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Decoupled Two-Stage Talking Head Generation via
Gaussian-Landmark-Based Neural Radiance Fields
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Abstract—Talking head generation based on neural radiance
fields (NeRF) has gained prominence, primarily owing to its
implicit 3D representation capabilities within neural networks.
However, most NeRF-based methods often intertwine audio-to-
video conversion in a joint training process, resulting in chal-
lenges such as inadequate lip synchronization, limited learning
efficiency, large memory requirement and lack of editability. In
response to these issues, this paper introduces a fully decoupled
NeRF-based method for generating talking head. This method
separates the audio-to-video conversion into two stages through
the use of facial landmarks. Notably, the Transformer network
is used to establish the cross-modal connection between audio
and landmarks effectively and generate landmarks conforming
to the distribution of training data. Then, these landmarks are
combined with Gaussian relative position coding to refine the
sampling points on the rays, thereby constructing a dynamic
neural radiation field conditioned on these landmarks for ren-
dering the generated head. This decoupled setup enhances both
the fidelity and flexibility of mapping audio to video with two
independent small-scale networks. Additionally, it supports the
generation of the torso part from the head-only image with
deformable convolution, further enhancing the realism of the
generated talking head. The experimental results demonstrate
that our method excels in producing lifelike talking head, and
the lightweight neural network models also exhibit superior speed
and learning efficiency with less memory requirement.

Index Terms—Audio-driven generation, Talking Head, Trans-
former, NeRF Rendering.

I. INTRODUCTION

THE task of generating talking haed from input audio is to
render video portraits that synchronize with and faithfully

convey the speech of the person in the audio. This cutting-
edge technology boasts a wide array of computer graphics
and multimedia applications, spanning from virtual assistants
to enriching the realms of virtual reality, digital entertainment,
and beyond [1]–[5]. As a cross-modal conversion from audio
to video, it usually faces challenges such as lip synchronization
with audio, realism in facial details, and naturalness of head
movement. Additionally, in some certain scenarios such as
live broadcasts or chatbots, fast learning and inference for
rendering the talking head are also highly valuable.

The recent advance of neural radiance fields (NeRF) [6]
has sparked a surge of endeavor in generating realistic talking
heads [3], [4], [7]. By fully exploiting spatial information,
these methods offer a unique advantage, particularly in terms
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of rendering fine-grained details and overall realism. Typi-
cally, existing NeRF-based works rely on two key networks:
one dedicated to mapping audio to features and the other
for constructing conditional radiance fields based on these
intermediate features. However, these methods often entail the
joint training of the two networks. While the joint training
has demonstrated its effectiveness, it comes with a set of
disadvantages. For example, NeRF models tend to impose a
significant training overhead due to the complexity of the task
and the lack of supervised feature learning [3], [8]. This, in
turn, leads to issues such as inadequate lip synchronization,
image blur and prolonged training times. Besides, assessing
the accuracy of the audio mapping before producing the final
video is unfeasible, and the limited storage space of computing
devices constrains the network’s ability to represent the talking
head corresponding to audio effectively [7], [9].

Facial landmarks are identifiable points on a face that
are concise yet crucial for recognizing and understanding its
unique features. This insight sparks the idea of decoupling
the NeRF-based talking head generation process through the
utilization of facial landmarks. Actually, a few methods like
[10], [11] have validated the potential of decoupling talking
head generation via landmark-based neural radiation fields.
However, they still have some limitations, such as the inability
to generate landmarks that align with the training set distribu-
tion in a single attempt and the lack of precise control over
the contribution of landmarks at each sampling point, which is
also a common challenge faced by NeRF-based methods and
leads to increased training time.

Inspired by the decoupling scheme with facial landmarks,
we also separate the talking head generation into two indi-
vidual stages, but further improve the landmark prediction
and talking head rendering to address the aforementioned
limitations. Specifically, the cross-modal conversion from the
input audio to lip movement is enhanced to constrain the
distribution of predicted landmarks. Then, these landmarks are
modeled as Gaussian distributions and used to construct the
radiation field for rendering talking head images. Additionally,
the deformable convolution is incorporated in a head-to-torso
network to generate a coherent body with the head, thereby
enhancing the naturalness and authenticity of synthesized
videos.

Our major contribution is a decoupled two-stage talking
head generation method by utilizing facial landmarks with
Gaussian distribution, which features the following aspects.

• A Transformer model for predicting landmarks. In the
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first stage, we adapt the Transformer model [12] with a
faster cross-attention layer to ensure contextual consis-
tency and reasonable distribution through the process of
landmark prediction.

