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Constructions of Optimal Cyclic Codes With

h-Level Hierarchical Locality

Xing Liu

Abstract

In order to correct different numbers of erasures in distributed storage systems, the design of locally

repairable codes with hierarchical locality (H-LRCs) is crucial. In this paper, we study h-level H-LRCs

where h is not limited to 2. We present four constructions of cyclic h-level H-LRCs with length ln1

such that gcd(l, q) = 1 and n1|(q − 1). These four classes of cyclic h-level H-LRCs are optimal

with respect to the generalized Singleton-like bound. The minimum Hamming distances of them are

d = δ1, δ1 + 1, δ1 + 2, δ1 + δh respectively. Furthermore, these four classes of cyclic h-level H-LRCs

have new and flexible parameters which are not covered in the literature. By setting the parameter l

appropriately for the third construction, one can construct optimal cyclic h-level H-LRCs with length

n|(q − 1) and distance d = δ1 + σ where σ is not limited to 0, 1, 2, δh.

Index Terms

locally repairable codes, cyclic codes, hierarchical locality, h-level hierarchy, distributed storage

systems

I. INTRODUCTION

In large-scale distributed storage systems, locally repairable codes (LRCs) play an important

role due to their local erasure-correcting. Some companies, such as Microsoft, Facebook and so

on, have employed LRCs in practical systems. For LRCs with r locality, the ith symbol can be

recovered by accessing the other r symbols of its codeword. In 2012, Gopalan et al. [15] first

introduced the concept of LRCs with r locality and a large number of studies on them emerged
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later (see [4], [9], [12], [16], [17], [18], [19], [20], [21], [24], [26], [31], [38], [39], [40]). In

the same year, Prakash et al. [32] introduced the concept of (r, δ) LRCs which degenerate into

LRCs with r locality when δ = 2. The definition of (r, δ) LRCs can be found in Definition 1 of

this paper. Prakash et al. [32] also gave an upper bound on the minimum Hamming distance of

(r, δ) LRCs which can be found in (1) of this paper. By this bound, many researchers constructed

optimal (r, δ) LRCs in the literature (see [2], [5], [6], [8], [10], [13], [14], [22], [23], [29], [30],

[33], [34], [35], [37], [41]).

In 2015, Sasidharan et al. [36] generalized (r, δ) LRCs to LRCs with hierarchical locality

(H-LRCs), which have h-level hierarchical locality. They also derived a bound on H-LRCs

with h-level hierarchical locality. For h = 2, the H-LRC with 2-level hierarchical locality is

called a 2-level H-LRC. If h is not limited to 2, then the corresponding H-LRC is called an

h-level H-LRC. The definition of h-level H-LRCs can be found in Definition 3 of this paper. In

[36], Sasidharan et al. utilized RS-like codes to construct optimal 2-level H-LRCs with length

n ≤ q − 1. In 2019, Ballentine et al. [1] presented a general construction of 2-level H-LRCs

from maps between algebraic curves. In 2020, Luo and Cao [28] proposed optimal cyclic 2-level

H-LRCs with length n|q− 1 or n|q+ 1 based on cyclic codes. In the same year, Zhang and Liu

[42] constructed 2-level H-LRCs with flexible parameters based on some optimal (r, δ) LRCs.

In 2021, Chen and Barg [7] studied h-level H-LRCs and convolutional codes with locality. They

first obtained optimal cyclic h-level H-LRCs with length n|q − 1 and then constructed optimal

cyclic h-level H-LRCs with unbounded length n = qm− 1. In 2022, Blaum [3] gave a recursive

construction of extended integrated interleaved (EII) codes into multiple layers, which suited as

LRCs due to their hierarchical locality. In 2023, Chen et al. [11] constructed three classes of

optimal 2-level H-LRCs with different lengths. The last one is a class of optimal cyclic 2-level

H-LRCs whose length is n|q− 1. Recently, Liu and Zeng [27] constructed three new classes of
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optimal cyclic 2-level H-LRCs with unbounded or large lengths.

The main objective of this paper is to study cyclic h-level H-LRCs. We first give the definition

of h-level H-LRCs by considering the length and minimum distance. Then we present four

classes of cyclic h-level H-LRCs which are optimal with respect to the generalized Singleton-

like bound on h-level H-LRCs. All the h-level H-LRCs proposed in this paper have new and

flexible parameters.

The structure of this paper is given as follows. In Section II, the definitions and notations are

given. Then four constructions of optimal cyclic h-level H-LRCs with distances d = δ1, δ1 +

1, δ1 + 2, δ1 + δh are presented in Sections III-VI respectively. Finally, some remarks are given

in Section VII.

II. DEFINITIONS AND NOTATIONS

Throughout this paper, we define the following symbols:

• q —– prime power;

• GF(q) —– finite field consisting of q elements;

• GF(q)[x] —– polynomial over GF(q);

• [n, k, d]q —– k-dimension linear code over a finite alphabet of size q with minimum

Hamming distance d and length n;

• α —– primitive nth root of unity in some extension field of GF(q);

• 〈x〉y —– the smallest nonnegative residue of x module y;

• Γ —– a cyclic shift operator that Γi(a) = (ai, a〈i+1〉n , · · · , a〈i+n−1〉n) for a = (a0, a1, · · · , an−1),

0 ≤ i ≤ n− 1;

• C|S —– a punctured code of C such that C|S = {(cs0 , cs1 , · · · , csm−1) : (c0, c1, · · · , cn−1) ∈ C}

where S = {s0, s1, · · · , sm−1} ⊆ {0, 1, · · · , n− 1}.
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For an [n, k, d]q cyclic code C, if c ∈ C, then Γτ (c) ∈ C for any 1 ≤ τ ≤ n − 1. In

the perspective of polynomial, the [n, k, d]q cyclic code C is a principal ideal of the quotient

ring GF(q)[x]/(xn − 1). C can be generated by a polynomial g(x) called generator polynomial

where g(x)|(xn − 1). Then h(x) = xn−1
g(x)

is called the parity-check polynomial of C. The set

{αi|g(αi) = 0, 0 ≤ i ≤ n− 1} is called the defining set of C. For an integer i, the q-cyclotomic

coset of i mod n is given by

Ci = {i, iq, iq2, · · · , iqei−1},

where ei is the smallest positive integer such that iqei ≡ i mod n. Let D be the defining set of

C. It is known that the set {j|αj ∈ D, 0 ≤ j ≤ n − 1} is a union of some q-cyclotomic cosets

mod n.

The following lemma is the famous BCH Bound.

Lemma 1: (BCH bound [25]) Let C be an [n, k, d]q cyclic code with defining set D. If

{αi′+i|0 ≤ i ≤ d′ − 2} ⊆ D for some integers i′, then the minimum Hamming distance of

C is greater than or equal to d′.

The following lemma is the Hartmann-Tzeng Bound.

Lemma 2: (Hartmann-Tzeng bound [25]) Let C be an [n, k, d]q cyclic code with defining set

D. If {αi′+i1a+i2b|0 ≤ i1 ≤ d′ − 2, 0 ≤ i2 ≤ d′′} ⊆ D for some integers i′, a, b such that

gcd(n, a) = 1 and gcd(n, b) = 1, then the minimum Hamming distance of C is greater than or

equal to d′ + d′′.

