 84.97 100.00 0.00
Adversarial samples ~ 84.94 100.00 9.64
Unrelated 85.65 100.00 100.00
. Embedded text 85.44 99.00 100.00
Ms (Certified watermark [I) o 86.15 100.00 100.00
Adversarial samples  86.00 100.00 9.81
Unrelated Embedded text Random noise Adversarial samples
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Fig. 3: Trigger accuracy during fine-tuning - In the cases of unrelated trigger/text-overlaid/adversarial trigger data, the trigger
accuracies decrease more in My in comparison with M; and M3. For noised trigger set, the trigger accuracy fluctuates
significantly between 0% and 100% for M, whereas it only slightly fluctuates and stays at 100% most of the time in case of

MQ and Mg.

Unrelated Embedded text

Random noise Adversarial samples
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Fig. 4: Median smoothed trigger accuracy during fine-tuning -

Due to being trained with noises, certified watermark scheme

M3 consistently maintain its trigger accuracy at 100% for unrelated/text-overlaid/noised trigger set. Schemes M; and Mo,
meanwhile, perform poorly with smoothed accuracies stay at 0%. However, when it comes to adversarial trigger samples with
random labels, the smoothed accuracies for all schemes are similar, oscillating at 10%.

Model performance. A popular metric to measure the
existence of watermark is trigger set accuracy. In [19], a
median smoothed version of trigger set accuracy is used for
ownership verification in order to bound the worst case change
in trigger set accuracy, given I, bounded changes in model’s
parameters. To measure smoothed trigger set accuracy, we
create K = 100 copies of the original model, add random
Gaussian noises to their weights and evaluate the performance
of noised models on trigger set, then we take the median value
among K accuracy values obtained. Table [II] illustrates test
accuracy, trigger accuracy, smoothed trigger accuracy of the

CNN models after the initial training phase. It is obvious
that models with certified watermark scheme M3 assures
the highest lower bound for trigger set accuracy. However,
this does not hold true when using adversarial samples with
random labels for trigger data. Our results also show that
models with My takes many more epochs to converge due
to its per-layer training mechanism.

B. Empirical Analysis

We conduct various experiments to assess the watermark
persistence of the schemes from [8]], [17]], [19]. In our first



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Unrelated Embedded text Random noise Adversarial samples
100 100
80
50
60

Fig. 5: Trigger accuracy after re-train models with original training set Dy,q;n, - Regarding unrelated and noised trigger
samples, trigger accuracy can be reinstated to up to 100%. For adversarial trigger samples, the trigger accuracies of M; and
M3 are restored to more than 80% after 50 epochs, while Msy’s accuracy is only brought back to around 60%. The trigger
accuracies for text-overlaid trigger samples struggle with restoration, fluctuating below 50%.

Unrelated Embedded text Random noise Adversarial samples

Fig. 6: Loss landscape visualization - The contours illustrate trigger loss, Orange lines are the initial training and watermark
embedding phase, blue lines are fine-tuning phase and red lines are re-training phase. It is observable that re-training helps

steering the trajectory back to near the local minimas.

experiment, we simply measure the trigger accuracy after
model fine-tuning. Then, we empirically validate the concept
of watermark reinstatement by re-training the DNNs with
the original training set Di,qin. Furthermore, we use loss
landscape analysis to investigate the optimization trajectory
of model’s parameters in such scenarios. Lastly, our final
experiment is about incorporating the original training data
into fine-tuning phase, in order to examine its effectiveness in
alleviating watermark degradation.