• Gaussian landmark encoding for NeRF rendering. In
the second stage, we treat landmarks as the centers of
Gaussian distributions and calculate the Gaussian relative
position coding with the sampling points on the ray.
This enables precise control of the neural radiance fields,
which can improve the learning efficiency and rendering
quality.

• A UNet network for generating torso. After NeRF’s
head rendering, we further adapt the UNet model with
deformable convolution to generate a full image with
both head and torso. This head-to-torso network can
avoid artifacts such as rigid hair and gaps between the
head and torso, thereby augmenting the naturalness and
authenticity of the final video.

II. RELATED WORK

A. 2D-based methods

Image-to-image translation [2], [13], [14], generative ad-
versarial networks (GANs) [15]–[18] and recently popular
diffusion models [19] are typically used for creating talking
head, often accompanied by intermediary parameters like
emoticons or landmarks. These approaches can be classified
into two primary categories: end-to-end and non-end-to-end
approaches, depending on whether audio control is applied
directly or indirectly.

End-to-end approaches like [20] involve the synthesis of
talking head by using a decoder network. This process takes
place after both images and audio are simultaneously encoded
into a latent space through an encoder network. After several
hours of unsupervised training, it becomes feasible to create
audio-controlled videos in which a static image of a mouth
progressively transforms in synchronization with the audio.
Another end-to-end method [18] utilizes a temporal GAN
methodology that incorporates three discriminators, which
collaborate to generate unique images, synchronize mouth
movements with audio, and convey a range of facial emotions.
Diffused heads [19] employ a provided single identity frame
along with an audio clip containing speech. Leveraging a
diffusion model, it samples successive frames in an autore-
gressive fashion, preserving identity while modeling lip and
head movements to synchronize with the audio input without
any further guidance. Non-end-to-end approaches like [2]
entail the use of audio to predict landmark displacements.
Then, networks similar to pix2pix [21] are employed to
generate talking head images based on these newly predicted
landmarks.

Nonetheless, both end-to-end and non-end-to-end ap-
proaches encounter constraints stemming from their 2D pro-
cessing. This limitation arises from the absence of 3D struc-
tural information, giving rise to challenges like unstable facial
appearances and other associated issues.

B. 3D-based methods

The 3D Morphable Model (3DMM) [22] is extensively used
as an intermediary representation. Suwajanakorn et al. [23]
utilize 3DMM to learn mouth textures, as well as predict
mouth-area landmarks based on the Mel-frequency cepstral
coefficients (MFCC) audio characteristics. Then, these land-
marks and textures are combined to synthesize new mouth-
area images, which are seamlessly integrated into the original
video. Song et al. [24] leverage 3DMM to dissect video frames
into a parameter space, encompassing expression geometry
and gestures. Subsequently, they introduce a recurrent neural
network (RNN) to convert audio to these audio-related pa-
rameters and design a rendering network with dynamics to
facilitate video generation. Justus et al. [25], on the other
hand, employ an attention network to extract features from
audio by using DeepSpeech2 [26]. These features are then
transformed to the corresponding parameters of the 3DMM
model and further rendered to produce the final video. Zhang
et al. [27] also use 3D models to achieve the stability of
diffusion-generated images over consecutive frames.

Recently, NeRF [6] has been gaining ground as the method
of choice for talking head generation, owing to its proficiency
in implicitly representing complex scenes. Initially, Guo et
al. [3] propose a method that separately visualizes the head
and body, by introducing characteristics derived from audio
as additional requirements for NeRF. Yao et al. [7] take this
a step further by disentangling audio features into lip motion
features and other personalized attributes. Meanwhile, Shen et
al. [4] introduce prior features in 2D images alongside audio
characteristics. For the purpose of editable NeRF, Hong et
al. [28] incorporate parameters like identity, expression, ap-
pearance, and lighting obtained from the decomposition of the
3DMM as conditional inputs. Furthermore, Gafni et al. [29]
construct NeRF using learnable latent codes and expression
parameters derived from the decomposition of 3DMM. For
the fast computation with neural radiation fields, Tang et
al. [30] introduce RAD-NeRF, which harnesses grid-based
neural radiation fields to expedite both training and inference,
building upon the foundations of AD-NeRF. Similarly, Li et
al. [9] propose ER-NeRF, which employs three-plane hash
coding to steer the generation of neural radiation fields.

However, it’s worth noting that most of the aforementioned
NeRF-based techniques employ intricate joint training strate-
gies. These strategies entail using audio directly to instruct
NeRF on influencing rendering outcomes, imposing a signifi-
cant training load on NeRF. Furthermore, to prevent the audio
mapping network from excessively enlarging the model, the
audio mapping networks employed by these techniques are
relatively simple, lacking expressive power in representing the
intricate relationship between audio and video. Consequently,
this causes drawbacks like poor alignment between mouth
shape and audio, slow learning speeds, and the large scale
of complex models.