The following lemma is about the defining set of punctured code of a cyclic code [28].

Lemma 3: Let C be a cyclic code with length n over GF(q). Let n′ be a divisor of n and l = n
n′

.

Suppose that α is a primitive nth root of unity and β = αl is a primitive n′th root of unity. Let

S = {a, a+ l, a+ 2l, · · · , a+ (n′− 1)l} where 0 ≤ a ≤ l− 1. Clearly, C|S is a cyclic code with
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length n′ over GF(q). If the complete defining set of C contains αb, αb+n′ , αb+2n′ , · · · , αb+(l−1)n′

where 0 ≤ b ≤ n′ − 1, then the complete defining set of C|S contains βb.

The definition of (r, δ) LRCs is given as follows.

Definition 1: Let C be an [n, k, d]q code. For each i, 0 ≤ i ≤ n−1, if there exists a punctured

subcode of C with length at most r+ δ− 1 and minimum distance δ, whose support contains i,

then ith symbol of C is said to have (r, δ) locality and C is an (r, δ) LRC.

If δ = 2, then the (r, δ) LRC degenerates into an LRC with r locality. The Singleton-like

bound on an (r, δ) LRC with [n, k, d]q is given as follows [32]:

d ≤ n− k + 1− (

⌈
k

r

⌉
− 1)(δ − 1). (1)

Definition 2: If the parameters of an (r, δ) LRC meet the bound (1) with equality, then it is

said to be optimal.

There are many optimal (r, δ) LRCs obtained in the literature (see Section I).

Similar to the definition of 2-level H-LRCs given by Luo and Cao in [28], we give the

definition of h-level H-LRCs by considering the length and minimum distance.

Definition 3: Let h ≥ 1, 0 < rh < rh−1 < · · · < r1 < k, and 1 < δh < δh−1 <

· · · < δ1 ≤ d be integers. A code C of length n is called an h-level H-LRC with parameters

((r1, δ1), (r2, δ2), · · · , (rh, δh)) if for every coordinate i ∈ {0, 1, · · · , n− 1} there exists a subset

Si ⊂ {0, 1, · · · , n− 1}, such that

(1) i ∈ Si and the size of Si is at most r1+δ1−1+
∑h

j=2

(⌈
r1
rj

⌉
− 1
)

(δj − δj+1) where δh+1 = 1,

(2) the minimum distance of C|Si is at least δ1,

(3) C|Si is an (h− 1)-level H-LRC with parameters ((r2, δ2), (r3, δ3), · · · , (rh, δh)).

The generalized Singleton-like bound on an [n, k, d]q h-level H-LRC with parameters ((r1, δ1),
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(r2, δ2), · · · , (rh, δh)) is given as follows [36]:

d ≤ n− k + 1−
h∑
j=1

(⌈
k

rj

⌉
− 1

)
(δj − δj+1) (2)

where δh+1 = 1.

Definition 4: If the parameters of an h-level H-LRC meet the bound (2) with equality, then it

is said to be optimal.

Note that (r, δ) LRCs can be seen as a special case of h-level H-LRCs for h = 1. There are

some optimal 2-level H-LRCs (h = 2) in the literature (see Section I). However, to the best of

our knowledge, there are very few results on optimal h-level H-LRCs (h is not limited to 2) in

the literature (see [7]).

III. CONSTRUCTION OF OPTIMAL CYCLIC h-LEVEL H-LRCS WITH d = δ1

In this section, we give a construction of cyclic h-level H-LRCs with minimum Hamming

distance d = δ1 which are optimal with respect to bound (2).

Let h ≥ 1 be an integer and q a prime power. Let nh < nh−1 < · · · < n1 be integers such

that n1|(q − 1), and nx+1|nx for x = 1, 2, · · · , h − 1. For an integer l with gcd(l, q) = 1, the

q-cyclotomic coset of i mod n is Ci where n = ln1 and 0 ≤ i ≤ n− 1. First, we define

Dh =
⋃

i=0,1,··· , ln1
nh
−1

Cinh ∪ Cinh+1 ∪ · · · ∪ Cinh+δ−1, (3)

where δ ≤ nh − 1. For some integers 0 < ∆h−1 < ∆h−2 < · · · < ∆1 < nh−1 − nh−1

nh
δ, define

Dx
a =

⋃
i=0,1,··· , ln1

nx
−1

⋃
j=0,1,··· ,

⌊
∆x
nh−δ

⌋
−1

Cinx+jnh+δ ∪ Cinx+jnh+δ+1 ∪ · · · ∪ Cinx+jnh+nh−1, (4)

Dx
b =

⋃
i=0,1,··· , ln1

nx
−1

C
inx+

⌊
∆x
nh−δ

⌋
nh+δ
∪ C

inx+
⌊

∆x
nh−δ

⌋
nh+δ+1

∪ · · · ∪ C
inx+

⌊
∆x
nh−δ

⌋
nh+δ+〈∆x〉nh−δ−1

, (5)
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where x = 1, 2, · · · , h− 1.

Before discussing the structure of Dh, Dx
a , and Dx

b , x = 1, 2, · · · , h − 1, we first give the

following theorem.

Theorem 1: For any nx defined above, x = 1, 2, · · · , h, we have

⋃
i=0,1,··· , ln1

nx
−1

Cinx+c =
⋃

i=0,1,··· , ln1
nx
−1

{inx + c} (6)

where 0 ≤ c ≤ nx − 1.

Proof: It is obvious that

⋃
i=0,1,··· , ln1

nx
−1

{inx + c} ⊆
⋃

i=0,1,··· , ln1
nx
−1

Cinx+c. (7)

We only need to prove the rest that

⋃
i=0,1,··· , ln1

nx
−1

Cinx+c ⊆
⋃

i=0,1,··· , ln1
nx
−1

{inx + c}. (8)

For any integers 0 ≤ i ≤ ln1

nx
− 1 and s ≥ 0, we have (inx + c)qs (mod n) ∈ Cinx+c. Since nx|n1

and n1|(q − 1), we have q = anx + 1 for some integer a. Then

(inx + c)qs = (inx + c)(anx + 1)s = Inx + c, (9)

where

I = i(anx + 1)s + ac
s∑

s′=1

(
s

s′

)
(anx)

s′−1.
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It follows that

(inx + c)qs (mod n) = Inx + c (mod ln1)

= 〈I〉 ln1
nx

nx + c.

Note that 0 ≤ 〈I〉 ln1
nx

≤ ln1

nx
− 1, which implies that

(inx + c)qs (mod n) ∈
⋃

i=0,1,··· , ln1
nx
−1

{inx + c}.

Therefore, the (8) holds. Together with (7), the desired result is got.

�

Now we give the structure of Dh, Dx
a , and Dx

b , x = 1, 2, · · · , h− 1.

Theorem 2: For Dh, Dx
a , and Dx

b , x = 1, 2, · · · , h−1, defined by (3), (4), and (5) respectively,

we have

Dh =
⋃

i=0,1,··· , ln1
nh
−1

{inh, inh + 1, · · · , inh + δ − 1}, (10)

Dx
a =

⋃
i=0,1,··· , ln1

nx
−1

⋃
j=0,1,··· ,

⌊
∆x
nh−δ

⌋
−1

{inx+jnh+δ, inx+jnh+δ+1, · · · , inx+jnh+nh−1}, (11)

Dx
b =

⋃
i=0,1,··· , ln1

nx
−1

{inx+

⌊
∆x

nh−δ

⌋
nh+δ, inx+

⌊
∆x

nh−δ

⌋
nh+δ+1,· · ·, inx+

⌊
∆x

nh−δ

⌋
nh+δ+〈∆x〉nh−δ−1}.(12)

Proof: Applying Theorem 1 to (3), (4), and (5) respectively, one can obtain those three

equalities.

