
1

A 22-nm 4.92 TOPS/W end-to-end RNS DNN
Accelerator for Edge-AI Devices

Vasilis Sakellariou, Student Member, IEEE, Vassilis Paliouras, Member, IEEE, Ioannis Kouretas, Hani
Saleh, Senior Member, IEEE, Thanos Stouraitis, Life Fellow, IEEE

Abstract—This work presents an end-to-end Residue Num-
bering System (RNS) Deep Neural Network (DNN) accelerator
targeting edge-AI devices. The developed architecture enables
translating the advantages of RNS regarding the implementa-
tion of a single multiply-add operation into system-level power
efficiency gains. This is made possible by the introduction of
novel architectural features, such as the amortization of non-
trivial RNS operations (base extension, activation and scaling),
and the integration of bespoke RNS low-power techniques, such
as a clock-gating scheme that exploits the periodic usage of the
non-trivial RNS units, and voltage scaling that exploits RNS
capability to achieve clock frequency constraints with smaller
supply voltages. Systematic analysis of trade-offs between hard-
ware performance metrics (area, power, throughput) of the RNS
implementation for various operation scenarios and RNS bases,
as well as comparisons against the conventional positional binary
implementation, are conducted, guiding the optimal selection of
design space parameters. Silicon power measurements on the
22-nm FDSOI prototype chips underpin the theoretical analysis
and simulation results, which show considerable benefits of RNS-
based DNN processing. These prove that RNS can not only
increase the maximum achievable frequency of the arithmetic
circuits, but also results in 1.33× more energy-efficient process-
ing, compared to conventional binary counterparts. Compared
to the state-of-the-art RNS-based DNN accelerator, the proposed
architecture is shown to be 9× more power efficient, reaching a
peak power efficiency of 4.92 TOPS/W.

Index Terms—RNS, DNN, AI hardware accelerator, ASIC

I. INTRODUCTION

The upsurge of Artificial Intelligence (AI) models and
applications, coupled with the inexorable trend of moving
AI inference to resource-constrained edge devices [1], such
as smartphones, wearables, microntrollers and sensors, has
prompted the development of innovative AI processing archi-
tectures [2], [3], [4], [5]. In order to enable hardware systems
to keep up with the unprecedented computational requirements
introduced by modern AI models, new computing paradigms
that broaden our capacity of extracting performance from the
available hardware resources need to be sought.

Computer arithmetic has always been at the forefront of
designing efficient computing architectures. It provides a fun-
damental way to increase the performance of digital pro-
cessing systems by efficiently utilizing the available bits and

Vasilis Sakellariou, Hani Saleh, and Thanos Stouraitis are with the
Electrical Engineering and Computer Science Department of Khalifa
University, Abu Dhabi, UAE

Vassilis Paliouras and Ioannis Kouretas are with the Electrical and
Computer Engineering Department, University of Patras, Greece

logic gates, according to the needs of a specific application.
Thus, employing alternative number representations naturally
presents appealing opportunities to enhance the performance
of AI-processing systems. Among various alternative number-
ing systems, the Residue Numbering System (RNS) stands out
as a promising choice for AI inference due to its inherent digit
(residue)-level parallelism. This work leverages the high-speed
arithmetic properties of RNS to design an energy-efficient
end-to-end RNS DNN processor. It proposes a number of
innovative architecture and circuit-level optimizations which
allow the digit-level processing efficiency of RNS to be
translated into system-level performance improvements. The
contributions of this work can be summarized as follows:

• A silicon-implemented end-to-end RNS accelerator with
a balanced modulus base and a low number of non-
trivial RNS arithmetic units (scaling, activation function,
base extension). The proposed architecture amortizes the
usage of these units over a large number of multiply-add
operations and thus minimizes their overhead.

• The integration of RNS-tailored, low-power design prac-
tices which allow to translate the efficiency of the RNS-
based MAC operation to system-level power efficiency
gains. More specifically, the infrequent usage of the costly
non-trivial RNS operations is exploited by hierarchically
clock-gating the relevant circuits. Furthermore, the high-
speed capabilities of RNS are exploited so as to allow
a reduction of the processing logic supply voltage with
respect to the desired timing constraints. Overall, a 1.33×
reduction of processing power compared to the conven-
tional binary counterpart is achieved.

• The design of an RNS-friendly activation unit, as well
as a novel overflow handling technique that allows mit-
igating accuracy loss in applications that require higher
dynamic range with minimal impact on performance.

• A systematic analysis of trade-offs between hardware
performance metrics (area, power, frequency) of the
RNS implementation for various operational scenarios
and moduli, which guided the optimal selection of RNS
design space parameters.

The remaining of the paper is organized as follows: Sec-
tion II introduces the basic properties of RNS and provides
an outline of its usage in DNN accelerators. Section II-B
highlights the motivation for employing RNS and quantifies its
efficiency compared to conventional hardware implementation
of the multiply-add operation. Section IV uses a top-down
approach to describe the developed end-to-end RNS archi-

2

tecture, highlighting its innovative features. Section V reports
silicon measurement results on the fabricated chips, evaluates
the system in terms of accuracy and conducts comparisons
with state-of-the art DNN processors.

II. BACKGROUND AND RELATED WORK

A. RNS basics
RNS is an alternative numbering representation, which maps

a given integer X to a tuple of residues with respect to a
modulus set B = {m1,m2, . . . ,mn}:

X 7→ (x1, x2, . . . , xn), xi = ⟨X⟩mi
, (1)

where ⟨·⟩m is the modulo-m operator. B is the base of the
representation, while the product of the moduli of the base
defines the dynamic range R =

∏N
i=1 mi of the representation.

If the moduli are co-prime, each integer inside the range
[0, R) has a unique RNS representation. Inverse transformation
to the original integer representation of X can be realized
by means of the Mixed Radix Conversion or the Chinese
Remainder Theorem [6]. Due to the properties of the modulo
operation, addition and multiplication can be executed in
parallel for each residue channel, i.e. without inter-channel
propagation of information. Suppose a = (a1, a2, . . . , an) and
b = (b1, b2, . . . , bn) then

a⊕ b = (⟨a1 ⊕ b1⟩m1 , ⟨a2 ⊕ b2⟩m2 , . . . , ⟨an ⊕ bn⟩mn), (2)

where ⊕ can be either the addition or the multiplication
operator. This property results in a considerably more effi-
cient implementation of the multiply-add operation (MAC).
However, operations like division and comparison, are harder
to implement in the RNS domain and introduce overhead.

B. RNS in DNN accelerators
The inherent efficiency of RNS regarding the implemen-

tation of MAC operations has motivated its usage in Deep
Neural Network (DNN) accelerator design. In this section
we provide an overview of RNS-based DNN accelerators in
literature, classifying the approaches into two categories: (a)
partially RNS-based and (b) end-to-end RNS architectures,
depending on how they handle non-trivial operation between
successive layers.

1) Partially RNS-based systems: A typical strategy utilized
in RNS-based DNN setups involves conducting all multiply-
add operations of a convolutional layer within the RNS do-
main. Subsequently, partial results are converted to a standard
positional binary form [7], [8], [9], [10]. This interim outcome
allows for the computation of non-linear activation functions
(such as ReLU, tanh, softmax). Afterwards, the outcomes are
re-converted to RNS format for input into the subsequent
layer. An RNS TPU (Tensor Processing Unit) is proposed and
reported to perform a 32×32 fixed-point matrix multiplication
up to 9× more efficiently than a conventional matrix multi-
plier [7]. The RNS usage is also extended to convolutions,
with a 7.86%–37.78% reduction of the hardware costs of
a single convolutional layer compared to two’s-complement
implementation, depending on the RNS base [9]. A variant of
the RNS, called the Nested RNS (NRNS), utilizes a recursive
decomposition of the residue channels into smaller ones [8].

2) End-to-end RNS systems: While the above circuits man-
age to achieve some performance gains in the implementa-
tion of a single convolutional layer, they require significant
amounts of additional hardware to perform conversions. More
recent approaches focus on overcoming the difficulties of
performing operations such as sign detection, comparison,
and scaling, which are usually required after multiplication,
directly in the RNS domain. Mechanisms for dealing with this
problem through a fully RNS-based architecture have been
proposed in [11]. The comparison of two RNS numbers is
implemented by calculating auxiliary partitioning functions
[12]. A base extension operation takes place once before
each multiplication to ensure that the product lies within the
dynamic range and then again before the accumulation. Up to
61% reduction in energy consumption compared to the Eyeriss
[3] accelerator is achieved. A method to drastically reduce the
number of multiplications in DNN RNS-based accelerators is
also proposed [13]. It utilizes a modified hardware mapping
of the convolution algorithm where the order of operations is
rearranged, leveraging the increased number of common fac-
tors inside the weight kernels during convolution. A complete
multiplier-free RNS accelerator utilizing this approach is also
developed [14]. RNS has been also utilized in the design of
in-memory computing (IMC) systems [15], [16]. This work
addresses the shortcomings of existing state-of-the-art RNS
DNN architectures (Sec. V-F) by alleviating the overhead
of non-trivial RNS operations, through innovative usage of
activation function, scaling and overflow control techniques
while maintaining a small maximum word-length among the
residue channels, and presents the first silicon-implemented
RNS-based DNN accelerator.