To tackle the above issues, there are methods to decouple the
NeRF-based talking head generation process. Geneface [10] is
the first method that attempts to achieve this process by facial
landmarks. It utilizes variational auto-encoder (VAE) [31]
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Fig. 1. An overview of our decoupled two-stage method for talking head generation. In the first stage, input audio and initial landmarks are processed by
using the Transformer encoders Eaud and Elm respectively to extract features. The landmark features of preceding frames fl[1 : i] are delivered to the
Transformer decoder Da2l, which contains periodic position encoding (PPE), a self-attention layer (SA) and a cross-attention layer (CA), to get ḟl[i+ 1]
and f̈l[i+ 1], and predict fl[i+ 1] with fa[1 : T ] that form a looped sequence. In the second stage, generated landmarks are combined with sampling points
during Gaussian landmark encoding. The results are involved in generating the density σ and color c for rendering head. This head image is subsequently
used to complete the body through the UNet network.

to generate facial landmarks from audio, and then employs
additional networks to refine these landmarks. Within the
neural radiation fields, it utilizes MLP to convert these land-
marks to feature vectors, which contributes to density field
generation. Geneface++ [11] improves this framework by
incorporating pitch-aware and fast NeRF rendering scheme.
However, both of the two methods still struggle to ensure
a reasonable distribution of generated landmarks due to the
limitation of VAE. Moreover, they treat the landmarks as
identical for all sampling points during the learning process,
which necessitates additional time to establish the varying
contributions of each point. While the proposed method in
this paper is also based on landmarks to decouple the talking
head generation, it can improve the distribution of generated
landmarks from the input audio, as well as learn the network
of NeRF more efficiently.

III. METHOD OVERVIEW

Fig. 1 depicts a schematic overview of our method. The
dataset is created by utilizing 3DMM to extract both camera
poses and facial landmarks from video frames within a unified
coordinate system. We use facial landmarks as intermediaries
to connect two separate stages for audio-to-video conversion.

In the first stage, we adapt the Transformer model to
construct a cross-modal model with the long-term context.
This network operates in an autoregressive manner, leveraging
features extracted from the input audio. It first generates
features of audio and facial landmarks from two encoders

based on the Transformer respectively. Subsequently, it seam-
lessly combines audio features with facial landmark attributes
from preceding frames to derive the landmarks specific to the
current frame by the Transformer decoder. For this decoder,
we replace the original sinusoidal position encoding with
a periodic position encoding layer, and further simplify the
calculation across the cross-attention layer.

In the second stage of our research, it is noted that existing
methods for dynamic neural radiation fields uniformly incor-
porate time-related features for all rays into the input, along
with position and direction information. To enable nuanced
adjustments on individual rays and sampling points, we treat
each landmark as the center of a Gaussian distribution. After
selecting sample points on rays, we calculate the weight
of each sample point on each landmark for constructing
the radiation field, which is referred as Gaussian landmark
encoding. Then, an MLP network is employed to generate
color and density for volume rendering of the head image.
Subsequently, we utilize a UNet network based on the de-
formable convolution to generate the body image attached to
the head image for obtaining the output video. The details are
provided in the following sections.

IV. TALKING HEAD GENERATION

A. Training dataset construction

Our method relies on the use of 3DMM to establish the
spatial mesh structure of a person’s face. Generally, the mesh
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Fig. 2. The first stage contains (a) the landmark encoder Elm and (b) the Transformer decoder Da2l. The selected facial landmarks are indicated by red
dots in (a).

vertices S in 3DMM can be expressed as:

S = S+Bid · Fid +Bexp · Fexp (1)

where S ∈ R3N denote the averaged face geometry of
a template triangle mesh with N vertices, Fid and Fexp

are the coefficients for geometry, expression respectively for
3DMM. Bid and Bexp are the PCA basis of geometry and
expression adopted from the Basel Face Model [32] and
FaceWareHouse [33].

When reconstructing the face, the rigid head pose p ∈ R6

with six degrees of freedom (DoF) is represented by Euler
angles (pitch, yaw, roll) and a translation vector t ∈ R3, and
the camera intrinsic matrix K ∈ R3×3 consists of camera focal
length and rendered image size. For each frame in the video,
68 points are selected from S as done in FacewareHouse.
These points are designated as facial landmarks and repre-
sented by Lworld ∈ R3×68. Given the challenge of capturing
subtle movements such as eye blinking with 3DMM, we first
identify the vertices of the eye regions in 3D models and
project them onto the image plane. This allows us to calculate
the area of the open-eye region s0 for subsequent processing.