�

Let C be an [n, k, d]q cyclic code with defining set {αi|i ∈ D} where

D = Dh ∪

( ⋃
x=1,2,··· ,h−1

Dx
a ∪Dx

b

)
. (13)
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For the code C, we have the following result.

Theorem 3: Define ∆0 = ∆1, ∆h = 0, ∆h+1 = −δ, and n0 = ln1. C is an optimal cyclic

[ln1, ln1−
∑h

i=1
ln1

ni
(∆i−∆i+1),

⌊
∆1

nh−δ

⌋
δ+δ+∆1+1]q h-level H-LRC with parameters ((r1, δ1 =⌊

∆1

nh−δ

⌋
δ+ δ+ ∆1 + 1), (r2, δ2 =

⌊
∆2

nh−δ

⌋
δ+ δ+ ∆2 + 1), · · · , (rh, δh =

⌊
∆h

nh−δ

⌋
δ+ δ+ ∆h + 1)),

where rj = nj −
∑h

i=j
nj
ni

(∆i −∆i+1) for 0 ≤ j ≤ h, nj
ni

=
⌈
rj
ri

⌉
for all 0 ≤ j < i ≤ h− 1, and

nj
nh

=

⌈
rj
rh

⌉
+

h−1∑
i=j

⌈
rj
ri

⌉(⌊
∆i

nh − δ

⌋
−
⌊

∆i+1

nh − δ

⌋)
(14)

for all 0 ≤ j ≤ h− 1.

Proof: It can be checked that {0, 1, · · · ,
⌊

∆1

nh−δ

⌋
nh+δ+〈∆1〉nh−δ−1} ⊆ D. By Lemma 1, the

minimum Hamming distance of C is at least
⌊

∆1

nh−δ

⌋
nh+δ+〈∆1〉nh−δ+1 =

⌊
∆1

nh−δ

⌋
δ+δ+∆1+1.

The dimension of C is k = n− |D| = ln1 −
∑h

i=1
ln1

ni
(∆i −∆i+1).

Now we prove that C is an h-level H-LRC. For any coordinate i ∈ {0, 1, · · · , n− 1}, suppose

that Si = {〈i〉l, 〈i〉l+l, · · · , 〈i〉l+(n1−1)l}. It is clear that i ∈ Si. Let β = αl be a primitive n1th

root of unity. Note that
⋃

j=0,1,··· ,l−1

{jn1, jn1+1, · · · , jn1+
⌊

∆1

nh−δ

⌋
nh+δ+〈∆1〉nh−δ−1} ⊆ D. By

Lemma 3, C|Si is a cyclic code with length n1 and its complete defining set contains {βj′ |j′ ∈ D′}

where D′ = {0, 1, · · · ,
⌊

∆1

nh−δ

⌋
nh + δ + 〈∆1〉nh−δ − 1}. By Lemma 1, the minimum Hamming
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distance of C|Si is at least
⌊

∆1

nh−δ

⌋
δ + δ + ∆1 + 1. Further, we can calculate that

r1 + δ1 − 1 +
h∑

j′=2

(⌈
r1

rj′

⌉
− 1

)
(δj′ − δj′+1)

= n1 −
h∑

j′=1

n1

nj′
(∆j′ −∆j′+1) +

(⌊
∆1

nh − δ

⌋
δ + δ + ∆1 + 1

)
− 1

+
h−1∑
j′=2

(⌈
r1

rj′

⌉
− 1

)[(⌊
∆j′

nh − δ

⌋
δ + δ + ∆j′ + 1

)
−
(⌊

∆j′+1

nh − δ

⌋
δ + δ + ∆j′+1 + 1

)]

+

(⌈
r1

rh

⌉
− 1

)(⌊
∆h

nh − δ

⌋
δ + δ + ∆h + 1− 1

)
= n1 −

h∑
j′=1

n1

nj′
(∆j′ −∆j′+1) +

⌊
∆1

nh − δ

⌋
δ + δ + ∆1

+
h−1∑
j′=2

⌈
r1

rj′

⌉(⌊
∆j′

nh − δ

⌋
δ + ∆j′ −

⌊
∆j′+1

nh − δ

⌋
δ −∆j′+1

)

−
(⌊

∆2

nh − δ

⌋
δ + ∆2 −

⌊
∆h

nh − δ

⌋
δ −∆h

)
+

⌈
r1

rh

⌉
δ − δ

= n1 −
h∑

j′=2

n1

nj′
(∆j′ −∆j′+1) +

⌊
∆1

nh − δ

⌋
δ +

h−1∑
j′=2

⌈
r1

rj′

⌉(⌊
∆j′

nh − δ

⌋
δ −

⌊
∆j′+1

nh − δ

⌋
δ

)

+
h−1∑
j′=2

⌈
r1

rj′

⌉
(∆j′ −∆j′+1)−

⌊
∆2

nh − δ

⌋
δ +

⌈
r1

rh

⌉
(∆h −∆h+1)

= n1 −
h−1∑
j′=2

(
n1

nj′
−
⌈
r1

rj′

⌉)
(∆j′ −∆j′+1)− n1

nh
δ +

h−1∑
j′=1

⌈
r1

rj′

⌉(⌊
∆j′

nh − δ

⌋
δ −

⌊
∆j′+1

nh − δ

⌋
δ

)

+

⌈
r1

rh

⌉
δ

= n1 (15)

where the last step employs the fact nj
nj′

=
⌈
rj
rj′

⌉
and equality (14) for 1 = j < j′ ≤ h−1. For any

coordinate i′ ∈ {〈i〉l, 〈i〉l+l, · · · , 〈i〉l+(n1−1)l}, suppose that S̄i′ = {〈i〉l+〈i∗〉n1
n2

l, 〈i〉l+(〈i∗〉n1
n2

+

n1

n2
)l, · · · , 〈i〉l+[〈i∗〉n1

n2

+(n2−1)n1

n2
]l} where i′ = 〈i〉l+ i∗l. It is clear that i′ ∈ S̄i′ . Let γ = α

ln1
n2

be a primitive n2th root of unity. Note that
⋃

j=0,1,··· , ln1
n2
−1

{jn2, jn2 + 1, · · · , jn2 +
⌊

∆2

nh−δ

⌋
nh +
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δ + 〈∆2〉nh−δ − 1} ⊆ D. By Lemma 3, C|S̄i′ is a cyclic code with length n2 and its complete

defining set contains {γj′|j′ ∈ D′′} where D′′ = {0, 1, · · · ,
⌊

∆2

nh−δ

⌋
nh + δ + 〈∆2〉nh−δ − 1}. By

Lemma 1, the minimum Hamming distance of C|S̄i′ is at least
⌊

∆2

nh−δ

⌋
δ + δ + ∆2 + 1. Similar

to the derivation of (15), we can obtain

r2 + δ2 − 1 +
h∑

j′=3

(⌈
r2

rj′

⌉
− 1

)
(δj′ − δj′+1) = n2. (16)

By discussing it recursively in this way, one can get similar results on the parameters (rx, δx)

for x = 3, 4, · · · , h.