III. EFFICIENT MULTIPLY-ADD USING RNS

The decomposition of a large computation into smaller
independent channels, an inherent property of RNS, naturally
leads to a decrease in the delay of the arithmetic circuits.
Long carry propagation chains are eliminated and arithmetic
circuits can operate at higher frequencies and/or with reduced
power dissipation. For example, a 32-bit multiplication con-
sumes more than 15× more energy than an 8-bit one [17].
Since the power consumption of a multiplication increases
approximately quadratically with the number of bits, replacing
a kn-bit multiplication with k n-bit multiplications can result
in significant energy cost reduction. RNS naturally enables
this arithmetically equivalent decomposition. Providing that
the dynamic range of the RNS system is sufficient for a given
application, and that the overhead of the modulo operator and
the cost of implementing other (non-trivial in RNS) functions
can be kept small RNS can provide significant gains in terms
of power efficiency.

A. RNS base selection

The selection of the RNS base significantly influences
the system’s complexity. The precision requirements of the
specific application and network dictate the dynamic range of
the RNS representation. Specific choices of moduli simplify
the implementation of arithmetic circuits by reducing the

3

0.8 0.9 1 1.1 1.2
150
170
190
210
230
250

Delay (ns)

A
re

a
(µ

m
2
) B0

B1

B2

(a)

0.8 0.9 1 1.1 1.2
60

80

100

120

Delay (ns)

Po
w

er
(µ

W
) B0

B1

B2

(b)

Fig. 1. (a) Area-delay and (b) power-delay plot for synthesized MAC units
using RNS bases with 3, 4 and 5 moduli and a 22-nm library.

overhead of the modulo operation. In our design, we limit the
RNS base to moduli of the form 2k and 2k±1, allowing for the
use of simplified adder and multiplier designs. The modulo-2k

MAC operation is straightforward, as the mod operator ef-
fectively limits operations to the k least significant bits. For
modulo-(2k−1) arithmetic, the end-around-carry technique
is applicable, exploiting the fact that 2k mod (2k−1) = 1.
Similarly, for moduli of the form (2k+1), diminished-1 mul-
tiplication can be employed [18], reducing all operands by 1
and utilizing inverted end-around-carry logic.

In order to investigate the trade-offs between the size of the
RNS base and the size of the individual RNS channels, various
selections of RNS bases are explored, using three, four, and
five moduli and providing a range of approximately 16, 17,
and 18 total bits, respectively. These bases are:

• B0 = {31, 32, 63} (approx. 16 bits): This base has a
simple sign detection mechanism [11]. The small number
of channels comes at the cost of one of them being a
relatively large channel (6 bits), leading to a design of
larger complexity and critical path.

• B1 = {7, 15, 31, 32} (approx. 17 bits): By replacing the
larger channel 63 with two smaller ones (15 and 7),
the critical path of the design becomes that of the 5-bit
channel (31), resulting in decreased latency. This can also
lead to a reduction in the area and power of the processing
elements, even though the total number of bits increases.
This is due to the approximately quadratic scaling of a
multiplier’s area with the number of bits (32 + 42 < 62).

• B2 = {3, 5, 7, 31, 32} (approx. 18 bits): This choice de-
composes channel 15 into two smaller channels, namely 5
and 3, to take further advantage of the above observations.

RNS bases with a larger number of smaller-bitwidth chan-
nels are found to perform better, both in terms of latency
(largest channel is the bottleneck) as well as area/power, as
explained by the quadratic scaling of multiplier complexity. To
illustrate this, power and area plots of the synthesized MAC
units using B0,B1,B2 are presented in Figs. 1a and 1b. The

cost of implementing operations that require combining infor-
mation from different channels (i.e., division, sign detection)
typically becomes higher as the number of channels increases.
However, the cost of these operations in DNN processing is
amortized across a considerably higher total number of MAC
operations and thus becomes negligible.

The developed architecture targets 8-bit integer quantized
(INT8) convolutional neural network (CNN) models, as these
have been shown to be capable of recovering the original
floating-point accuracy, either through post training quantiza-
tion techniques [19] or quantization aware training [20], in
state-of-the-art vision models like ResNet [21], MobileNet
[22] and VGG [23]. In order to avoid any RNS-induced
accuracy penalty due to the limited dynamic range during
accumulation and to be able to match the INT8 model accuracy
without requiring any further finetuning, we choose to replace
the modulo-3 in B2 with a modulo-33 channel, leading to a
dynamic range of ≈ 20.1 bits. Hence, we select the 5-channel
RNS base Bc = {5, 7, 31, 32, 33} for the complete accelerator
architecture. An overflow protection unit is also utilized to
support applications that require even higher dynamic ranges
and is presented in Section IV-C3.

B. RNS vs. BNS MAC comparison
In order to compare the processing element (MAC) imple-

mentations, both the 5-channel RNS (Bc) processing element
(PE) and conventional positional binary system (BNS) MAC
units of an equivalent dynamic range are synthesized, using a
GlobalFoundries 22-nm FDSOI library. To comprehensively
evaluate their performance (power and area efficiency) the
designs are synthesized targeting various clock periods and
using three supply voltages. Results are visualized in Fig 2.
RNS holds a distinct edge over conventional BNS, particularly
when the target clock period or supply voltage is decreased.
This is due to the inherent speed of RNS; the independent
processing of the residue channels breaks long carry propaga-
tion chains leading to naturally faster circuits. In contrary, in
the case of BNS, the synthesis tool must utilize more complex
multiplier and adder structures, or cells with greater driving
strength. Results show that RNS MAC is up to 1.57× more
power-efficient even with a smaller area. The inherent speed of
the RNS arithmetic circuits can be further exploited by taking
advantage of the fact that the supply voltage has a quadratic
effect on a circuit’s power consumption, while it only linearly
affects its delay. This means that we can trade speed for power
reduction, by using a lower supply voltage for powering the
RNS arithmetic circuits, which can achieve the same frequency
constraint with a smaller supply voltage compared to the BNS
counterparts. For example, an RNS-based processing element
can achieve a frequency of 1.42 GHz (0.7 ns) with a 0.65 V
supply, while the BNS counterpart would require 0.8 V. This
translates to a 2.1× energy reduction. Motivated by these ob-
servations we designed an end-to-end RNS accelerator which
manages to take advantage of this inherent RNS efficiency.

IV. PROPOSED RNS-BASED DNN ARCHITECTURE

This section describes both circuit and architecture-level
techniques and optimizations employed for the design of an

4

0.6 0.7 0.8 0.9 1 1.1 1.2
200

240

280

320

360

400

RNS 0.5 V BNS 0.5 V
RNS 0.65 V

RNS 0.8 V

BNS 0.8 V

BNS 0.65 V

Target Clock Period (ns)

A
re

a
(m

m
2
)

(a) Area - Target Clock Period

0.6 0.7 0.8 0.9 1 1.1 1.2
50

150

250

350

450

550

RNS 0.5V
BNS 0.5V

RNS 0.65 V

RNS 0.8 V

BNS 0.8 V

BNS 0.65 V

Target Clock Period (ns)

Po
w

er
(µ

W
)

(b) Power - Target Clock Period

Fig. 2. Area (a) and power (b) vs. target clock period for RNS and BNS PEs
and 0.5 V, 0.65 V and 0.8 V supply voltages.

efficient end-to-end RNS DNN accelerator. The developed
architecture targets energy-efficient real-time inference on
edge devices. It enables translating the RNS MAC efficiency,
which was quantified in the previous section, into system-level
performance gains by minimizing the overhead of complex
RNS operations, like division, comparison and base extension,
as well by utilizing RNS-tailored low power techniques.

A. Top-level architecture

The implemented accelerator consists of a set of RNS pro-
cessing cores, which perform the elementary MAC operations
and a set of activation scaling units (A/S) units which apply
the activation functions and scale the result back to the desired
range. A high-level representation of the architecture is given
in Fig. 3. The on-chip memory consists of four hierarchical
memory components: a feature-map memory (FMEM), a
weight memory (WMEM), a block buffer and a border buffer.
A detailed description of the functionality and organization of
these components, is given in Section IV-D. A feature-map
router and a memory controller provide the necessary feature-
map inputs to the cores.