In prior studies [3], [30], facial parsing technology [34] has
typically been employed to extract facial data. However, a
common observation is that the mask images generated by this
method often exhibit gaps, particularly in areas such as body
parts. To address this limitation, we adopt a network based
on U2net [35] to pre-separate the individual and background
within the image. Besides, facial parsing is applied to delineate
the facial area I and eye regions with better accuracy. Then, we
calculate the ratio between the area of the eye region and s0,
denoted as r. This ratio serves as an indicator for quantifying
the extent of eye closure. In the training process, we collect
and record the data of Lworld (facial landmarks), I (facial
data), p (6 DoF rigid pose), K (camera intrinsic matrix), and
r (eye closure extent).

B. First stage: Audio to facial landmarks

Using the facial landmarks denoted as Lworld, our first stage
involves establishing a connection between the input audio
and these landmarks. Here, we employ the Transformer frame-
work, which is chosen for its ability to handle variable-length
inputs and maintain long-range audio-context correlations.

Drawing inspiration from FaceFormer [36], our method
adopts an autoregressive strategy to predict new landmarks,
using both previous landmark attributes and contextual audio
information as conditioning factors. Within this procedure, we
formulate the architecture with two Transformer encoders and
one Transformer decoder. As shown in Fig. 1, the first encoder,
denoted as Eaud, is designed to transform audio into features.
It is based on the pre-trained wav2vec2 model [37]. As shown
in Fig. 2a, the second encoder is a landmark encoder denoted
as Elm, which is composed of CNN and Transformer encoder
structures. Notably, lip movements exhibit a strong correlation
with audio, unlike eye blinks. Therefore, only 37 landmarks
from Lworld within the lip area and outer contour are selected
by Elm to extract relevant features.

In FaceFormer [36], it uses the PPE layer, biased causal
multi-head self-attention layer and biased cross-modal multi-
head attention layer to build the Transformer decoder. How-
ever, in our research, the biased cross-modal multi-head at-
tention layer contributes inadequately due to alignment bias,
as shown in Fig. 2b. This bias results in the attention weight
matrix resembling an identity matrix, causing redundant calcu-
lations. So we drop and replace it with a simple linear network.

Overall, the audio is initially processed by Eaud to obtain
audio features for the T frames of a video, denoted as fa[1 : T ].
When generating landmarks for the i + 1 frame, all audio
features are fused with landmark features from the previous
i frames, denoted as fl[1 : i], through the utilization of Elm.
fl[1 : i] and fa[1 : T ] then undergo the Transformer decoder
Da2l to predict fl[i+ 1].
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In the training phase, our model is trained by minimizing
the smooth L1 loss [38] between the predicted landmarks
L̂world ∈ RT×3×37 and the ground truth Lworld, denoted as:

Ls1 =

{
0.5(∆L)2 if ∆L < 1

∆L− 0.5 otherwise
(2)

where ∆L = |L̂world − Lworld|.
It has been observed that employing facial features obtained

directly from processing facial landmarks can lead to static fa-
cial expressions during the inference process. This issue arises
due to the absence of a well-defined weight initialization, re-
sulting in increased learning costs and difficulties in capturing
subtle motion changes between consecutive frames. To address
this issue, we have devised a dual-pronged solution. Firstly,
we employ landmark shifting by subtracting the average of
all landmarks from each landmark in every frame. Secondly,
we set the weight of the last linear layer of Da2l to zero.
This solution has been put in place to alleviate the issue and
encourage more dynamic and expressive facial animations.

C. Second stage: Landmarks to facial images
After acquiring the landmarks Lworld and camera poses p,

the next step involves leveraging NeRF for rendering images
of talking head. Typically, NeRF [6] can be represented as
follows:

Fθ(x,d) = (c, σ) (3)

where x denotes a point in the voxel space, d represents
the 2D view direction, and c and σ stand for the color
and density of the voxel at the position x. The values of
c and σ are subsequently utilized to render the final image
by accumulating along the ray using the following volume
rendering formula:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (4)

where r(t) is the camera ray and T (·) is computed by

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
(5)

Head generation. When it comes to generating talking
head, a challenge emerges because the provided videos are
typically recorded from a fixed camera pose, whereas NeRF
requires input from multiple camera poses. Guo et al. [3]
introduced AD-NeRF, which incorporates head postures ob-
tained from 3DMM. By treating motion as a relative concept,
it simulates a scenario where the head remains stationary while
the camera moves around it. As a result, NeRF implicitly
models the facial space. As depicted in Fig. 1, to render
the corresponding head image based on the given landmarks
within NeRF, we employ these landmarks as additional con-
ditions to establish a dynamic NeRF framework, denoted by

Fθ(Lworld ,x,d) = (c, σ) (6)

Inspired by the relative position encoding technique of
KeypointNeRF [39], our method calculates the relative dis-
tance between the voxel x and landmark Lworld, denoted as

z

y

x
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𝑑𝑧

rays

Sample Point
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Fig. 3. The Gaussian landmark encoding for neural radiance fields rendering.