Next we prove its optimality. For the [ln1, ln1−
∑h

i=1
ln1

ni
(∆i−∆i+1), d]q h-level H-LRC with

parameters ((r1, δ1), (r2, δ2), · · · , (rh, δh)), by bound (2) we have

d ≤ ln1 −

[
ln1 −

h∑
i=1

ln1

ni
(∆i −∆i+1)

]
+ 1−

⌈
r0

rh

⌉
δ + δ

−
h−1∑
i=1

(⌈
r0

ri

⌉
− 1

)[(⌊
∆i

nh − δ

⌋
δ + δ + ∆i + 1

)
−
(⌊

∆i+1

nh − δ

⌋
δ + δ + ∆i+1 + 1

)]

=
h∑
i=1

ln1

ni
(∆i −∆i+1) + 1−

⌈
r0

rh

⌉
δ + δ +

⌊
∆1

nh − δ

⌋
δ + ∆1

−
h−1∑
i=1

⌈
r0

ri

⌉(⌊
∆i

nh − δ

⌋
δ −

⌊
∆i+1

nh − δ

⌋
δ + ∆i −∆i+1

)

=
h−1∑
i=1

(
ln1

ni
−
⌈
r0

ri

⌉)
(∆i −∆i+1) +

ln1

nh
δ + 1−

⌈
r0

rh

⌉
δ + δ +

⌊
∆1

nh − δ

⌋
δ + ∆1

−
h−1∑
i=0

⌈
r0

ri

⌉(⌊
∆i

nh − δ

⌋
δ −

⌊
∆i+1

nh − δ

⌋
δ

)
=

⌊
∆1

nh − δ

⌋
δ + δ + ∆1 + 1 (17)

where the last step employs the fact nj
ni

=
⌈
rj
ri

⌉
and equality (14) for 0 = j < i ≤ h− 1. Then

the minimum Hamming distance of C is exactly
⌊

∆1

nh−δ

⌋
δ + δ + ∆1 + 1 and C is an optimal

cyclic h-level H-LRC.
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�

Remark 1: In [7], the length of cyclic h-level H-LRCs should be n|(q− 1) or n = qm− 1 for

m ≥ 1. By our construction, the length of cyclic h-level H-LRCs is n = ln1 for gcd(l, q) = 1

and n1|(q − 1). Thus, the parameters of cyclic h-level H-LRCs by our construction are new.

The other three classes of cyclic h-level H-LRCs presented in this paper (see Sections IV, V, VI

respectively) also have new parameters for the same reason.

Example 1: Let q = 97, h = 4, n1 = 96, n2 = 48, n3 = 24, n4 = 6, l = 2, and δ = 3. For

∆1 = 6, ∆2 = 4, and ∆3 = 3, one can get

D4 ∪

( ⋃
x=1,2,3

Dx
a ∪Dx

b

)
=

( ⋃
i=0,1,··· ,31

{6i, 6i+1, 6i+2}

)
∪

( ⋃
i=0,1,··· ,7

{24i+3, 24i+4, 24i+5}

)

∪

( ⋃
i=0,1,2,3

{48i+9}

)
∪

( ⋃
i=0,1

{96i+10, 96i+11}

)
.

For a cyclic code C of length ln1 = 192 with defining set {αi|i ∈ D4∪ (
⋃
x=1,2,3D

x
a ∪Dx

b )}, one

can check that 0, 1, · · · , 14 belong to D4∪(
⋃
x=1,2,3D

x
a∪Dx

b ). By the BCH bound, the minimum

Hamming distance of C is at least 16. The dimension of C is k = ln1−|D4∪(
⋃
x=1,2,3D

x
a∪Dx

b )| =

192− 128 = 64. By Lemmas 1,3 and Definition 3, it can be verified that C is an h-level H-LRC

with parameters ((32, 16), (17, 11), (9, 10), (3, 4)). By bound (2) we have

d ≤ 192− 64 + 1−
(⌈

64

32

⌉
− 1

)
(16− 11)−

(⌈
64

17

⌉
− 1

)
(11− 10)

−
(⌈

64

9

⌉
− 1

)
(10− 4)−

(⌈
64

3

⌉
− 1

)
(4− 1)

= 16.

Thus, C is an optimal cyclic [192, 64, 16]97 h-level H-LRC with parameters ((32, 16), (17, 11),

(9, 10), (3, 4)).
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IV. CONSTRUCTION OF OPTIMAL CYCLIC h-LEVEL H-LRCS WITH d = δ1 + 1

Now we construct a class of cyclic h-level H-LRCs with d = δ1 + 1 which are optimal with

respect to bound (2).

For an integer h ≥ 1 and a prime power q, let nh < nh−1 < · · · < n1 be integers such

that n1|(q − 1), and nx+1|nx, x = 1, 2, · · · , h − 1. For an integer l with gcd(l, q) = 1, define

q-cyclotomic coset of i mod n by Ci where n = ln1 and 0 ≤ i ≤ n− 1. Let

Eh =
⋃

i=0,1,··· , ln1
nh
−1

Cinh+1 ∪ Cinh+2 ∪ · · · ∪ Cinh+δ, (18)

where δ ≤ nh − 2. For some integers 0 < ∆h−1 < ∆h−2 < · · · < ∆1 < nh−1 − nh−1

nh
δ − 1 such

that (nh − δ) - (∆1 + 1), let

Ex
a =

⋃
i=0,1,··· , ln1

nx
−1

⋃
j=0,1,··· ,

⌊
∆x
nh−δ

⌋
−1

Cinx+jnh+δ+1 ∪ Cinx+jnh+δ+2 ∪ · · · ∪ Cinx+jnh+nh , (19)

Ex
b =

⋃
i=0,1,··· , ln1

nx
−1

C
inx+

⌊
∆x
nh−δ

⌋
nh+δ+1

∪ C
inx+

⌊
∆x
nh−δ

⌋
nh+δ+2

∪ · · · ∪ C
inx+

⌊
∆x
nh−δ

⌋
nh+δ+〈∆x〉nh−δ

, (20)

where x = 1, 2, · · · , h− 1.

Let C be an [n, k, d]q cyclic code with defining set {αi|i ∈ D} where

D = C0 ∪ Eh ∪

( ⋃
x=1,2,··· ,h−1

Ex
a ∪ Ex

b

)
. (21)

Then we can get the following result.

Theorem 4: Define ∆0 = ∆1 + 1, ∆h = 0, ∆h+1 = −δ, and n0 = ln1. C is an optimal cyclic

[ln1, ln1 −
∑h

i=1
ln1

ni
(∆i −∆i+1) − 1,

⌊
∆1

nh−δ

⌋
δ + δ + ∆1 + 2]q h-level H-LRC with parameters

((r1, δ1 =
⌊

∆1

nh−δ

⌋
δ+δ+∆1 +1), (r2, δ2 =

⌊
∆2

nh−δ

⌋
δ+δ+∆2 +1), · · · , (rh, δh =

⌊
∆h

nh−δ

⌋
δ+δ+

∆h+1)), where rj = nj−
∑h

i=j
nj
ni

(∆i−∆i+1) for 0 ≤ j ≤ h, nj
ni

=
⌈
rj
ri

⌉
for all 0 ≤ j < i ≤ h−1,
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and

nj
nh

=

⌈
rj
rh

⌉
+

h−1∑
i=j

⌈
rj
ri

⌉(⌊
∆i

nh − δ

⌋
−
⌊

∆i+1

nh − δ

⌋)
(22)

for all 0 ≤ j ≤ h− 1.