1) Dataflow: The convolution operation translates into a
series of nested loops (Alg. 1). In the implemented architecture
we choose to unroll the loop that corresponds to the output
channels (different filter kernels), referred to as loop-K, over
K = 16 parallel processing cores, which all receive the same
input. Inside each core, the computation of a Nr ×Nc block
is mapped to Nr rows and Nc columns of the processing
array. Therefore, the loops that iterate the input feature-map

Bank0 Bank1 Bank2 Bank3

FMAP MEMORY

Memory Controller - FMAP Router

Base Extension

·

Bank0 Bank1 Bank2 Bank3
Bank4 Bank5 Bank6 Bank7

WEIGHT MEMORY

E
X

T
E

R
N

A
L

M
E

M
O

RY

COMPRESSION
DECOMPRESION

Block BufferBorder Buffer

···

·

·

Ẑc

12×1612×8

12×16

22×16

·· ·

·· ·
W1W0

. . .

W15

88 8

PEPEPEPE

CORE0

·̂Zc

·

·
·
W0

PEPEPEPE

CORE8

·̂Zc

·

·
·
W8 A

SP
0

Y0

Y8

·Fo0

PEPEPEPE

CORE1

·̂Zc

·

·
·
W1

PEPEPEPE

CORE9

·̂Zc

·

·
·
W9 A

SP
1

Y1

Y9

·Fo1

PEPEPEPE

CORE7

·̂Zc

·

·
·
W7

PEPEPEPE

CORE15

·̂Zc

·

·
·
W15 A

SP
7

Y7

Y15

·Fo7

Fig. 3. General architecture. A block of 16 12-bit feature-maps is fetched
from FMEM and/or border and block buffers, base-extended to obtain a 22-bit
representation of each feature-map Ẑc and broadcast to all cores, while 16
weights Wi, i ∈ {0, . . . 15}, are fetched from WMEM and directed to each
of the cores. Each pair of cores shares one A/S unit, which serially selects
their outputs, applies the activation function and generates the final output
Foj, j ∈ {0, 1, . . . , 7}of the current layer.

Algorithm 1 Convolution loops
1: for co ← 0 to Cout do ▷ Loop-K
2: for x← 0 to X do ▷ Loop-B.x
3: for y ← 0 to Y do ▷ Loop-B.y
4: for ci ← 0 to Cin do
5: for fx ← −FX/2 to FX/2 do
6: for fy ← −FY /2 to FY /2 do
7: O[co][x][y] += I[ci][x+fx][y+fy]×W [ci][fx][fy]

dimensions are also (partially) unrolled. This corresponds to
an output-stationary dataflow, where outputs are accumulated
inside each processing element. All processing elements inside
a core operate on the same weight. Therefore, in this dataflow,
weights are reused Nr×Nc times and feature maps are reused
K times (feature maps are also reused inside the shift registers,
depending on the kernel size). The loop that iterates the input
blocks is denoted as Loop-B.

If Cout > K, then Loop-K cannot be completely unrolled
and it has to be tiled into chunks of size K (number of cores),
thus multiple iterations of mapping output channels to pro-

Algorithm 2 In Mode 0 (left), Loop-K is the innermost, while
in Mode 1 (right), Loop-B is the innermost. NB and NK

denote the number of input feature-map blocks and weight
kernel sets (output channels/number of cores).

1: for i← 1 to NB do
2: LOAD(blocki)
3: for j ← 1 to NK do
4: LOAD(kernelj)
5: CONV(blocki, kernelj)

1: for i← 1 to NK do
2: LOAD(kerneli)
3: for j ← 1 to NB do
4: LOAD(blockj)
5: CONV(blocki, kernelj)

5

cessing cores might be required. In the implemented design,
the execution order of Loop-K and Loop-B is programmable.
Specifically, two modes of operation are possible: mode 0,
where Loop-K is the innermost, and mode 1, where Loop-
B is the innermost. If all layer weights and inputs fit in the
on-chip memory, the loop order does not effect the system’s
performance. If, however, parts of the input feature-map or
weights have to be transferred from an off-chip memory,
then the execution order of these loops is significant: During
mode 0, a 2D feature-map block can remain inside the on-
chip memory until Loop-K is complete, while weights must
be updated for every Loop-K tile. This means that if the entire
feature-map tensor does not fit in the on-chip memory while
all the weight kernels do, then mode 0 is preferable since the
largest transfer cost (off-chip to on-chip) associated with the
feature-map blocks is only paid once. In the opposite case,
when the entire feature-map tensor fits on chip while weights
do not, mode 1 reduces transfer cost and is thus preferred.

2) Feature map base extension and routing: A 2D slice Zc

of the input feature map corresponding to the c-th channel is
fetched from memory and directed to the feature-map (FMAP)
router at each step. The main controller of the system generates
the necessary signals for the implementation of the desired
operation, based on the layer type and size parameters. These
signals include addresses and read/write enable signals for the
memories, shifting and padding signals for the feature-map
router, and various control signals for the RNS processing
core operation. The feature-map router is a collection of shift
registers that can perform either vertical or horizontal shifting
and is used to implement the sliding window functionality
required during convolution and to increase data reuse. This
design offers flexibility and allows the efficient mapping of
any convolutional layer shape to the PE processing arrays. It
should also be noted that the control and routing units are
independent of the selection of moduli, and thus they could
remain unchanged if a different RNS base were to be used.

An RNS base with five channels Bc = {5, 7, 31, 32, 33} is
employed for performing the convolution. Weights are stored
in a two-channel 8-bit equivalent RNS base Bw = {7, 32},
and feature maps in a three-channel, 12-bit equivalent base
Bf = {7, 16, 31}. This scheme avoids the additional memory
storage usage that would be required if all five channels of the
representation were stored. Base Extension units are used to
obtain the residue values for the remaining channels that are
required for the accumulation of partial products. The resulting
22-bit representation of the input slice Ẑc is then broadcast to
all cores to compute the output of the convolutional or fully
connected layer, which is stored in FMEM memory, potentially
after applying a pooling operation. The most common base ex-
tension method is the Szabo-Tanaka method [24]. This method
is based on an intermediate Mixed Radix (MR) representation,
where an RNS number X = (x1, x2, . . . , xn) is expressed as
X = a1+a2m1+ · · ·+anm1m2 · · ·mn−1, where mi are the
moduli of the RNS and ai are the MRC coefficients, which
are obtained sequentially [25]. This method has the advantage
that it only involves small-width operations and can be easily
pipelined for increased throughput.

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

W l
c

BE

8

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

22

M
U

X

Core
Control

4

+

BE

blc

8

22
22

Fo

22

·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

·Ẑc

16× 22

4× 22

4× 22

4× 22

4× 22

Fig. 4. RNS Processing Core. It consists of a 4 × 4 PE array, where each
PE receives the same weight but different feature-map values.

B. RNS Processing Core

The main component of the accelerator is the RNS Process-
ing Core, shown in Fig. 4, which implements the elementary
arithmetic computations for the various layer types. Each core
consists of set a of 16 Processing Elements (PEs) organized
in a 2D array with Nr = 4 rows and Nc = 4 columns. The
convolution of the input feature-map block with the c-th filter
(kernel) takes place inside the k-th core, where k = c mod K.
Thus, each PE receives two 22-bit inputs corresponding to the
five-channel RNS representation: a feature-map value (fetched
from the input data router and broadcast to all cores) as well as
a weight value which is fetched from the weight memory and
base-extended. All PEs share the same weight, while each of
them receives a different feature-map value Zi,j

c corresponding
to a pixel at position (i, j) in the input.

The processing elements perform all the multiply-
accumulate operations to obtain a single output pixel value.
This requires the accumulation of Fx × Fy × Cin partial
products, where Fx, Fy, Cin are the filter’s width, height and
number of input channels, respectively. Therefore, at every
Fx × Fy × Cin cycles a 4 × 4 output block is calculated
by each core. Once the accumulation process is complete,
PEs are serially selected and their output is sent to the
Activation/Scaling (A/S) unit (details in Section IV-C).

Each RNS processing element (PE) consists of five modulo
MAC units, corresponding to Bc = {5, 7, 31, 32, 33}. As
explained in Section III-A, the base moduli are restricted to
numbers of the form 2k (i.e., modulo 32), 2k − 1 (moduli
7,31) and 2k +1 (moduli 5,33), in order to simplify hardware
implementations. All modulo MAC units implement a fused
multiply-add operation, using array multipliers and end-around
carry logic, in the case of 2k − 1, while for 2k + 1 channels
we modify the multiplier proposed in [18] to receive a third
operand for the fused addition.

C. Activation/Scaling (A/S) unit

The Activation Scaling (A/S) Unit performs three func-
tionalities: (1) It applies the non-linear activation function to
the result of the accumulation. Since the prototype targets

6

CNN applications, it only includes a simplified activation unit
which implements the ReLU function; (2) It scales the result
back to the 12-bit three-channel (Bf) range that is used for
storing feature-maps; (3) It periodically checks for overflow by
extending the dynamic range to a six-channel representation,
as explained in Sec. IV-C3.