1) Fine-tuning: We measure watermark removal level after
fine-tuning. This involves training the model with extended
data to incorporate broader knowledge into the model. From

the adversary’s point of view, fine-tuning equals to a removal
attack by gradually training the model with new data. After
having ResNet-18 models pre-trained and watermarked, we
fine-tune the models with D t;,ctune. All networks are trained
for 50 epochs with Adam optimizer and learning rate of 0.001,
then, we evaluate the level of diminishing in trigger accuracy
and smoothed trigger accuracy. From Figure [3] the perfor-
mance of My models are worse than the others when using
unrelated and adversarial samples for trigger set. For text-
overlaid trigger samples, the performances are on par among
3 watermark techniques. However, trigger accuracy fluctuates
drastically for M; models with noise trigger samples. We also
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Fig. 7: Trigger accuracy when mixing Dyyq;rn during fine-tuning - When mixing D ¢ipetune With Dypqir, the restoration of trigger
accuracy improves in case of unrelated and adversarial trigger samples, only by a small margin. However, the improvement is
not clear in the case of text-overlaid and noised trigger samples.

measure the changes in terms of smoothed trigger accuracy.
From Figure 4] M3 models clearly shows their robustness
against M; and Ms. When it comes to 3 trigger types
unrelated, text-overlaid and noised samples, M3 is able to
retain intact trigger accuracy over 50 epochs. However, in the
case of adversarial trigger samples, three watermark schemes
give comparable accuracies.

2) Re-training for watermark restoration: Here we do
empirical study on restoring the watermark after it gets
eroded after incremental training / fine-tuning attack, without
introducing the trigger set to the model again. This idea
will be useful in real-world scenario when the model owner
distribute the watermarked model to authorized clients. If the
clients request to fine-tune with their own data but still retain
watermark, model owner does not need to involve trigger data
in the fine-tuning process, which mitigates the risk of leaked
secret key.

After fine-tuning and have the watermark degraded, we re-
train the model with the initial training set Dy;.4;,. The models
are trained with for 50 epochs with learning rate of 0.01.
Figure [3] illustrates how each watermark scheme restores by
using original training data. It can be seen that for unrelated,
noised and adversarial trigger samples, re-training with Dy,.qip,
helps regain watermark footprint for all three schemes. The
restoring trends for M; and M3 are more consistent than
M. However, in terms of trigger samples with embedded

text, the accuracy values fluctuate and struggle to reinstate.

Loss landscape analysis. To further explore how re-training
with training data affects the watermark, we visualize the
loss landscape with learning trajectory. In this study, we use
filter normalization method for loss landscape visualization
and PCA for optimization trajectory plotting, as proposed
by Li et al. [22]]. Figure [§] shows 2D contours for trigger
loss along the approximate learning trajectories of model’s
parameters. It is obvious that during the re-training stage
(red lines), the learning trajectories turn sharply, and most of
the time, move towards the contour lines with smaller loss
values. In cases of My and M3, the re-training trajectories
turn sharply backward like an “unlearning” process. From
our inspection, the PCA projection for final point in the
trajectory correctly reflects its corresponding trigger loss from
the contours. However, the approximation for points in earlier
epochs does not completely match their actual trigger loss.
Nonetheless, the PCA approximation is still very useful to
study about the optimization trend.

Contour plots also give us interesting insights about how
loss surface looks like with respect to trigger set type. Ac-
cording to the plots in Figure [6] adversarial trigger samples
yield smoother, more convex surfaces than other trigger set
types. Text-overlaid trigger set tends to produce more chaotic
landscapes near the local minimas, resulting to difficulty in
watermark restoration as shown in Figure[5] For noised trigger
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samples, the contours near local minimas are very close to
each other, increasing chances for oscillations between high
and low accuracies, as visualized in Figure

3) Fine-tuning while retaining watermark: As the intrigu-
ing property of local minima allows the watermark to reappear
after being vanished from fine-tuning, we study the idea of
feeding training data to the model during fine-tuning process
to alleviate watermark vanishing. Our implementation is based
on Algorithm [I] where in each epoch, a random batch of
training data Dy,.q;, is mixed with a batch of fine-tuning
data Dy;netune. Intuitively, mixing a portion of training data
helps guide the parameters not to shift dramatically from the
pre-trained local minima, provided that the distribution of
D finetune does not hugely differ from Dyyqin,.