δ ∈ RK×N×3 , where N and K are the number of sample
points and landmarks. Subsequently, as shown in Fig. 3, we
employ camera pose information to transform it into the
camera coordinate system, denoted as d = (dx,dy,dz). In
vanilla KeypointNeRF, to obtain the relative position codes,
position embedding γ(·) and Gaussian exponential kernels are
further applied as follows:

r(x|Lworld) = exp(− |d|2

2 ∗ α2
) · γ(dz) (7)

where the hyperparameter α is set to a fixed value of 0.05.
Inspired by 3DGS [40], we change this equation as follows to
control variance in all directions:

r(x|Lworld) = exp(−1

2
diag(δΣ−1δT )) · γ(dz) (8a)

Σ = RS(RS)T (8b)

where Σ ∈ RK×3×3 is a learnable variable that represents
covariance matrix. Like 3DGS, we use scaling matrix S and
rotation matrix R to represent it. We adopt the concept of
RAD-NeRF [30], leveraging grid-based neural radiation fields
to expedite both training and inference processes, c and σ are
generated using two Multilayer Perceptrons (MLPs), and they
are employed to render the image in accordance with Eq. (5).

To enhance the training speed of our model, we strategically
select a 64 × 64 pixel region from each image at a random
resolution and perform voxel sampling on the corresponding
rays. Additionally, for the learning process of the neural
radiance field in the facial region, we introduce a mask during
the early stages of training. Specifically, we constrain the
length of the range corresponding to the sampled points on
rays in non-facial regions to 0. As the training progresses, we
gradually phase out the mask, allowing the neural radiance
field to extend its learning to non-facial regions.

Throughout our experiments, it is observed that while facial
landmarks encompassed both open and closed eyes, the neural
radiation field predominantly showcased rendering results with
open eyes during inference. Hence, this phenomenon can be
regarded as the prevalence of images in the dataset featuring
open eyes. To address this issue, we introduce a dynamic
adjustment mechanism for the weight of the image loss
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associated with the eye region, based on the representation
r indicating eye closure. The experiments demonstrate that
this adaptive approach enables the neural radiation field to
accurately render the blinking effect by adapting to changes
in landmarks corresponding to the eyes. To achieve a more
comprehensive understanding of the entire image and enhance
image perception throughout the training process, we further
integrate a VGG network [41]. This network computes
additional losses, akin to HumanNeRF [42], in addition to
the conventional image reconstruction loss typically utilized
in NeRF. Thus, the training loss in the second stage is:

Lnerf
s2 = λ1Lnerf

pix + λ2Lnerf
alpha + e1−rLnerf

eye

Lnerf
pix = Lnerf

SmoothL1 + λ3Lnerf
V GG

(9)

where Lnerf
pix is the pixel loss, which comprises the smooth

L1 loss and the difference in the output of the VGG network
between the rendered and original images, Lnerf

alpha represents
the cross-entropy loss on masked images, and e1−wLnerf

eye

denotes the pixel loss focused on the eye area, weighted by
eye closure.

Conv64↓2 ReLU DCN64

ReLU Conv64↓2 ReLU DCN64

ReLU Conv64↓2 ReLU DCN64

ReLU Conv128↓2 Dropout

ReLU Conv128↓2 Dropout

ReLU ↑2Conv128 Dropout
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ReLU ↑2Conv64 ReLU DCN64

ReLU ↑2Conv64 ReLU DCN64

ReLU ↑2Conv64 ReLU DCN64

Head Image

UNet Module

ReLU Conv3-1x1

 Full  Image
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Fig. 4. The proposed UNet. Conv(C) refers to a convolution layer with
C channels, while ↓ 2 indicates that it is strided down by a factor of 2.
Conversely, ↑ 2 implies that this convolution is performed after a nearest-
neighbor upsampling by a factor of 2. DCN(C) represents a deformable
convolution with C channels. All convolutions typically employ 3× 3 filters
unless specified otherwise, such as Conv3− 1× 1 with 1× 1 filters.

Torso generation. The NeRF mentioned above can suc-
cessfully render a talking head in accordance with the input
audio. However, rendering only the head is usually insufficient
for obtaining a full and lifelike representation. The method of
AD-NeRF [3] implicitly describes the required camera pose
by combining the head posture and audio features, since there
is no known pose for the torso NeRF. While the method of
ER-NeRF [9] addresses the head-torso separation issue by
mapping intricate transformations of head poses to spatial
coordinates, there are usually gaps between the generated
heads and bodies. To address this issue, we further introduce a

network based on the deformable convolution and UNet [43],
[44] for synthesizing the full image with torso from a head-
only image (see Fig. 4). This can also effectively mitigate the
gravity-defying issue associated with NeRF-generated hair as
demonstrated in the experiments.