In RNS, unlike a conventional representation, activation and
scaling are generally not trivial to implement. This makes A/S
the primary overhead component of an RNS DNN accelerator.
One of the major advantages of the proposed architecture is
that, unlike other state-of-the-art architectures [11], it amor-
tizes the number of A/S units over a larger number of PEs,
and thus minimizes its overhead. One A/S unit is shared by two
cores (32 PEs), as shown in Fig. 3. This is possible because
the activation and scaling operation only need to be applied
to the final result after the accumulation of multiple partial
products, Fx×Fy×Cin in particular. Since Cin ranges from 64
to 1024 for most layers of state-of-the-art CNN models, these
A/S units are actually utilized only a small fraction of the
total layer execution time. By overlapping the parallel MAC
computations with the serial computations of the activation
function in a smaller number of A/S units, the processing
throughput is not affected and the PE utilization remains close
to 100%. Moreover, when the A/S units are not utilized their
dynamic power consumption can be eliminated by using clock-
gating cells. As an example, consider a layer that takes as input
a (64×64×256) feature-map and performs a 3×3 convolution.
According to the employed dataflow, the calculation of each
output feature-map value requires 3× 3× 256 = 2304 cycles.
Only at the end of these calculations, the 32 outputs of the two
cores will be sent to the A/S unit that they share. This means
that during every 2304 cycles the A/S units will be utilized for
32 cycles, or 13% of the time. During the inactive period, the
dynamic power of the A/S units is eliminated through clock-
gating.

1) RNS activation function: The implementation of the
ReLU function practically translates into a comparison with
zero. In a RNS representation, numbers in the range 0 <
X < R/2 are positive, whereas numbers in the range
R/2 ≤ x < R are negative, where R is the dynamic range
of the representation. Sign detection is a difficult operation in
RNS, and typically requires the conversion to a conventional
representation. Similarly, magnitude comparison of two RNS
numbers, which is required for the MaxPooling layers, is
also difficult to directly implement. Algorithms for particular
moduli sets [12], or more complex general comparison algo-
rithms that can eliminate the overhead of the conversion have
been proposed [26]. If the choice of moduli is restricted to
some specific bases, simple and efficient algorithms have been
reported for sign detection [27] and, consequently, comparison.

In Algorithm 3, a method for obtaining the sign of a
RNS number for bases with an even modulus is presented.
Assuming, without loss of generality, that the even modulus is
mn−1, the algorithm maps the input X = (x0, x1, . . . , xn−1)
to the nearest number (smaller than X) of the form X ′ =
(0, 0, . . . , x′

n−1) and uses the value of x′
n−1 to decide the

sign. To do this, we perform base extension of the first n− 1
channels to get k, which is the last channel offset between X

X BE

{5, 7, 31, 32, 33} → {17}

...

Register File

+++

+++

RNS adder

RNS adder
·

BE + LUT·

·
·
·
·
·
·

·
·
·
·
· −

mod 32
Sign Unit (Saturation)

{5, 7, 17, 31, 33} → {32}

BE + LUT·

·
·
·
·
·
·

·
·
·
·
· −

mod 32
Sign Unit (RELU)

{5, 7, 17, 31, 33} → {32}

BE

·
· · · · · ·

·

+ LUT

+ LUT

+ LUT

+ LUT

BE

Scaling Unit

m
od

7

m
od

32

m
od

17

m
od

5

m
od

33

m
od

31

{7, 32} → {17, 5, 33, 31}

{17, 5, 33, 31} → {7, 32}
·
·
·
·
−

−

−

−

·
·
·
·

·

M
U

X

·

·

· · ·

·
·

·

·

·

Rc

0

Z

27

27

27

12

Overflow Protection Unit

22

Rf

Y

12

Fig. 5. Activation/Scaling Unit. It consists of a sign unit which applies the
ReLU function to the 12-bit input partial sum, a scaling unit and an overflow
protection unit for increased dynamic range operation. It produces the 12-bit
output feature map for of each of the PEs that it serves.

Algorithm 3 Sign Detection
Require: X = (x0, x1, . . . , xn−1)
Ensure: sign s of X

1: k = BE(mn−1, (x0, x1 . . . , xn−2)) ▷ base extension of
the first n− 1 channels to mn−1

2: x′
n−1 = (xn−1 − k) mod mn−1 ▷ computes x′

n−1

3: s = LUT(x′
n−1) ▷ lookup table to get the sign

and X ′ and is given by

k =

(
X mod

n−2∏
i=0

mi

)
mod mn−1. (3)

Then we obtain x′
n−1 = (xn−1 − k) mod mn−1, and use

this value to determine whether the input lies in the lower
(positive) or upper (negative) half of the dynamic range,
by means of a look-up table (LUT). The sign unit imple-
mented in hardware operates in a six-channel extended RNS
base Be = {5, 7, 17, 31, 32, 33}. The need for the additional
channel (modulo 17) is explained in paragraph IV-C3. While
the prototype chips only support the ReLU function, this
method can be generalized to implement other activation
functions, such as tanh and sigmoid using piece-wise linear
approximations and Algorithm 3 to obtain the interval that the
input lies [28].

2) Scaling: A division operation is required after the acti-
vation function application, to bring the accumulated output
feature-map entries back to the Bf dynamic range. This
operation corresponds to the truncation of the lowest part
of the accumulation result in a conventional representation.
Division in RNS can be significantly simplified when the
divisor is one of the moduli [29]. Here, we use a generalized

7

version of this method, where the divisor is a product of a
subset of the RNS base moduli. The implementation of this
method involves only small table (1-channel wide) lookups
and a standard base extension process. In this implementation,
the two-channel RNS-base Bw = {7, 32} is used for storing
the network weights. This means that an original real weight
w ∈ (−1, 1] is mapped to the range (−112, 112], and therefore
the activation (feature-map outputs) should be divided by
(112 = 7 · 32/2). This is done by the scaling unit of Fig. 5.

3) Overflow protection unit: In order for the proposed
RNS-based system to handle applications that require a higher
dynamic range than the 20-bit equivalent range Bc offers, an
overflow protection unit has been added. The goal is to reduce
hardware cost by maintaining a reduced number of non-trivial
RNS units (mainly base extensions), while mitigating any
accuracy loss due to overflow. The outputs of the PEs (output
feature-maps) can be periodically extended from Bc to a six-
channel RNS base Be = {5, 7, 17, 31, 32, 33}. The result can
be then checked against Rc, the maximum representable value
of Bc, and if it exceeds that, then the result is truncated to Rf

(maximum value of Bf). More specifically, the calculation of
the convolution is split in the input channel dimension: The
accumulation of Csplit feature-map channels (Csplit < Cin) in
the five-channel base without overflow checking inside each
PE is performed, where n = Csplit × Fx × Fy partial products
are added together. Then, one base-extension unit (for all 32
PEs of two cores) adds another channel (modulo 17) and a
six-channel RNS addition with the previous result takes place.

The intuition behind the design of this unit lies on the fact
that the probability of overflow during the computation of
the dot product of two vectors increases as the length of the
vectors increases. Consider the computation of the dot product
between a vector of weights W and a vector of feature-
maps X with L elements, following Gaussian distributions,
i.e., w ∈ W ∼ N (µw, σ

2
w) and x ∈ X ∼ N (µx, σ

2
x). The

probability of overflow Povf, given the dynamic range (scale
factor) of weights RW and feature-maps RX , and the total
dynamic range R, can be approximated using the central limit
theorem as

Povf = 1− erf

(
xovf − µp√
2σp/

√
L

)
, (4)

where xovf = R
2L , µp = µ′

xµ
′
w (mean of the element-wise

products), σp =
√
(σ′2

w + µ′2
w)(σ

′2
x + µ′2

x)− µ′2
wµ

′2
x (standard

deviation of the element-wise products), and µ′
x = RXµx,

σ′
x = RXσx, µ′

w = Rwµx, σ′
w = Rwσw. By plotting Povf as

a function of Cin for weight distributions of different variances
(µw = 0.001, σw ∈ {0.02, 0.035, 005}) and a fixed feature-
map distribution (µx = 0.1, σx = 0.5), using typical values for
mean and standard deviation according to the distribution of
benchmark CNN parameters, we observe that the probability
of overflow quickly increases with Cin, especially as the
variance of the weights (or equivalently the variance of the
feature-maps) increases, making impossible to accumulate all
L = Fx×Fy×Cin (= 9×Cin for 3×3 convolution) channels
using Bc without a significant error due to overflow. We can
use this analysis to select the maximum Csplit value in order to

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

100

250 Povf = 1%55

Number of input channels Cin

Pr
ob

ab
ili

ty
of

ov
er

flo
w

P
ov

f

σ = 0.050
σ = 0.035
σ = 0.020

Fig. 6. Probability of overflow against the number of input channels Csplit
processed without overflow checking. The maximum value of Csplit to ensure
a probability of overflow less than 1% is indicated.

