Reference
1. Tinajero, M. G.; Malik, V. S. An Update on the Epidemiology of Type 2
Diabetes: A Global Perspective. Endocrinol Metab Clin North Am2021 , 50 (3), 337–355.
2. Ma CX, Ma XN, Guan CH, Li YD, Mauricio D, Fu SB. Cardiovascular
disease in type 2 diabetes mellitus: progress toward personalized
management. Cardiovasc Diabetol . 2022;21(1):74.
3. Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging
complications of diabetes mellitus. Nat Rev Endocrinol .
2022;18(9):525-539.
4. Hur HJ, Yang HJ, Kim MJ, Lee KH, Kim MS, Park S. Association of
Polygenic Variants with Type 2 Diabetes Risk and Their Interaction with
Lifestyles in Asians. Nutrients . 2022;14(15):3222.
5. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin
resistance. Nat Rev Endocrinol . 2012;8(12):709-716.
6. Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology
of Type 2 Diabetes Mellitus. Int J Mol Sci . 2020;21(17):6275.
7. Brooks-Worrell B, Hampe CS, Hattery EG, et al. Islet Autoimmunity is
Highly Prevalent and Associated With Diminished β-Cell Function in
Patients With Type 2 Diabetes in the Grade Study. Diabetes .
2022;71(6):1261-1271.
8. Maedler K, Sergeev P, Ris F, et al. Glucose-induced beta cell
production of IL-1beta contributes to glucotoxicity in human pancreatic
islets. J Clin Invest . 2002;110(6):851-860.
9. Feingold KR, Soued M, Staprans I, et al. Effect of tumor necrosis
factor (TNF) on lipid metabolism in the diabetic rat. Evidence that
inhibition of adipose tissue lipoprotein lipase activity is not required
for TNF-induced hyperlipidemia. J Clin Invest .
1989;83(4):1116-1121.
10. Park JE, Kang E, Han JS. HM-chromanone attenuates TNF-α-mediated
inflammation and insulin resistance by controlling JNK activation and
NF-κB pathway in 3T3-L1 adipocytes. Eur J Pharmacol .
2022;921:174884.
11. Huang SM, Wu CS, Chiu MH, et al. High glucose environment induces M1
macrophage polarization that impairs keratinocyte migration via TNF-α:
An important mechanism to delay the diabetic wound healing. J
Dermatol Sci . 2019;96(3):159-167.
12. Allahyani M, Alshalawi AM, Alshalawii MR, et al. Phenotypical
evaluation of lymphocytes and monocytes in patients with type 2 diabetes
mellitus in Saudi Arabia. Saudi Med J . 2023;44(3):296-305.
13. Mahmoud FF, Haines D, Dashti AA, El-Shazly S, Al-Najjar F.
Correlation between heat shock proteins, adiponectin, and T lymphocyte
cytokine expression in type 2 diabetics. Cell Stress Chaperones .
2018;23(5):955-965.
14. Wang H, Cao K, Liu S, Xu Y, Tang L. Tim-3 Expression Causes NK Cell
Dysfunction in Type 2 Diabetes Patients. Front Immunol .
2022;13:852436.
15. Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet
B. Impaired leucocyte functions in diabetic patients. Diabet Med .
1997;14(1):29-34.
16. Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic
switching of adipose tissue macrophages with obesity is generated by
spatiotemporal differences in macrophage subtypes. Diabetes .
2008;57(12):3239-3246.
17. Ronacher K, Joosten SA, van Crevel R, Dockrell HM, Walzl G,
Ottenhoff THM. Acquired immunodeficiencies and tuberculosis: focus on
HIV/AIDS and diabetes mellitus. Immunol Rev . 2015;264(1):121-137.
18. Ashraf T, Sarker PK, Hosen MI, Rahman A, Hasan AKMM, Rahman T.
Association of Chronic Toxoplasma gondii Infection with Pro-Inflamatory
Cytokine Interleukin (IL)-12 Responses in Type-2 Diabetes Mellitus
Patients of Bangladesh. J Parasitol Res . 2023;2023:3885160.
19. Wu D, Molofsky AB, Liang HE, et al. Eosinophils sustain adipose
alternatively activated macrophages associated with glucose homeostasis.Science . 2011;332(6026):243-247.
20. Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery
and Diseases. Immunity . 2019;50(5):1132-1148.
21. Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin
Immunol . 2010;125(2 Suppl 2):S33-40.
22. Nishimura S, Manabe I, Nagasaki M, et al. CD8+ effector T cells
contribute to macrophage recruitment and adipose tissue inflammation in
obesity. Nat Med . 2009;15(8):914-920.
23. Gearty SV, Dündar F, Zumbo P, et al. An autoimmune stem-like CD8 T
cell population drives type 1 diabetes. Nature .
2022;602(7895):156-161.
24. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types
of murine helper T cell clone. I. Definition according to profiles of
lymphokine activities and secreted proteins. J Immunol .
1986;136(7):2348-2357.
25. O’Garra A, Robinson D. Development and function of T helper 1 cells.Adv Immunol . 2004;83:133-162.
26. Langenhorst D, Haack S, Göb S, et al. CD28 Costimulation of T Helper
1 Cells Enhances Cytokine Release In Vivo. Front Immunol .
2018;9:1060.
27. Winer S, Chan Y, Paltser G, et al. Normalization of
obesity-associated insulin resistance through immunotherapy. Nat
Med . 2009;15(8):921-929.
28. Matia-Garcia I, Vadillo E, Pelayo R, et al. Th1/Th2 Balance in Young
Subjects: Relationship with Cytokine Levels and Metabolic Profile.J Inflamm Res . 2021;14:6587-6600.