Proof: Note that C0 = {0}. Similar to Theorem 2, we can obtain

Eh =
⋃

i=0,1,··· , ln1
nh
−1

{inh + 1, inh + 2, · · · , inh + δ}, (23)

Ex
a =

⋃
i=0,1,··· , ln1

nx
−1

⋃
j=0,1,··· ,

⌊
∆x
nh−δ

⌋
−1

{inx+jnh+δ + 1, inx+jnh+δ+2, · · · , inx+jnh+nh}, (24)

Ex
b =

⋃
i=0,1,··· , ln1

nx
−1

{inx+

⌊
∆x

nh−δ

⌋
nh+δ+1, inx+

⌊
∆x

nh−δ

⌋
nh+δ+2,· · ·, inx+

⌊
∆x

nh−δ

⌋
nh+δ+〈∆x〉nh−δ},(25)

where x = 1, 2, · · · , h− 1. It is easy to check that {0, 1, · · · ,
⌊

∆1

nh−δ

⌋
nh + δ + 〈∆1〉nh−δ} ⊆ D.

By Lemma 1, the minimum Hamming distance of C is at least
⌊

∆1

nh−δ

⌋
nh + δ+ 〈∆1〉nh−δ + 2 =⌊

∆1

nh−δ

⌋
δ + δ + ∆1 + 2. The dimension of C is k = n− |D| = ln1 −

∑h
i=1

ln1

ni
(∆i −∆i+1)− 1.

Similar to the proof of Theorem 3, it follows that C is an h-level H-LRC with parameters

((r1, δ1), (r2, δ2), · · · , (rh, δh)). For the [ln1, ln1 −
∑h

i=1
ln1

ni
(∆i −∆i+1)− 1, d]q h-level H-LRC

with parameters ((r1, δ1), (r2, δ2), · · · , (rh, δh)), by bound (2) we have

d ≤ ln1 −

[
ln1 −

h∑
i=1

ln1

ni
(∆i −∆i+1)− 1

]
+ 1−

⌈
r0

rh

⌉
δ + δ

−
h−1∑
i=1

(⌈
r0

ri

⌉
− 1

)[(⌊
∆i

nh − δ

⌋
δ + δ + ∆i + 1

)
−
(⌊

∆i+1

nh − δ

⌋
δ + δ + ∆i+1 + 1

)]

=
h∑
i=1

ln1

ni
(∆i −∆i+1) + 2−

⌈
r0

rh

⌉
δ + δ +

⌊
∆1

nh − δ

⌋
δ + ∆1

−
h−1∑
i=1

⌈
r0

ri

⌉(⌊
∆i

nh − δ

⌋
δ −

⌊
∆i+1

nh − δ

⌋
δ + ∆i −∆i+1

)
. (26)

April 23, 2024 DRAFT



15

Since (nh − δ) - (∆1 + 1), we have

⌊
∆0

nh − δ

⌋
=

⌊
∆0 − 1

nh − δ

⌋
=

⌊
∆1

nh − δ

⌋
(27)

which leads to

d ≤
h−1∑
i=1

(
ln1

ni
−
⌈
r0

ri

⌉)
(∆i −∆i+1) +

ln1

nh
δ + 2−

⌈
r0

rh

⌉
δ + δ +

⌊
∆1

nh − δ

⌋
δ + ∆1

−
h−1∑
i=0

⌈
r0

ri

⌉(⌊
∆i

nh − δ

⌋
δ −

⌊
∆i+1

nh − δ

⌋
δ

)
=

⌊
∆1

nh − δ

⌋
δ + δ + ∆1 + 2. (28)

The last step of (28) employs the fact nj
ni

=
⌈
rj
ri

⌉
and equality (22) for 0 = j < i ≤ h− 1. Then

the minimum Hamming distance of C is exactly
⌊

∆1

nh−δ

⌋
δ + δ + ∆1 + 2 and C is an optimal

cyclic h-level H-LRC.

�

Example 2: Let q = 113, h = 4, n1 = 112, n2 = 56, n3 = 28, n4 = 7, l = 2, and δ = 3. For

∆1 = 8, ∆2 = 5, and ∆3 = 4, it follows that

D=C0 ∪ E4 ∪

( ⋃
x=1,2,3

Ex
a ∪ Ex

b

)

= {0} ∪

( ⋃
i=0,1,··· ,31

{7i+ 1, 7i+ 2, 7i+ 3}

)
∪

( ⋃
i=0,1,··· ,7

{28i+ 4, 28i+ 5, 28i+ 6, 28i+ 7}

)

∪

( ⋃
i=0,1,2,3

{56i+ 11}

)
∪

( ⋃
i=0,1

{112i+ 12, 112i+ 13, 112i+ 14}

)
.

For a cyclic code C of length ln1 = 224 with defining set {αi|i ∈ D}, it is easily checked that

0, 1, · · · , 17 belong to D. By Lemma 1, the minimum Hamming distance of C is at least 19. The

dimension of C is k = ln1 − |D| = 224− 139 = 85. By Lemmas 1,3 and Definition 3, one can
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verify that C is an h-level H-LRC with parameters ((43, 18), (23, 12), (12, 11), (4, 4)). By bound

(2) we have

d ≤ 224− 85 + 1−
(⌈

85

43

⌉
− 1

)
(18− 12)−

(⌈
85

23

⌉
− 1

)
(12− 11)

−
(⌈

85

12

⌉
− 1

)
(11− 4)−

(⌈
85

4

⌉
− 1

)
(4− 1)

= 19.

Thus, C is an optimal cyclic [224, 85, 19]113 h-level H-LRC with parameters ((43, 18), (23, 12),

(12, 11), (4, 4)).

V. CONSTRUCTION OF OPTIMAL CYCLIC h-LEVEL H-LRCS WITH d = δ1 + 2

Next we present a construction of optimal cyclic h-level H-LRCs with d = δ1 + 2.

Let h ≥ 1 be an integer and q a prime power. Let nh < nh−1 < · · · < n1 and l be integers

such that gcd(l, q) = 1, n1|(q− 1), and nx+1|nx, x = 1, 2, · · · , h− 1. Define q-cyclotomic coset

of i mod n by Ci where n = ln1 and 0 ≤ i ≤ n− 1. Let δ,∆1,∆2, · · · ,∆h−1 be integers such

that δ ≤ nh−3, 0 < ∆h−1 < ∆h−2 < · · · < ∆1 < nh−1− nh−1

nh
δ−1, 〈∆1〉nh−δ < nh− δ−2, and

[ l

gcd(l, q−1
n1

)
] |
(⌊

∆1

nh−δ

⌋
nh + δ + 〈∆1〉nh−δ + 1

)
. Assume that Eh, Ex

a , and Ex
b , x = 1, 2, · · · , h−1,

are defined by (18), (19), and (20) respectively.