achieve an overflow probability below a certain threshold, less
than 1% for example, as indicated in Fig. 6. This probability
threshold can be tuned based on the employed NN model and
by using a small calibration subset of a given task. When the
distribution of the network parameters is narrower, we can
accumulate a larger number of partial products before sending
the result to the overflow unit, thus reducing the average power
consumption of this unit. However, even with high variance
distributions, we can still achieve a low utilization ratio of the
overflow units, and save dynamic power using clock-gating

D. Memory hierarchy and organization

The on-chip memory consists of four hierarchical memories:
1) Feature-map Memory (FMEM): The 192 KB feature-

map memory FMEM is implemented using SRAM macros and
is organized into 48-bit wide banks. The output of the current
layer is temporarily stored in this memory, in a row-interleaved
fashion (Fig. 7). Only three of the channels (Bf = {7, 16, 31})
are used for storing feature-map values, hence each FMEM
word saves four 12-bit feature-map values. A 2D block,
denoted as Zc, where c is depth (channel) index, is loaded
from FMEM at each processing step and broadcast to all cores,
after being base extended,

2) Weight Memory (WMEM): The 256 KB weight memory
WMEM is implemented using SRAM macros and organized
into 64-bit wide banks. Each WMEM word stores eight
weights to be read by eight of the cores. Two channels
(BW = {7, 31}, 8-bits) are used for storing weights, while
the remainder of the channels are added on the fly using base
extension.

3) Border Buffer: A 36 KB border buffer implemented
using register file macros is also utilized. As described in
Section IV-A1, the input is processed in a block-wise manner,
where block refers to a 2D feature-map slice. In order for a
core to calculate a 4 × 4 output slice O[x : x + 4, y : y + 4],
where x is the row index and y is the column index, it requires
pixels in the input slice I[x − Fx/2 : x + 4 + Fx/2, y −
Fy/2 : y + 4 + Fy/2]. In other words, due to the sliding
convolution window and depending on the kernel dimensions,
at each step the memory system needs to provide feature-
map inputs corresponding to the current block coordinates, but

8

(4n)1

(4n)2

(4n)3

(4n+ 1)1

(4n+ 1)2

(4n+ 1)3

(4n+ 4)1

(4n+ 4)2

(4n+ 4)3

(4n)1 (4n)2 (4n)3

(4n+ 1)1 (4n+ 1)2 (4n+ 1)3

(4n+ 2)1 (4n+ 2)2 (4n+ 2)3

(4n+ 3)1 (4n+ 3)2 (4n+ 3)3

(4n+ 4)1 (4n+ 4)2 (4n+ 4)3

Feature Map Block
Feature Map Memory

Memory Bank 0 Memory Bank 1

...
... . . .

Border Buffer
Row Buffer Column Buffer

Load from Border Buffer Load from current FMEM addr. Pre-Fetch from next FMEM addr.

Fig. 7. Feature-map memory and border buffer organization. Row (4n+ i)j
of the feature-map block is stored in the j-th row of the i-th FMEM bank.
Pixels already processed are read from the border buffer.

also feature-map values belonging to previous or subsequent
blocks. For example, in a 3×3 convolution, input feature map
values that are in located exactly in the border of the current
4×4 block are also required. This is illustrated in Fig. 7. Top
and left border pixels have already been accessed at some
previous step; hence we utilize a border buffer consisting of
a column and a row buffer to store these values. Since a row-
first order is followed during the execution of the nested loops,
entries in the column buffer need only be retained for one
subsequent block calculation, while entries of the row buffer
must be retained for one entire row calculation.

4) Block Buffer: One 42 KB block buffer composed of two
banks implemented with register file macros, has also been
added to the memory hierarchy. Each of these banks banks
has the capacity to store a 3D input feature-map slice of size
4 × 4 × Cin and serves two purposes: Firstly, when part of
the input feature-map needs to be loaded from the off-chip
memory, this buffer acts as an intermediate storage between
the off-chip memory and the processing cores, bypassing
FMEM and allowing to overlap the convolution computations
with the loading process, while reducing power consumption
since the larger and more power consuming FMEM SRAM can
be turned off when loading data from the external memory. If
the loading time of a block is less than its execution time, then
complete overlapping can be achieved and the loading process
does not affect the system’s throughput at all. The necessary
condition can be expressed as follows:

Fx ×Fx ×Cin ×R > 4× 4×Cin × bf (1− cr)×
Fint

Fio/4
, (5)

where Fx, Fy are the filter’s dimensions, Cin is the number
of input channels, R is the number of times a block is
reused or equivalently the number of Loop-K tiles Cout/K,
cr is the compression ratio when transferring feature-maps,
bf = 1.5 is the bit-width of each input value and Fint and
Fio are the internal and IO cells frequency, respectively. The
left-hand side term corresponds to the execution time of a
block, while the right-hand side corresponds to its transfer
time. Secondly, when mode 0 is used, which means that an
input block is used multiple times for different sets of weight
kernels without being updated, it can remain stored in the

block buffer. In the first iteration (tile of Loop-K) it will be
read from FMEM and copied to the block buffer, so that
during the following iterations it can be read directly from
there, bypassing FMEM which can be turned off. Since this
smaller, latch-based memory consumes less power than the
larger SRAM, this scheme decreases power consumption.

E. Compression/Decompression mechanism
In any DNN processing system, it is important to minimize

the overhead of the data transfers associated with the off-
chip memory, by increasing reuse of network parameters and
intermediate results (feature-maps) and by more efficiently
taking advantage of the available off-chip IO bandwidth. In
the proposed architecture, this is primarily facilitated with the
introduction of the block buffer and of the two modes of
operation, as described in Section IV-D, but also with the
addition of a compression mechanism which decreases the
volume of the transferred data.

The compression unit aims to exploit sparsity of feature-
map vectors, particularly due to the ReLU activation function,
which maps negative values to zero (no compression is ap-
plied to the weights). The compression mechanism employs
a variation of run-length encoding where data is grouped into
4 × 4 feature-map blocks. For each block, only the non-zero
values are transferred, along with an index corresponding to
the distance to the previous non-zero value. Encoded data are
stored in a FIFO queue to be transferred to the off-chip mem-
ory according to the available bandwidth. A decoder applies
the decompression process to the received feature-map data
and provides the decompressed values (4 × 4 original block)
to be stored inside the on-chip memory. The compression
ratio depends on the sparsity of data and can be calculated as
cr = 16bv−16(bv+bi)sp

16bv
, where sp denotes sparsity (ratio of non-

zero values to the total number of feature-map values), bi, bv
denote the number of bits used to represent the index and value
corresponding to a non-zero feature-map entry, respectively.
Since bv = 12 bits are used for representing feature-map
values and bi = 4 bits for representing the index, and assuming
0.5 sparsity (typical after ReLU), the compression ratio is 0.33,
considerably decreasing off-chip data transfer cost.

V. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the
RNS-based DNN accelerator, both from a hardware as well
as a model accuracy perspective. Comparisons with the con-
ventional binary system implementation as well as with sate-
of-the-art DNN processing systems are reported.

A. Prototype chips and testing setup
A prototype CMOS chip, which encompasses the architec-

tural and RNS-specific contributions described above, was fab-
ricated using the Global Foundries 22 FDSOI process. Silicon
measurements confirm simulation results and substantiate the
benefits of using RNS in a physically implemented hardware
accelerator. The prototype chips feature 256 PEs organized
in 16 cores and 8 A/S units. A description of the testing
setup and hardware performance metrics obtained from silicon
measurements are reported in the following paragraphs.