Concretely, with the goal of reconstructing the original
image from the background and head parts, we tailor the
UNet generator in pix2pix [21] and add DCNv3 after some
convolution layers to automatically identify facial areas to
fulfil our requirement. To deal with the checkerboard artifacts,
we choose nearest-neighbor interpolation followed by convolu-
tion, replacing the original transposed convolution upsampling
method. Similar to Eq. (9) in head generation, we integrate
a VGG network alongside the smooth L1 loss, denoted as
Lunet
s2 = Lunet

SmoothL1+Lunet
V GG. As the example shown in Fig. 4

for the torso generation, our network can generate a body that
seamlessly attached to the head while maintaining clear details
of the full image with the torso.

V. EXPERIMENTS

We have implemented our method based on the PyTorch
framework and performed the training on a single NVIDIA
RTX 3090 GPU with 24 GB of memory. We collected some
datasets of speech videos from previous works [3], [45]. For
each person-specific dataset, we changed the corresponding
video to 25 FPS with more than 6000 frames with the
resolution of 512× 512. Then, we compared our method with
some state-of-the-art NeRF-based methods for talking head
generation on the datasets, including AD-NeRF [3], RAD-
NeRF [30], ER-NeRF [9] and Geneface++ [11], as well as
MakeItTalk [2] that is a purely 2D method. We refer the
reader to the companion video for visual demonstrations of
the generated talking heads by different methods. Next, we
elaborate the details of the experiments.

A. Training

The individual networks in the two stages are trained
separately. For the training in the first stage, we adopt AdamW
optimizer [46] with the learning rate 1e-4. The dataset is
divided into groups with every 200 frames, whereupon each
group contains aligned audio and the 3D coordinates of
landmarks Lworld in the world coordinate system. Both the
audio and landmarks are taken into Eaud and Elm to generate
outputs with the encoding dimension of 64. The training
process usually takes about half an hour in this stage.

For the training of NeRF in the second stage, we adopt
Adam optimizer [47] with an initial learning rate set to 5e-4.
The training data involves head images P, camera parameters
{K,P}, and landmarks Lworld . In the training process, we set
64× 64 rays from the image plane. The loss scale is set to 10
for λ1, 5 for λ2 and 0.05 for λ3. We adopt AdamW optimizer
with the learning rate 1e-3 during the training of UNet in
second stage. The training process takes approximately 4 hours
(2 hours for the head and 2 hours for the torso) with a
parameter memory size of 12M, whereas the method of RAD-
NeRF require 7 hours and 15M parameters, and the method of
ER-NeRF needs 2.5 hours and 18M parameters. This indicates
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Fig. 5. Qualitative comparison of results obtained by MakeItTalk [2], AD-NeRF [3] RAD-NeRF [30], ER-NeRF [9], Geneface++ [11] and our method. The
top line represents the reference source video. The red boxes indicate the areas with artifacts like different lip shapes, different eyes, gaps and blurred hair.

that our method offers superior speed and learning efficiency
with lower memory requirements.

B. Results

To demonstrate the superiority of our method, we perform
both qualitative and quantitative evaluations commonly em-
ployed in the talking head generation field.

Qualitative evaluation. The visual quality of the generated
talking head relates to lip synchronization, free of blur and
distortion, natural head movement, etc. Fig. 5 shows some
samples of the generated talking head by different methods.
Among these methods, only NeRF-based methods have the
ability to produce videos with a variety of head movements.
MakeItTalk exhibits limitations in generating a positive talking
head with inaccurate lip shapes. Noticeable gaps between the
head and torso, and wrong lip shapes are often observed in

AD-NeRF. The lip shapes generated by RAD-NeRF are not
always good, and there are distortions in the hair regions.
ER-NeRF and Geneface++ also have some similar artifacts,
while Geneface++ appears to have blurred hair in the generated
results. In the companion demo video, we also find that AD-
NeRF have some unnatural, low-frequency, and incompletely
eye movements, because their blinking features are implicitly
included in the audio features. The noticeable body shaking
exists in the results obtained by ER-NeRF. Additionally, for
characters with long hair, these methods tend to either display
relatively stiff hair like ER-NeRF, or unrealistic graininess
like RAD-NeRF and Geneface++. In contrast, our method can
produce more realistic results with lip synchronization, natural
blinking, stable body movements and clear hair.