Let C be an [n, k, d]q cyclic code with defining set {αi|i ∈ D} where

D = C0 ∪ C⌊
∆1
nh−δ

⌋
nh+δ+〈∆1〉nh−δ+1

∪ Eh ∪

( ⋃
x=1,2,··· ,h−1

Ex
a ∪ Ex

b

)
. (29)

Then the following theorem is got.

Theorem 5: Define ∆0 = ∆1 + 2, ∆h = 0, ∆h+1 = −δ, and n0 = ln1. C is an optimal cyclic

[ln1, ln1 −
∑h

i=1
ln1

ni
(∆i −∆i+1) − 2,

⌊
∆1

nh−δ

⌋
δ + δ + ∆1 + 3]q h-level H-LRC with parameters

((r1, δ1 =
⌊

∆1

nh−δ

⌋
δ+δ+∆1 +1), (r2, δ2 =

⌊
∆2

nh−δ

⌋
δ+δ+∆2 +1), · · · , (rh, δh =

⌊
∆h

nh−δ

⌋
δ+δ+
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∆h+1)), where rj = nj−
∑h

i=j
nj
ni

(∆i−∆i+1) for 0 ≤ j ≤ h, nj
ni

=
⌈
rj
ri

⌉
for all 0 ≤ j < i ≤ h−1,

and

nj
nh

=

⌈
rj
rh

⌉
+

h−1∑
i=j

⌈
rj
ri

⌉(⌊
∆i

nh − δ

⌋
−
⌊

∆i+1

nh − δ

⌋)
(30)

for all 0 ≤ j ≤ h− 1.

Proof: First, we prove that C⌊
∆1
nh−δ

⌋
nh+δ+〈∆1〉nh−δ+1

= {
⌊

∆1

nh−δ

⌋
nh + δ+ 〈∆1〉nh−δ + 1}. Since

[ l

gcd(l, q−1
n1

)
] |
(⌊

∆1

nh−δ

⌋
nh + δ + 〈∆1〉nh−δ + 1

)
, we have

(⌊
∆1

nh − δ

⌋
nh + δ + 〈∆1〉nh−δ + 1

)
q (mod ln1)

=

⌊
∆1

nh − δ

⌋
nh + δ + 〈∆1〉nh−δ + 1 +

⌊
∆1

nh−δ

⌋
nh + δ + 〈∆1〉nh−δ + 1

ln1/(q − 1)
· ln1 (mod ln1)

=

⌊
∆1

nh − δ

⌋
nh + δ + 〈∆1〉nh−δ + 1

+

⌊
∆1

nh−δ

⌋
nh + δ + 〈∆1〉nh−δ + 1

l/ gcd(l, q−1
n1

)
·

q−1
n1

gcd(l, q−1
n1

)
· ln1 (mod ln1)

=

⌊
∆1

nh − δ

⌋
nh + δ + 〈∆1〉nh−δ + 1. (31)

It is well known that C0 = {0}. Similar to the proof of Theorem 4, we can check that

{0, 1, · · · ,
⌊

∆1

nh−δ

⌋
nh + δ+ 〈∆1〉nh−δ + 1} ⊆ D. By Lemma 1, the minimum Hamming distance

of C is at least
⌊

∆1

nh−δ

⌋
nh + δ + 〈∆1〉nh−δ + 3 =

⌊
∆1

nh−δ

⌋
δ + δ + ∆1 + 3. The dimension of C is

k = n− |D| = ln1 −
∑h

i=1
ln1

ni
(∆i −∆i+1)− 2.

Similarly, it can be verified that C is an h-level H-LRC with parameters ((r1, δ1), (r2, δ2), · · · ,

(rh, δh)). For the [ln1, ln1 −
∑h

i=1
ln1

ni
(∆i − ∆i+1) − 2, d]q h-level H-LRC with parameters
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((r1, δ1), (r2, δ2), · · · , (rh, δh)), by bound (2) we have

d ≤ ln1 −

[
ln1 −

h∑
i=1

ln1

ni
(∆i −∆i+1)− 2

]
+ 1−

⌈
r0

rh

⌉
δ + δ

−
h−1∑
i=1

(⌈
r0

ri

⌉
− 1

)[(⌊
∆i

nh − δ

⌋
δ + δ + ∆i + 1

)
−
(⌊

∆i+1

nh − δ

⌋
δ + δ + ∆i+1 + 1

)]

=
h∑
i=1

ln1

ni
(∆i −∆i+1) + 3−

⌈
r0

rh

⌉
δ + δ +

⌊
∆1

nh − δ

⌋
δ + ∆1

−
h−1∑
i=1

⌈
r0

ri

⌉(⌊
∆i

nh − δ

⌋
δ −

⌊
∆i+1

nh − δ

⌋
δ + ∆i −∆i+1

)
. (32)

Note that 〈∆1〉nh−δ < nh − δ − 2. Thus

⌊
∆0

nh − δ

⌋
=

⌊
∆1 + 2

nh − δ

⌋

=


⌊

∆1

nh−δ

⌋
(nh − δ) + 〈∆1〉nh−δ + 2

nh − δ


=

⌊
∆1

nh − δ

⌋
+

⌊
〈∆1〉nh−δ + 2

nh − δ

⌋
=

⌊
∆1

nh − δ

⌋
. (33)

This implies that

d ≤
h−1∑
i=1

(
ln1

ni
−
⌈
r0

ri

⌉)
(∆i −∆i+1) +

ln1

nh
δ + 3−

⌈
r0

rh

⌉
δ + δ +

⌊
∆1

nh − δ

⌋
δ + ∆1

−
h−1∑
i=0

⌈
r0

ri

⌉(⌊
∆i

nh − δ

⌋
δ −

⌊
∆i+1

nh − δ

⌋
δ

)
=

⌊
∆1

nh − δ

⌋
δ + δ + ∆1 + 3 (34)

where the last step employs the fact nj
ni

=
⌈
rj
ri

⌉
and equality (30) for 0 = j < i ≤ h − 1.

Therefore, the minimum Hamming distance of C is exactly
⌊

∆1

nh−δ

⌋
δ + δ + ∆1 + 3 and C is an

optimal cyclic h-level H-LRC.
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Remark 2: One can relax the restriction [ l

gcd(l, q−1
n1

)
] |

(⌊
∆1

nh−δ

⌋
nh + δ + 〈∆1〉nh−δ + 1

)
to

[ l

gcd(l, q−1
n1

)
] |

(⌊
∆1

nh−δ

⌋
nh + δ + 〈∆1〉nh−δ + 1 + in1

)
such that gcd(l, in1 + 1) = 1 for some

0 ≤ i ≤ l − 1, and substitute C⌊
∆1
nh−δ

⌋
nh+δ+〈∆1〉nh−δ+1

with C⌊
∆1
nh−δ

⌋
nh+δ+〈∆1〉nh−δ+1+in1

. By the

Hartmann-Tzeng bound in Lemma 2, an optimal cyclic h-level H-LRC with the same distance

d = δ1 + 2 can be obtained.