9

Fig. 8. Die photo, chip specifications and packaged chips

1) Chip specifications:
a) Area: The core area of the chip is 2.56 mm2

(1.6 mm×1.6 mm), while the IO ring together with the
wirebond pads and crackstop add another 0.15 mm (to
all sides of the chip), resulting in a 3.61 mm2 total area
(1.9 mm×1.9 mm). A photo of the die is shown in Fig. 8.

b) Timing: The chip can achieve a maximum frequency
of 725 MHz with a 0.9 V power supply for the standard cells.
Timing is also verified at lower voltage supplies. For low-
power operation, the chip can operate at 250 MHz with a
0.61 V supply voltage (0.7 V for the SRAM macros). Detailed
power measurements for different voltage-frequency points are
reported in Section V-B.

c) Memory: The prototype system has a total of 448 KB
on-chip SRAM and 78 KB of register file memory. Each
FMEM bank consists of four 2048× 48 SRAM arrays, while
each WMEM bank consists of two 4096 × 64 macros. The
border buffer consists of six 1024 × 48 register file macros,
while the block buffer consists of 14 512 × 48 register file
macros. At any time, at most four of the FMEM SRAM macros
and two of the weight macros (16 weights for each core = 128
bits) are activated.

d) Package and IO: The chip was fabricated by Global
Foundries on a 22-nm FDSOI process, with a 10-layer metal
stack. A wide-range PLL from Analog Bits was utilized for
generating the internal clock. A 14 mm×14 mm ceramic pin
grid array (CPGA) package with 100 pins was used. The chip
features a 32-bit input bus, a 32-bit output bus and 9 control
pads (clocks, resets, and handshake signals), and 27 power and
ground pads. Four power supplies are used: (1) core power
supply (Vddc), SRAM memory array power supply (Vddm), (3)
IO power supply (Vddio) and (4) PLL power supply (Vpll).
Nominal value for Vddio and Vpll is 1.8 V. The packaged chips
are shown in Fig. 8. An FPGA board is used to interface the
prototype chips. An FMC VITA 57 connector connects the
chip, through a custom PCB board, to an FPGA, which is
used for initialization, data storage and debugging. This setup
allows for maximum flexibility and can support the execution
of complex workloads by enhancing the chip capabilities with
the available FPGA resources.

B. Silicon power measurements

The major goal of this work is to translate RNS efficiency
in the implementation of the MAC operation into end-to-end
system performance gains and illustrate these performance
gains on a fabricated chip. Since the application of the devel-
oped system will be on power-constrained devices, the focus
has been primarily on reducing power consumption. More
specifically, the following techniques have been employed :

1) Amortizing the usage of complex RNS units (activations,
scaling) over a large number of MACs and exploiting the
periodic nature of its use through clock gating.

2) Reducing operation voltage in order to trade off the
increased speed of the RNS arithmetic circuits for power
reduction. By taking advantage of the quadratic scaling
of power consumption with the voltage, versus the linear
impact that it has on speed, larger energy savings have
been achieved.

3) Reducing memory access cost by introducing multiple
levels of memory hierarchy and optimizing memory ac-
cess patterns.

The effectiveness of the above techniques is verified on the
actual chips by performing comprehensive power measure-
ments for (a) various workloads (layer geometries) to illustrate
the effect of amortizing the non-trivial RNS activation and
scaling (A/S) units and optimizing memory access patterns and
hierarchy, and (b) various voltage-frequency operation points
in order to illustrate the low-power capabilities. The following
results refer to the average power consumption during the
execution of a layer (they hence correspond to peak power
efficiency) and are obtained using a current probe connected
to the relevant power supply and a high-speed oscilloscope.
Digital trigger signals coming from the chip are used to initiate
capturing of the current readings.

1) Workload Characterization: Power consumption de-
pends on the percentage of the total execution time during
which the activation-scaling (A/S) units are utilized, which
depends on the number of input channels, as well as on the
mode of operation which refers to the order of execution
of outer convolution loops. Deeper layers result in greater
power efficiency due the infrequent usage of the A/S unit. For
example, a layer with 128 input channels results in a ≈ 3×
reduction of the A/S units power consumption, compared to
a shallow layer with only three input channels. Also, utilizing
mode 0 (possible only if weights can fit inside the on-chip
memory) means that an input block is used multiple times for
different sets of weight kernels without being updated, and
thus can remain stored in the block buffer. After the initial
iteration, it can be read directly from there, bypassing FMEM,
considerably decreasing power consumption.

Experiments were conducted with three different layers,
representing worst, (shallow layer with 3 input channels and
mode 1), average (32 input channels and mode 1) and best
case (deeper layer with 128 input channels, 128 output chan-
nels and mode 0) scenarios. These layer sizes are selected
according to the VGG network structure, where an initial
shallow layer is used at the input, corresponding to the worst-
case scenario, while the best-case scenario corresponds to the

10

100 200 300 400 500 600 700

20

40

60

80

100

Frequency (MHz)

Po
w

er
(m

W
)

0.65V
0.70V
0.75V
0.80V
0.85V

Fig. 9. Core power consumption (Vddc) vs. frequency for different core supply
voltages.

largest layer whose weight kernels can fit entirely in the on-
chip memory. In most layers, weight parameters do not fit
on-chip, while a conservative option for 32 input channels
(corresponding to Csplit) suffices to avoid overflow, hence the
choice for the average-case scenario. We run these experiments
at three different operation-point scenarios: (1) low-power at
0.61 V and 250 MHz, (2) nominal at 0.8 V and 500 MHz, and
(3) high-speed at 0.85 V and 700 MHz. Power consumption of
the core and memory as well as peak power efficiency (when
all parameters are loaded in the on-chip memory and we have
a maximum utilization of the 256 PEs) are reported in Table I
and visualized in Fig. 10. At the nominal operation point and
during the average-case workload the total power consumption
of the chip is 83.3 mW, while during worst and best case
workloads the power consumption is 86.2 mW and 78.2 mW,
respectively (12% difference). The maximum peak power
efficiency for the average case, which is achieved at the low-
power operation point (250 MHz at 0.61V) is 4.52 TOPS/W.
The overall maximum peak power efficiency 4.92 TOPS/W,
at the best case workload and low-power operation point.
The average power consumption during the execution of a
NN models depends on the size of its layers. It also depends
on the available external memory bandwidth. Effective power
consumption, taking into account the data transfer time and
power consumption during this idle PE time, is reported in
Section V-D for a benchmark CNN model.

2) Frequency-Voltage characterization: For a comprehen-
sive characterization of the chip performance, we conduct
measurements for various supply voltages (from 0.61 V to
0.9 V) and frequencies (from 100 to 725 MHz). The max-
imum attainable frequency is 725 MHz, at 0.9 V. Results
are presented in Fig 9. For each voltage level, we plot
power consumption for the average-case scenario up until the
maximum achievable frequency, with 50 MHz increment steps.

C. Area/power breakdown and comparison with BNS

To estimate what percentage of the total power is consumed
by each component and compare the RNS architecture to an
equivalent BNS we use post-layout power estimation reports
after switching activity annotation, at the nominal operation
point (@ 0.8 V, 500 MHz). The total power consumption,
using the Synopsys PrimeTime tool is 79 mW, versus 83.3 mW
measured on silicon. The absolute area and power consump-
tion of the various RNS functional components as well as their
binary counterparts’ are reported in Table II, while the relative

worst-case average-case best-case
2

3

4

5

Pe
ak

Po
w

er
E

ffi
ci

en
cy

(T
O

PS
/W

) low-power (0.61 V, 250 MHZ)

nominal (0.8 V, 500 MHZ)

high-speed (0.85 V, 700 MHZ)

Fig. 10. Peak power efficiency for different workloads and operation points.

9%

41%

30%

2%

14%

4%

(a)

35%10%

12%

4%

14%
3%

22%

Cores
WMEM
FMEM
FMAP fetch+ctrl
Buffers
ASPs
Clock net.

(b)

Fig. 11. Area (a) and power consumption (b) breakdown of the RNS
accelerator’s functional components.

contribution of each of them is visualized in Fig. 11. The
RNS processing core consumes 1.49× less power compared
to the binary counterpart, however there is a an overhead
due to the more complex A/S and pooling units of about
8 × (0.25 − 0.06) = 1.52 mW, assuming an average-case
workload, and an ≈ (3.12 − 1.83) = 1.3 mW, overhead
from the base extension units of the FMAP fetch/routing unit
(the BNS system has a trivial activation and unit and the
FMAP fetch unit only includes the shift registers and no base
extension units). RNS and BNS are equivalent in terms of
memory requirements and data transfer cost from memory
to processing cores, since the same number of bits is stored
and fetched for feature-maps and weights for both imple-
mentations. According to the contribution of each component
(Fig. 11) this results in approximately 1.33× power reduction,
considering only the processing logic or 1.14× end-to-end
power reduction considering the memory system and clock
network as well, compared to a BNS implementation.