We experimented with different batch sizes for training
samples to study whether a bigger batch of training samples
mitigate watermark vanishing more effectively. While the fine-
tuning data batch size is kept the same at 256, we test with
cases when training data batch size is 32 and 128. The batch
size for Dy,.qp, 18 chosen to be smaller than D f4y,ctune’s SO that
it does not affect the fine-tuning phase significantly. As shown
in Figure the decrease in watermark degradation when
mixing with Dy,.q;, can be seen in case of unrelated trigger
samples. For adversarial trigger samples, there is a decrease
in vanishing but not dramatic. In terms of text-overlaid and
noised trigger samples, the watermark degradation level is
hardly observed, as the trigger accuracies either go down at the
same rate (text-overlaid trigger samples) or fluctuate between
very high and very low (noised trigger samples). Hence, this
idea of data mixing during fine-tuning depends heavily on the
type of trigger data.

C. Key Findings

Here, we summarize the key observations from our experi-

ments:

o Watermark persistence during fine-tuning - the trigger
accuracies of Mi, My, Msj all decrease during fine-
tuning. We found that no watermark scheme among these
three is consistently superior to the others in terms of
trigger accuracy across various trigger set types. However,
as regards smoothed trigger accuracy, M3 completely
outperforms its competitors in most cases. This comes
at a cost of increasing training time per epoch.

¢ Re-training with original training data saves water-
mark - if model parameters do not drastically shift from
their local minimas after fine-tuning, there is high chance
that re-training model with Dy,.q;, brings the watermark
back. The trigger accuracy can be restored to up to 100%.

o Types of trigger samples and how they are labeled
affect loss surface geometry and watermark restora-
tion - our loss landscape visualizations demonstrate that
different types of trigger samples, as well as their labeling
scheme, define the shape of loss landscape for trigger
set. Thus, it has an impact on the convergence to local
minimas in re-training stage.

o Incorporating original training data in fine-tuning
only slightly improves watermark erosion - our em-
pirical outcomes show a slight improvement in reducing

watermark erosion. However, in some cases, this im-
provement is still marginal or even negligible.

V. CONCLUSION

(Put the contribution in front) In this work, we explore a new
perspective of trigger-based watermark in terms of persistence.
Our empirical study shows that training data is useful to
restore watermark footprint which was diminished during fine-
tuning, provided that appropriate trigger set types are used and
the model parameters do not dramatically shift out of their
basin of attraction. Beside quantitative evaluation, we visually
demonstrate the optimization trend of model parameters via
loss landscape geometry. It can be found from our study that
by exposing the model to training data after fine-tuning, the
learning trajectory move back to the local optimum that yields
high trigger accuracy, depending on the trigger set type. In our
final experiment, we mix the training data with fine-tuning
data to mitigate the effect of watermark vanishing during
fine-tuning. However, our experimental results show minimal
improvement over normal fine-tuning.

(Something clearer) We are hopeful that this study con-
tributes a new research direction to enhance the robustness
and persistence of DNN watermarks. This could facilitate
a more data-centric approach when it comes to protect the
privacy of machine learning models. This work also serves
as an open problem for future work that dives deep into the
theoretical aspect of optimization to enhance the persistence
and robustness of neural network watermarks.

APPENDIX A
HYPER-PARAMETERS FOR MODEL TRAINING

Stage Scheme LR Epochs Decay Dec. Steps

Mi 0.001 70 0.2 30
Pre-train Mo 0.001 150 0.5 30

M3 0.001 70 0.2 30

My 0.0001 50 0.5 30
Fine-tune Mo 0.0001 50 0.5 30

M3 0.0001 50 0.5 30

M1 0.0001 50 0.2 30
Re-train Mo 0.0001 50 0.2 30

M3 0.0001 50 0.2 30

TABLE IV: Hyper-parameters for each training stage

This section details the hyper-parameters that we use in our
experiments. Table |[V|lists our the hyper-parameters for each
training stage.
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