As one key ingredient of our method to improve the quality,
we adapt the Transformer model to obtain facial landmarks to
bridge the two stages of our method. So we further make a



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXX 2024 8

TABLE I
QUANTITATIVE EVALUATION OF DIFFERENT TALKING HEAD GENERATION METHODS.

Method Iteration Test A Test B
PSNR↑ SSIM↑ LPIPS↓ SyncNet↑ LMD↓ PSNR↑ SSIM↑ LPIPS↓ SyncNet↑ LMD↓

Ground Truth - - - - 7.76 0 - - - 7.81 0
MakeItTalk [2] - 30.37 0.597 0.217 6.72 4.18 25.02 0.459 0.284 5.02 4.76

AD-NeRF [3] 100k 30.16 0.683 0.162 3.73 5.26 28.71 0.503 0.216 6.40 5.63
300k 31.89 0.766 0.091 4.52 4.40 29.06 0.661 0.164 6.68 5.04

RAD-NeRF [30] 100k 33.24 0.813 0.103 4.67 4.62 30.36 0.749 0.188 6.56 5.10
300k 33.56 0.896 0.055 5.16 4.24 30.81 0.800 0.102 6.69 4.89

ER-NeRF [9] 100k 34.21 0.889 0.079 5.63 4.69 30.25 0.710 0.173 5.14 5.22
300k 34.49 0.908 0.046 6.01 4.26 31.06 0.775 0.101 5.85 5.03

Geneface++ [11] 100k 34.38 0.870 0.061 5.07 3.78 30.53 0.713 0.140 6.10 4.19
300k 35.04 0.918 0.041 6.13 3.78 31.18 0.767 0.084 7.12 4.08

Ours 100k 35.16 0.906 0.035 6.08 3.34 31.14 0.745 0.085 7.13 3.46
300k 35.28 0.922 0.028 6.20 3.34 31.35 0.772 0.077 7.39 3.46

(a) (b)

Fig. 6. T-SNE visualization of facial landmark distribution generated by (a)
VAE from Geneface++ and (b) our Transformer model in the first stage. The
purple points represent the set of training data, while the yellow points indicate
the set of generated data.

comparison for generating landmarks by classical VAE model
from Geneface++ and our Transformer model. As noted by Ye
et al. [11] in their study, the majority of landmarks obtained
using the VAE method do not adhere to the distribution of the
training data. We further do the test on our Transformer model
in this regard, and the results are depicted in Fig. 6. It can
be seen that our method can generate landmarks that adhere
better to the distribution of the training data, thus improving
the fidelity of generated talking head in the audio-to-video
conversion.

Quantitative evaluation. We utilize the metrics of
peak signal-to-noise ratio (PSNR) [48], structural similarity
(SSIM) [48], and learned perceptual image patch similarity
(LPIPS) [49] to measure the generated image quality. Because
PSNR usually tends to provide higher scores for blurry images,
we advocate for the use of the more representative perceptual
metric LPIPS. It is worth noting that to more accurately eval-
uate the accuracy of lip synchronization, we also employ the
landmark distance (LMD) and the confidence score proposed
in SyncNet [50] in the experiments.

The statistics of quantitative evaluation is reported in Tab. I.
It can be seen that our method produces the best results for
most of the metrics. Actually, MakeItTalk also produces a high
Syncnet score, because it processes the incoming video only
using lip movements without head movements. Our Syncnet
score is more reasonable. Additionally, our method achieves
a favorable evaluation score after training on 100,000 images,
surpassing contemporaneous methods and demonstrating a

faster learning performance for our model.

C. Ablation study

We also conduct ablation experiments to assess the effec-
tiveness of key components in our two-stage setup. Firstly, we
examine the influence of the generation of landmarks from
audio between vanilla FaceFormer and our method. Secondly,
we assess the influence of different landmark encodings on
the convergence speed of the model. Furthermore, we attempt
to bypass the supervision of landmarks for audio generation
and directly apply end-to-end generation from audio to talking
head images. The purpose is to ascertain the significance of
decoupling the two stages in the process.

The Transformer model in the first stage. As described
in Sec. IV-B, we implement the conversion from audio features
to landmarks based on FaceFormer. So we conducted two
kinds of comparisons: one is the use of the MLP-based
(ME) and Transformer-based (TE) landmark encoders, and
the other is to examine whether to incorporate the alignment
bias in Transformer decoder. In the first comparison, for
the MLP-based encoder, we initially flatten the landmarks
and process them through a Linear-ReLU-Linear architecture.
In contrast, for the Transformer-based encoder, we employ
one-dimensional convolution to encode the landmarks. Subse-
quently, we add classification tokens and location coordinates
using a network structure similar to Alaparthi et al. [51], and
the features of the classification location are used as the input
landmark features. Tab. II shows the results by using different
Transformer encoders, where Ls1 is the training loss from
Eq. (2) after 10 epochs. It can be seen that our Transformer
encoder achieves a faster convergence speed, while alignment
bias unnecessarily consumes computing resources.