D. Benchmarking

1) Hardware performance: Effective (average) power con-
sumption depends on the volume of data that need to be
transferred to and from the off-chip memory (FPGA board),
which in turn depends on the network structure (size of layers),
and also on the available external memory bandwidth, which
is bottlenecked by the GPIO frequency. Using the VGG16
network as a benchmark application, the system delivers
an average throughput of 111 GOPS at the low operation
point, with 0.002 external memory accesses/MAC. With an
average power consumption of 27.7 mW, this translates to
an power efficiency of 4.01 TOPS/W, using a 0.61 V supply
at 250 MHz. At the high-speed operation point, the system

11

TABLE I
WORKLOAD CHARACTERIZATION

Worst-case
(Ci = 3, mode = 1)

Average-case
(Ci = 32, mode=1)

Best-case
(Ci = Co = 128, mode=0)

Operating
Point

Vddc
(V)

Vddm
(V)

Frequency
(MHz)

Pcore
(mW)

Pmem
(mW)

Ptot
(mW)

Peak
(TOPS/W)

Pcore
(mW)

Pmem
(mW)

Ptot
(mW)

Peak
(TOPS/W)

Pcore
(mW)

Pmem
(mW)

Ptot
(mW)

Peak
(TOPS/W)

Low-power 0.61 0.7 250 24.3 4.9 29.2 4.36 23.4 4.8 28.2 4.52 22.2 3.8 26.0 4.92
Nominal 0.8 0.8 500 72.8 13.4 86.2 2.96 70 13.3 83.3 3.06 68.0 10.2 78.2 3.26
High-speed 0.85 0.9 700 109.6 20.2 129.9 2.74 105.2 22.3 127.5 2.80 103.4 17.3 120.8 2.96

TABLE II
POWER AND AREA BREAKDOWN (@0.80 V, 500 MHZ)

Units Components Power (mW) Area (mm2)
RNS BNS RNS BNS

Core 16×PE + 1 BE 1.71 2.55 5137 5446

FMAP Fetch 16 BE Units +
Shift Regs. 3.12 1.83 5668 2470

A/S Scaling + 2 Sign Units
BE + pool + regs. 0.25 0.06 4584 1420

FMEM 8 SRAM macros 9.6 292×103

WMEM 16 SRAM macros 8.2 397×103

Border Buf. 6 Reg. File macros 6.6 54×103

Block Buf. 14 Reg. File macros 5.5 88×103

TABLE III
MODEL ACCURACY (%)

Original (FP32) Quantized (INT8) RNS Bc
RNS Be,
split conv.

VGG19 70.75 70.22 68.40 70.42
ResNet50 75.20 74.36 74.85 74.85

delivers 257 GOPS with 120 mW power consumption, which
translates in an power efficiency of 2.14 TOPS/W.

2) Network accuracy: The architecture is also evaluated
in terms of accuracy on the application level, using popular
CNN benchmarks. More specifically, the accuracy of the RNS
accelerator on ImageNet is investigated, using the ResNet50
[21] and VGG19 [23] models. An 8-bit quantized version of
these networks is used, obtained from Xilinx Vitis-AI model
zoo [30]. We also evaluate the impact of the limited dynamic
range (Bc provides ≈ 20.1 bits equivalent range) and the
potential benefit of using the 6-channel periodic base extension
method presented in IV-C3. Weights are represented using the
(approximately) 8-bit equivalent RNS base Bw, while the 12-
bit equivalent base Bf is used for feature-maps. Results are
reported in Table III. For VGG19, there is a 2.35% accuracy
loss, when no base extension is performed, which drops to
0.33% when the periodic base extension which splits the
convolution computations along the input channel dimension
is used. For ResNet50, the problem of overflow during partial
product accumulation does not affect overall accuracy (only
0.40% accuracy drop), thus no base extension to six channels
is needed. However, for both networks the periodic base
extension is used in the final fully connected layers. In both
cases, the RNS system performs better than the 8-bit quantized
model (since 12 bits are used for feature-maps instead of 8).

16 24 32 40 48 56 64
3.6

4

4.4

4.8

5.2

5.6

Num. of cores

TO
PS

/W

Energy eff. scaling (ap=0.8, b=0.4 GB/s)

(a)

16 24 32 40 48 56 64
3.6

4

4.4

4.8

5.2

5.6

Num. of cores

TO
PS

/W

Energy eff. scaling (ap=0.8, b=4 GB/s)

(b)

Fig. 12. Peak (red) and average (blue) power efficiency scaling with the
number of cores for the VGG16 benchmark.

E. Scalability projections

The most efficient way of scaling up the proposed ar-
chitecture is by increasing the number of processing cores.
This would linearly increase throughput, when data has been
fetched to the processing elements, at the cost of the increased
power consumption, which however is not expected to increase
linearly. This is because certain components of the architec-
ture, such as FMEM and the FMAP-fetch unit are shared
between cores. We thus make the following assumption: ap is
the factor of the total processing power (excluding memory)
that increases linearly with the number of cores, am is the
memory accessing power factor that increases linearly, and
b is the available external memory bandwidth. Based on the
power consumption breakdown (Fig. 11), we set ap = 0.8
and am = 0.5. Plots of Fig. 12 show the estimated peak
(red) and effective (blue) power efficiency as a function of the
number of cores, for the VGG16 benchmark. While the peak
power efficiency increases as the number of cores increases,
reaching a value of 5.6 TOPS/W at 64 cores, the effective
power efficiency receives a maximum value of 4.1 TOPS/W
at a smaller number of cores (24), which is quite close to the
actual number of cores utilized in the prototype chips. This
is because, given the limited available bandwidth, the loading
time (while the chip waits for data and performs no operation)
to run time ratio increases, thus the average utilization of the
PEs drops. However, if a higher bandwidth was available,
the effective efficiency would more closely follow the peak
efficiency (higher PE utilization), reaching 4.92 TOPS/W, thus
we could more significantly benefit from an increased number
of cores. We note that the optimal number of cores for the
available memory budget depends on the benchmark been
executed. For example, in a smaller network than VGG16,
where most parameters fit in the on-chip memory, the average
power efficiency would be closer to the peak performance.

12

TABLE IV
COMPARISONS TO STATE-OF-THE-ART IMPLEMENTATIONS

ISSCC’20 [31] ISSCC’22 [32] ISSCC’21 [33] ISSCC’23-a [34] ISSCC’23-b [35] RNSDNN [11] This work
RNS

Process 7 nm 65 nm 28 nm 28 nm 28 nm 45 nm 22 nm
Supply voltage (V) 0.575–0.825 1 0.6–0.9 0.66–1.33 0.65–0.9 1 0.61–0.85

Max. Frequency (MHz) 290–880 400 100–470 100–500 55–285 1200 250 – 725
On-chip Memory (KB) 2176 150 206 1120 537 NG 448
Bit Precision (act,wgt) 8 8 8 8 8 16,8 12,8

Network MobileNet-v1 VGG16 VGG ResNet50 Random workload VGG16 VGG16
Performance (GOPS†) 3604 NG 1590 NG 84–437 134 111–257

Area (mm2) 3.04 4.47 1.9 7.81 2.18 NG 2.56
Power (mW) 174–1053 126 19–140 17-174 NG 183 28 – 120

Power Eff. (TOPS†/W) 6.83 0.66-1.8 11.67 10.7 3–8.09 0.446 4.01(4.92)@(0.61V,250MHz)*
2.14(2.90)@(0.85V,700MHz)*

†1 MAC = 2 OPS ∗ average (peak) efficiency NG: not given

F. Comparison to state of the art

The major advantages of the proposed architecture com-
pared to state-of-the-art RNS based DNN systems are dis-
cerned within the following points: (a) The implemented RNS
accelerator utilizes a balanced moduli set, with a maximum
channel size of 5 bits. This is in contrast to Res-DNN [11],
where the extension of a single channel (up to 12 bits), while
reducing the complexity of the base extension circuits, creates
an unbalanced representation where the largest channel be-
comes the bottleneck, thus partially canceling of the benefits of
using RNS. (b) While the expensive base extension operation
in [11] takes place before and after each multiplication, leading
to the need for a larger number of such units compared to
the number of PEs, the proposed architecture amortizes the
complex RNS operations (activation functions, division) over
32 PEs. This is facilitated by the temporal reuse of network
parameters (broadcasting), which reduces the number of base
extension units, as well as the periodic usage of the A/S units,
which are shared between two cores and are only used once
the accumulation of multiple partial sums is completed. This
dataflow, paired with the clock-gating scheme, diminishes the
overhead of the non-trivial operations and allows taking full
advantage of the RNS potential for low-power DNN inference.

Quantitative comparisons to state-of-the-art 8-bit digital AI
accelerators is reported in Table IV. The implemented RNS
accelerator offers a slightly higher dynamic range of 12 bits
for activations than these systems. We report peak and avarage
power efficiency (TOPS/W) on the VGG16 benchmark at the
best operation point for our experiments (0.61V, 250 MHz)
as well as at the high-speed operation point, where the chip
delivers the maximum throughput (257 GOPS). With a 4.92
peak and 4.01 average power efficiency, the developed system
is 9× more energy-efficient than Res-DNN (this architecture
uses a less advanced 45-nm process but results only refer to
synthesis reports, since there is no silicon implementation).
The proposed RNS accelerator is also more power efficient
than the neural processor presented in [32], while it achieves
comparable performance in terms of power efficiency with
a cutting-edge 7-nm Samsung AI chip [31] for unpruned
networks. The DNN processor proposed in [33] achieves a
very high power efficiency of 10.7 TOPS/W, but utilizes high-
level optimizations, such as effective weight convolution, to
reduce the actual number of operations that are performed.