Remark 3: By setting l| q−1
n1

, it is well known that [ l

gcd(l, q−1
n1

)
] |
(⌊

∆1

nh−δ

⌋
nh+δ+〈∆1〉nh−δ+ω

)
al-

ways holds for ω=1, 2, · · · . One can substitute C⌊
∆1
nh−δ

⌋
nh+δ+〈∆1〉nh−δ+1

with C⌊
∆1
nh−δ

⌋
nh+δ+〈∆1〉nh−δ+1

∪C⌊
∆1
nh−δ

⌋
nh+δ+〈∆1〉nh−δ+2

∪ · · · . Then more optimal cyclic h-level H-LRCs with distance d =

δ1 + σ (σ > 2) can be obtained although the length of them is n|(q − 1).

Example 3: Let q = 73, h = 3, n1 = 72, n2 = 36, n3 = 9, l = 4, and δ = 2. For ∆1 = 7 and

∆2 = 1, we have

D=C0 ∪ C12 ∪ E3 ∪

( ⋃
x=1,2

Ex
a ∪ Ex

b

)

= {0} ∪ {12} ∪

( ⋃
i=0,1,··· ,31

{9i+ 1, 9i+ 2}

)
∪

( ⋃
i=0,1,··· ,7

{36i+ 3}

)

∪

( ⋃
i=0,1,2,3

{72i+ 4, 72i+ 5, · · · , 72i+ 9}

)
.

For a cyclic code C of length ln1 = 288 with defining set {αi|i ∈ D}, it is obvious that

0, 1, · · · , 12 belong to D. By Lemma 1, the minimum Hamming distance of C is at least 14.

The dimension of C is k = ln1 − |D| = 288 − 98 = 190. By Lemmas 1,3 and Definition 3, it

can be verified that C is an h-level H-LRC with parameters ((48, 12), (27, 4), (7, 3)). By bound
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(2) we have

d ≤ 288− 190 + 1−
(⌈

190

48

⌉
− 1

)
(12− 4)−

(⌈
190

27

⌉
− 1

)
(4− 3)

−
(⌈

190

7

⌉
− 1

)
(3− 1)

= 14.

Hence, C is an optimal cyclic [288,190,14]73 h-level H-LRC with parameters ((48,12),(27,4),(7,3)).

VI. CONSTRUCTION OF OPTIMAL CYCLIC h-LEVEL H-LRCS WITH d = δ1 + δh

Finally, we present a construction of optimal cyclic h-level H-LRCs which have minimum

Hamming distance d = δ1 + δh.

For an integer h ≥ 1 and a prime power q, let nh < nh−1 < · · · < n1 be integers such that

n1|(q − 1), and nx+1|nx, x = 1, 2, · · · , h − 1. For an integer l with gcd(l, q) = 1, let Ci be

q-cyclotomic coset of i mod n where n = ln1 and 0 ≤ i ≤ n− 1. Define

F h =
⋃

i=0,1,··· , ln1
nh
−1

Cinh+2 ∪ Cinh+3 ∪ · · · ∪ Cinh+nh−1. (35)

For some integers 0 < ∆h−1 < ∆h−2 < · · · < ∆1 <
2nh−1

nh
− 1 such that 2 - ∆1, define

F x
a =

⋃
i=0,1,··· , ln1

nx
−1

⋃
j=0,1,··· ,b∆x

2 c−1

Cinx+jnh+nh ∪ Cinx+jnh+nh+1, (36)

F x
b =



Ø, if 〈∆x〉2 = 0,⋃
i=0,1,··· , ln1

nx
−1

Cinx+b∆x
2 cnh+nh

, if 〈∆x〉2 = 1 and x 6= 1,

⋃
i=0,1,··· ,l−1

Cin1+1, otherwise,

(37)

where x = 1, 2, · · · , h− 1.
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Let C be an [n, k, d]q cyclic code with defining set {αi|i ∈ D} where

D = C0 ∪ F h ∪

( ⋃
x=1,2,··· ,h−1

F x
a ∪ F x

b

)
. (38)

Then the following theorem is obtained.

Theorem 6: Define ∆0 = ∆1 +1, ∆h = 0, ∆h+1 = 2−nh, and n0 = ln1. C is an optimal cyclic

[ln1, ln1 −
∑h

i=1
ln1

ni
(∆i −∆i+1) − 1, (∆1+3)nh

2
− 1]q h-level H-LRC with parameters ((r1, δ1 =

(
⌊

∆1

2

⌋
+ 1)(nh − 2) + ∆1 + 1), (r2, δ2 = (

⌊
∆2

2

⌋
+ 1)(nh − 2) + ∆2 + 1), · · · , (rh, δh = (

⌊
∆h

2

⌋
+

1)(nh − 2) + ∆h + 1)), where rj = nj −
∑h

i=j
nj
ni

(∆i −∆i+1) for 0 ≤ j ≤ h, nj
ni

=
⌈
rj
ri

⌉
for all

0 ≤ j < i ≤ h− 1, and

nj
nh

=

⌈
rj
rh

⌉
+

h−1∑
i=j

⌈
rj
ri

⌉(⌊
∆i

2

⌋
−
⌊

∆i+1

2

⌋)
(39)

for all 0 ≤ j ≤ h− 1.

Proof: Similar to Theorem 2, we have

F h =
⋃

i=0,1,··· , ln1
nh
−1

{inh + 2, inh + 3, · · · , inh + nh − 1}, (40)

F x
a =

⋃
i=0,1,··· , ln1

nx
−1

⋃
j=0,1,··· ,b∆x

2 c−1

{inx + jnh + nh, inx + jnh + nh + 1}, (41)

F x
b =



Ø, if 〈∆x〉2 = 0,⋃
i=0,1,··· , ln1

nx
−1

{inx +
⌊

∆x

2

⌋
nh + nh}, if 〈∆x〉2 = 1 and x 6= 1,

⋃
i=0,1,··· ,l−1

{in1 + 1}, otherwise,

(42)

where x = 1, 2, · · · , h − 1. Since C0 = {0}, one can check that {ln1 − nh + 2, ln1 − nh +

3, · · · , ln1−1, 0, 1, · · · ,
⌊

∆1

2

⌋
nh+nh−1} ⊆ D. By Lemma 1, the minimum Hamming distance

of C is at least
⌊

∆1

2

⌋
nh + 2nh − 1 = (∆1+3)nh

2
− 1. The dimension of C is k = n − |D| =
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ln1 −
∑h

i=1
ln1

ni
(∆i −∆i+1)− 1.

Similarly, one can prove that C is an h-level H-LRC with parameters ((r1,δ1),(r2,δ2),· · ·,(rh,δh)).