TABLE II
DIFFERENT TRANSFORMER ENCODERS AFTER 10 EPOCHS IN THE FIRST

STAGE.

Ls1(×10−4) Time (seconds per iter)
w ME, w alignment bias 0.624 81.45
w TE, w alignment bias 0.252 85.19

w TE, w/o alignment bias 0.251 66.69

Facial landmark encoding in the second stage. As
outlined in Sec. IV-C, we utilize Gaussian landmark encoding,
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denoted as Eq. (8a), to handle the input landmarks as one
of the conditions for the dynamic neural radiance fields. In
Tab. III, we compare the impact of our method on neural
rendering with the processing of landmarks using only position
embedding γ(·) after flatten the landmark, an MLP encoder
like Geneface++, Eq. (7) from KeypointNeRF, Eq. (8a) but
without embedding the relative depth γ(dz) and Our Eq. (8a).
The recorded data are obtained after the same training iteration
of 100,000. Evidently, employing only position embedding
γ(·) does not contribute effectively to learning. Conversely,
favorable results are achieved when applying Eq. (8a) to
process landmarks.

TABLE III
DIFFERENT LANDMARK ENCODING MODULE IN THE SECOND STAGE.

Mode PSNR↑ SSIM↑ LPIPS↓ SyncNet↑
γ(·) 28.32 0.406 1.017 4.86
MLP 34.84 0.865 0.049 5.72

Eq. (7) 34.95 0.912 0.037 5.99
Eq. (8a) w/o γ(dz) 34.01 0.829 0.056 5.35

Eq. (8a) 35.16 0.906 0.035 6.08

End-to-end generation without decoupling. To demon-
strate the superiority of our decoupled generation, we also
conduct an experiment of end-to-end generation. In this exper-
iment, we calculate the Gaussian landmark encoding directly
from the predicted landmarks L̂world, rather than comparing
the loss between L̂world and the ground truth Lworld. The
end-to-end model combines Transformer network and NeRF
components, but it’s susceptible to memory constraints during
training. As a result, we can’t learn a mapping of 200 frames
simultaneously, as discussed in Sec. V-A. When we attempted
to reduce the length, we encountered a challenge: simply
adhering to GPU memory constraints often caused the loss
during training to be NaN , indicating a gradient explosion.
After extensive tuning of the training process, we selected
a length of 25 frames as the optimal compromise. With
an identical number of iterations, e.g., 10,000 images, the
rendering results are depicted in Fig. 7. It can be seen that the
decoupled generation is able to produce clearer images with
less blur. Besides, the results by the end-to-end generation tend
to be a static head without lip or eye movement.

Fig. 7. The end-to-end generation (top) and decoupled generation (bottom)
after 10k iterations.

(a) (b)

(c) (d)

Fig. 8. Facial landmark editing. (a) Initial head. (b) Left eye changed. (c)
Right eye changed. (d) Mouth changed.

D. Talking head editing with landmarks

To demonstrate the editing ability of our method, we also
provide an interface for users to control the movement of eye
and mouth landmarks via slide bars. This facilitates adjusting
the landmarks generated by the audio, thus changing the
generated talking heads. We select three parameters, namely
α1 ∈ [0, 2] for controlling the left eye, α2 ∈ [0, 2] for
controlling the right eye, and α3 ∈ [0, 2] for controlling the
mouth, to regulate the changes of the facial landmarks. With
the landmarks on the i-th frame as the initialization, all of
the three parameters are set to 1.0 by default. Then, users can
adjust the respective landmarks by simply dragging the slider
bars. For the example as shown in Fig. 8, we adjust α1 to 0.0,
α2 to 0.5, and α3 to 2.0 in turn, while keeping other parameters
unchanged. As a result, the head in the image is changed to be
the one with closed left eye, half-closed right eye and larger
open mouth. We refer the reader to the companion video for
dynamic exhibition of the editing results.

VI. CONCLUSION

We have introduced a NeRF-based method for talking head
generation with a decoupled two-stage framework. In the
first stage, a Transformer network is constructed to generate
landmarks from audio. In the second stage, relative position
encoding based on Gaussian distribution is used to handle
landmarks during rendering. Experimental evidence shows
the effectiveness of our method for talking head generation,
showcasing its ability to enhance the quality of generated
talking head with less training time and model size.

As the future work, we are set to integrate the expression in
accordance with the input speech to enable more expressive
talking head generation. Besides, it is also promising to extend
our method to rendering the whole human body, achieving the
creation of fully articulate and realistic talking human.
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