Hence, the reported TOPS/W corresponds to effective power
efficiency. In a more relevant comparison, where the benefits
come from a hardware arithmetic innovation, the system in
[35] uses signed magnitude multipliers to reduce switching
activity and reports 3 − 8 peak TOPS/W, depending on
the layer parameter distributions, and after employing a bit-
sparsification technique. In contrast, the performance of the
proposed RNS-based accelerator does not dependent on the
distribution of the network parameters or any pre-processing
step. Apart from RNS-DNN [11], which has not been imple-
mented on silicon, and the Samsung accelerator [31], which is
fabricated on a far more advanced process, our chip achieves
the maximum attainable clock frequency both at high and
low supplies, indicating the high-speed capabilities of the
Residue Numbering System. These results suggest that RNS,
coupled with architectural and NN model-level optimizations
that can be applied orthogonally, such as the dynamic dataflow
proposed in [34] or the effective convolution proposed in [33],
can push the performance limits of digital DNN processing
systems.

VI. CONCLUSION

This paper introduced a RNS-based DNN accelerator. The
proposed architecture achieves end-to-end RNS domain pro-
cessing through innovative usage of activation function, scal-
ing and overflow control techniques, maintaining a small
maximum word-length among the residue channels. The non-
trivial RNS operation overhead is minimized by amortizing
the usage of the A/S units and exploiting their periodic usage
to decrease power consumption. Post-layout simulation of the
design reveal a 1.33× processing power reduction compared to
the binary counterpart, while silicon measurements on the pro-
totype chips confirm simulation results and show considerably
more power efficient processing on vision benchmarks com-
pared to state-of-the-art RNS-based DNN accelerator. These
findings prove that RNS can markedly enhance the low-power
capabilities of modern AI accelerators.

ACKNOWLEDGMENTS

This research was conducted at Khalifa University’s SoC
Center and supported by the Semiconductor Research Corpo-
ration (SRC) project 2020-AH-2983.

13

REFERENCES

[1] S. Calo, M. Touna, D. Verma, and A. Cullen, “Edge computing archi-
tecture for applying AI to IoT,” 12 2017, pp. 3012–3016.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing
of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the
IEEE, vol. 105, no. 12, Dec. 2017.

[3] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “14.5 Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks. in 2016 IEEE international solid-state circuits conference
(ISSCC),” San Francisco, CA, USA, pp. 262–263, 2016.

[4] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), 2016, pp. 267–278.

[5] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5
envision: A 0.26-to-10 TOPS/W subword-parallel dynamic-voltage-
accuracy-frequency-scalable convolutional neural network processor in
28nm fdsoi,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC). IEEE, 2017, pp. 246–247.

[6] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor, Eds.,
Residue Number System Arithmetic: Modern Applications in Digital
Signal Processing”. IEEE Press, 1986.

[7] E. B. Olsen, “RNS Hardware Matrix Multiplier for High Precision
Neural Network Acceleration: “RNS TPU”,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1–5.

[8] H. Nakahara and T. Sasao, “A deep convolutional neural network
based on nested residue number system,” in 2015 25th International
Conference on Field Programmable Logic and Applications (FPL),
2015, pp. 1–6.

[9] M. Valueva, N. Nagornov, P. Lyakhov, G. Valuev, and N. Chervyakov,
“Application of the residue number system to reduce hardware costs
of the convolutional neural network implementation,” Mathematics
and Computers in Simulation, vol. 177, pp. 232–243, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0378475420301580

[10] M. Abdelhamid and S. Koppula, “Applying the residue number system
to network inference,” arXiv preprint arXiv:1712.04614, 2017.

[11] N. Samimi, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Res-DNN:
A Residue Number System-Based DNN Accelerator Unit,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 67, no. 2, pp.
658–671, 2020.

[12] Z. Torabi and G. Jaberipur, “Low-Power/Cost RNS Comparison via
Partitioning the Dynamic Range,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1849–1857, 2016.

[13] V. Sakellariou, V. Paliouras, I. Kouretas, H. Saleh, and T. Stouraitis,
“On reducing the number of multiplications in RNS-based CNN accel-
erators,” in 2021 28th IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), 2021, pp. 1–6.

[14] ——, “A multiplier-Free RNS-Based CNN accelerator exploiting bit-
Level sparsity,” IEEE Transactions on Emerging Topics in Computing,
no. 01, pp. 1–16, 2023.

[15] A. Roohi, M. Taheri, S. Angizi, and D. Fan, “Rnsim: Efficient deep
neural network accelerator using residue number systems,” in 2021
IEEE/ACM International Conference On Computer Aided Design (IC-
CAD), 2021, pp. 1–9.

[16] S. Salamat, M. Imani, S. Gupta, and T. Rosing, “RNSnet: In-Memory
Neural Network Acceleration Using Residue Number System,” 11 2018,
pp. 1–12.

[17] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2014, pp. 10–14.

[18] C. Efstathiou, H. Vergos, G. Dimitrakopoulos, and D. Nikolos, “Effi-
cient diminished1 modulo 2n + 1 multipliers,” IEEE Transactions on
Computers - TC, vol. 54, pp. 491–496, 04 2005.

[19] I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry,
“Improving post training neural quantization: Layer-wise calibration
and integer programming,” ArXiv, vol. abs/2006.10518, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:219792681

[20] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[24] N. S. Szabó and R. I. Tanaka, Residue arithmetic and its applications
to computer technology. McGraw-Hill, 1967.

[25] K. Gbolagade and S. Cotofana, “An O(n) Residue Number System to
Mixed Radix Conversion Technique.” in Proceedings - IEEE Interna-
tional Symposium on Circuits and Systems, 05 2009, pp. 521–524.

[26] H. Xiao, Y. Ye, G. Xiao, and Q. Kang, “Algorithms for comparison in
residue number systems,” in 2016 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA), 2016,
pp. 1–6.

[27] M. Xu, Z. Bian, and R. Yao, “Fast Sign Detection Algorithm for the
RNS Moduli Set {2n+1 − 1, 2n − 1, 2n},” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 23, no. 2, pp. 379–383,
2015.

[28] V. Sakellariou, V. Paliouras, I. Kouretas, H. Saleh, and T. Stouraitis,
“A high-performance RNS LSTM block,” in 2022 IEEE International
Symposium on Circuits and Systems (ISCAS), 2022, pp. 1264–1268.

[29] Y. Kong and B. Phillips, “Fast Scaling in the Residue Number System,”
IEEE Transactions on VLSI Systems, vol. 17, pp. 443–447, 03 2009.

[30] Xilinx. Vitis-AI. [Online]. Available: https://github.com/Xilinx/Vitis-AI
[31] C.-H. Lin, C.-C. Cheng, Y.-M. Tsai, S.-J. Hung, Y.-T. Kuo, P. H.

Wang, P.-K. Tsung, J.-Y. Hsu, W.-C. Lai, C.-H. Liu, S.-Y. Wang, C.-
H. Kuo, C.-Y. Chang, M.-H. Lee, T.-Y. Lin, and C.-C. Chen, “A
3.4-to-13.3TOPS/W 3.6TOPS Dual-Core Deep-Learning Accelerator for
Versatile AI Applications in 7nm 5G Smartphone SoC,” in 2020 IEEE
International Solid- State Circuits Conference - (ISSCC), 2020, pp. 134–
136.

[32] Y. Ju and J. Gu, “A 65nm Systolic Neural CPU Processor for Com-
bined Deep Learning and General-Purpose Computing with 95% PE
Utilization, High Data Locality and Enhanced End-to-End Performance,”
in 2022 IEEE International Solid- State Circuits Conference (ISSCC),
vol. 65, 2022, pp. 1–3.

[33] H. Mo, W. Zhu, W. Hu, G. Wang, Q. Li, A. Li, S. Yin, S. Wei, and L. Liu,
“A 28nm 12.1TOPS/W Dual-Mode CNN Processor Using Effective-
Weight-Based Convolution and Error-Compensation-Based Prediction,”
in 2021 IEEE International Solid- State Circuits Conference (ISSCC),
vol. 64, 2021, pp. 146–148.

[34] C.-Y. Du, C.-F. Tsai, W.-C. Chen, L.-Y. Lin, N.-S. Chang, C.-P. Lin, C.-
S. Chen, and C.-H. Yang, “A 28nm 11.2TOPS/W Hardware-Utilization-
Aware Neural-Network Accelerator with Dynamic Dataflow,” in 2023
IEEE International Solid-State Circuits Conference (ISSCC), 2023, pp.
1–3.

[35] H. An, Y. Chen, Z. Fan, Q. Zhang, P. Abillama, H.-S. Kim, D. Blaauw,
and D. Sylvester, “29.3 An 8.09 TOPS/W Neural Engine Leveraging
Bit-Sparsified Sign-Magnitude Multiplications and Dual Adder Trees,”
in 2023 IEEE International Solid-State Circuits Conference (ISSCC),
2023, pp. 422–424.