For the [ln1, ln1−
∑h

i=1
ln1

ni
(∆i−∆i+1)−1, d]q h-level H-LRC with parameters ((r1, δ1), (r2, δ2),· · ·,

(rh, δh)), by bound (2) we have

d ≤ ln1 −

[
ln1 −

h∑
i=1

ln1

ni
(∆i −∆i+1)− 1

]
+ 1−

(⌈
r0

rh

⌉
− 1

)
(nh − 2)

−
h−1∑
i=1

(⌈
r0

ri

⌉
− 1

)[(⌊
∆i

2

⌋
−
⌊

∆i+1

2

⌋)
(nh − 2) + (∆i −∆i+1)

]

=
h∑
i=1

ln1

ni
(∆i −∆i+1) + 2−

(⌈
r0

rh

⌉
− 1

)
(nh − 2) +

⌊
∆1

2

⌋
(nh − 2) + ∆1

−
h−1∑
i=1

⌈
r0

ri

⌉ [(⌊
∆i

2

⌋
−
⌊

∆i+1

2

⌋)
(nh − 2) + (∆i −∆i+1)

]
. (43)

It should be noted that 2 | ∆0, which implies

⌊
∆0

2

⌋
−
⌊

∆1

2

⌋
=

∆0

2
−
⌊

∆0 − 1

2

⌋
= 1. (44)

Thus

d ≤
h−1∑
i=1

(
ln1

ni
−
⌈
r0

ri

⌉)
(∆i −∆i+1) +

ln1

nh
(nh − 2) + 2

−
⌈
r0

rh

⌉
(nh − 2) + nh − 2 +

⌊
∆1

2

⌋
(nh − 2) + ∆1

−
h−1∑
i=0

⌈
r0

ri

⌉(⌊
∆i

2

⌋
−
⌊

∆i+1

2

⌋)
(nh − 2) + nh − 2

=

⌊
∆1

2

⌋
(nh − 2) + ∆1 + 2nh − 2

=
(∆1 + 3)nh

2
− 1, (45)

where the first equality employs the fact nj
ni

=
⌈
rj
ri

⌉
and equality (39) for 0 = j < i ≤ h − 1.
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Hence, the minimum Hamming distance of C is exactly (∆1+3)nh
2

− 1 and C is an optimal cyclic

h-level H-LRC.

�

Remark 4: Note that the minimum Hamming distance of h-level H-LRCs in this section is

d = δ1 + δh which is different from those of the other classes of h-level H-LRCs in this paper.

Example 4: Let q = 25, h = 3, n1 = 24, n2 = 12, n3 = 4, and l = 2. For ∆1 = 3 and ∆2 = 2,

one can obtain

D=C0 ∪ F 3 ∪

( ⋃
x=1,2

F x
a ∪ F x

b

)

= {0} ∪

( ⋃
i=0,1,··· ,11

{4i+ 2, 4i+ 3}

)
∪

( ⋃
i=0,1,2,3

{12i+ 4, 12i+ 5}

)

∪

( ⋃
i=0,1

{24i+ 1}

)
.

For a cyclic code C of length ln1 = 48 with defining set {αi|i ∈ D}, it can easily be seen that

46, 47, 0, 1, 2, 3, 4, 5, 6, 7 belong to D. By Lemma 1, the minimum Hamming distance of C is at

least 11. The dimension of C is k = ln1 − |D| = 48− 35 = 13. By Lemmas 1,3 and Definition

3, it can be verified that C is an h-level H-LRC with parameters ((7, 8), (4, 7), (2, 3)). By bound

(2) we have

d ≤ 48− 13 + 1−
(⌈

13

7

⌉
− 1

)
(8− 7)−

(⌈
13

4

⌉
− 1

)
(7− 3)

−
(⌈

13

2

⌉
− 1

)
(3− 1)

= 11.

Therefore, C is an optimal cyclic [48, 13, 11]25 h-level H-LRC with parameters ((7, 8), (4, 7), (2, 3)).
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Table 1. The lengths and distances of cyclic h-level H-LRCs in [7] and this paper

Length n Distance d Remark

n|(q − 1) d ≥ δ1 [7], Remark 3

n = qm − 1, m ≥ 1 d = δ1 + 1 [7]

n = ln1, gcd(l, q) = 1, n1|(q − 1) d = δ1 Theorem 3

n = ln1, gcd(l, q) = 1, n1|(q − 1) d = δ1 + 1 Theorem 4

n = ln1, gcd(l, q) = 1, n1|(q − 1),

[ l
gcd(l, q−1

n1
)
] |
(⌊

∆1

nh−δ

⌋
nh+δ+〈∆1〉nh−δ+1+in1

)
and gcd(l, in1 + 1) = 1 for some 0 ≤ i ≤ l − 1

d = δ1 + 2 Theorem 5

n = ln1, gcd(l, q) = 1, n1|(q − 1) d = δ1 + δh Theorem 6

VII. CONCLUSIONS

In this paper, by considering the length and minimum distance the definition of h-level H-

LRCs was given. Then four classes of optimal cyclic h-level H-LRCs were constructed, which

have minimum Hamming distances d = δ1, δ1 + 1, δ1 + 2, δ1 + δh respectively. Compared with

cyclic h-level H-LRCs in [7], our cyclic h-level H-LRCs have new and flexible parameters.

By setting l| q−1
n1

for the third construction, more optimal cyclic h-level H-LRCs with distance

d = δ1 +σ (σ is not limited to 0, 1, 2, δh) can be obtained, but the length of them is n|(q− 1). It

is interesting to construct optimal cyclic h-level H-LRCs with any Hamming distance and length

in future work.

Table 1 summarizes the lengths and distances of cyclic h-level H-LRCs in [7] and this paper.

It can be seen that the parameters of cyclic h-level H-LRCs in this paper are new and more

flexible than those in [7].
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[2] A. Barg, I. Tamo, and S. Vlǎdut, “Locally recoverable codes on algebraic curves,” IEEE Trans. Inf. Theory,

vol. 63, no. 8, pp. 4928-4939, Aug. 2017.

[3] M. Blaum, “Multiple-layer integrated interleaved codes: a class of hierarchical locally recoverable codes,” IEEE

Trans. Inf. Theory, vol. 68, no. 8, pp. 5098-5111, Aug. 2022.

[4] V.R. Cadambe and A. Mazumdar, “Bounds on the size of locally recoverable codes,” IEEE Trans. Inf. Theory,

vol. 61, no. 11, pp. 5787-5794, Nov. 2015.

[5] H. Cai, Y. Miao, M. Schwartz, and X. Tang, “On optimal locally repairable codes with super-linear length,”

IEEE Trans. Inf. Theory, vol. 66, no. 8, pp. 4853-4868, Aug. 2020.

[6] H. Cai and M. Schwartz, “On optimal locally repairable codes and generalized sector-disk codes,” IEEE Trans.

Inf. Theory, vol. 67, no. 2, pp. 686-704, Feb. 2021.

[7] Z. Chen and A. Barg, “Cyclic and convolutional codes with locality,” IEEE Trans. Inf. Theory, vol. 67, no. 2,

pp. 755-769, Feb. 2021.

[8] B. Chen, W. Fang, S. Xia, and F. Fu, “Constructions of optimal (r, δ) locally repairable codes via constacyclic

codes,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5253-5263, Aug. 2019.

[9] B. Chen, W. Fang, S. Xia, J. Hao, and F. Fu, “Improved bounds and Singleton-optimal constructions of locally

repairable codes with minimum distance 5 and 6,” IEEE Trans. Inf. Theory, vol. 67, no. 1, pp. 217-231, Jan.

2021.

[10] B. Chen, S. Xia, J. Hao, and F. Fu, “Constructions of optimal cyclic (r, δ) locally repairable codes,” IEEE

Trans. Inf. Theory, vol. 64, no. 4, pp. 2499-2511, Apr. 2018.

[11] B. Chen, G. Zhang, and W. Li, “New optimal linear codes with hierarchical locality,” IEEE Trans. Inf. Theory,

vol. 69, no. 3, pp. 1544-1550, Mar. 2023.

[12] H. Chen, J. Weng, W. Luo, and L. Xu, “Long optimal and small-defect LRC codes with unbounded minimum

distance,” IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2786-2792, May 2021.
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