29. Satomura A, Oikawa Y, Haisa A, et al. Clinical Significance of
Insulin Peptide-specific Interferon-γ-related Immune Responses in
Ketosis-prone Type 2 Diabetes. J Clin Endocrinol Metab .
2022;107(5):e2124-e2132.
30. AlAfaleq NO, Hussein TM, Al-Shouli ST, et al. Proinflammatory
cytokine profiles in prediabetic Saudi patients. Saudi J Biol
Sci . 2023;30(8):103714.
31. Sheikh V, Zamani A, Mahabadi-Ashtiyani E, Tarokhian H, Borzouei S,
Alahgholi-Hajibehzad M. Decreased regulatory function of
CD4+CD25+CD45RA+ T cells and impaired IL-2 signalling pathway in
patients with type 2 diabetes mellitus. Scand J Immunol .
2018;88(4):e12711.
32. Suri S, Mitra P, Abhilasha A, et al. Role of interleukin-2 and
interleukin-18 in newly diagnosed type 2 diabetes mellitus. J
Basic Clin Physiol Pharmacol . 2021;33(2):185-190.
33. Bae HR, Choi MS, Kim S, et al. IFNγ is a Key Link between Obesity
and Th1-Mediated AutoImmune Diseases. Int J Mol Sci .
2020;22(1):208.
34. Aly RH, Ahmed AE, Hozayen WG, et al. Patterns of Toll-Like Receptor
Expressions and Inflammatory Cytokine Levels and Their Implications in
the Progress of Insulin Resistance and Diabetic Nephropathy in Type 2
Diabetic Patients. Front Physiol . 2020;11:609223.
35. McGillicuddy FC, Chiquoine EH, Hinkle CC, et al. Interferon gamma
attenuates insulin signaling, lipid storage, and differentiation in
human adipocytes via activation of the JAK/STAT pathway. J Biol
Chem . 2009;284(46):31936-31944.
36. Sun Y, Wang B, Hu Q, et al. Loss of Lkb1 in CD11c+ myeloid cells
protects mice from diet-induced obesity while enhancing glucose
intolerance and IL-17/IFN-γ imbalance. Cell Mol Life Sci .
2023;80(3):63.
37. Bi L, Ren Y, Feng M, et al. HDAC11 Regulates Glycolysis through the
LKB1/AMPK Signaling Pathway to Maintain Hepatocellular Carcinoma
Stemness. Cancer Res . 2021;81(8):2015-2028.
38. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells.Annu Rev Immunol . 2009;27:485-517.
39. Xiao QP, Zhong YB, Kang ZP, et al. Curcumin regulates the
homeostasis of Th17/Treg and improves the composition of gut microbiota
in type 2 diabetic mice with colitis. Phytother Res .
2022;36(4):1708-1723.
40. Bapat SP, Whitty C, Mowery CT, et al. Obesity alters pathology and
treatment response in inflammatory disease. Nature .
2022;604(7905):337-342.
41. Cavallari JF, Denou E, Foley KP, Khan WI, Schertzer JD. Different
Th17 immunity in gut, liver, and adipose tissues during obesity: the
role of diet, genetics, and microbes. Gut Microbes .
2016;7(1):82-89.
42. Van Herck MA, Vonghia L, Kwanten WJ, et al. Diet Reversal and Immune
Modulation Show Key Role for Liver and Adipose Tissue T Cells in Murine
Nonalcoholic Steatohepatitis. Cell Mol Gastroenterol Hepatol .
2020;10(3):467-490.
43. Zhu L, Song H, Zhang L, Meng H. Characterization of IL-17-producing
Treg cells in type 2 diabetes patients. Immunol Res .
2019;67(4-5):443-449.
44. Li Y, Chen S, Zhao T, Li M. Serum IL-36 cytokines levels in type 2
diabetes mellitus patients and their association with obesity, insulin
resistance, and inflammation. J Clin Lab Anal . 2021;35(2):e23611.
45. Lin W, Song H, Shen J, et al. Functional role of skeletal
muscle-derived interleukin-6 and its effects on lipid metabolism.Front Physiol . 2023;14:1110926.
46. Huang T, Song J, Gao J, et al. Adipocyte-derived kynurenine promotes
obesity and insulin resistance by activating the AhR/STAT3/IL-6
signaling. Nat Commun . 2022;13(1):3489.
47. Zhao Y, Luan H, Jiang H, et al. Gegen Qinlian decoction relieved
DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell
homeostasis via suppressing IL-6/JAK2/STAT3 signaling.Phytomedicine . 2021;84:153519.
48. Lee SH, Jhun J, Byun JK, et al. IL-17 axis accelerates the
inflammatory progression of obese in mice via TBK1 and IKBKE pathway.Immunol Lett . 2017;184:67-75.
49. Zhang L, Liu M, Liu W, et al. Th17/IL-17 induces endothelial cell
senescence via activation of NF-κB/p53/Rb signaling pathway. Lab
Invest . 2021;101(11):1418-1426.
50. Barbie TU, Alexe G, Aref AR, et al. Targeting an IKBKE cytokine
network impairs triple-negative breast cancer growth. J Clin
Invest . 2014;124(12):5411-5423.
51. Chen C, Zhang Q, Liu S, Lambrechts M, Qu Y, You Z. AZD5363 Inhibits
Inflammatory Synergy between Interleukin-17 and Insulin/Insulin-Like
Growth Factor 1. Front Oncol . 2014;4:343.
52. Eyerich S, Eyerich K, Pennino D, et al. Th22 cells represent a
distinct human T cell subset involved in epidermal immunity and
remodeling. J Clin Invest . 2009;119(12):3573-3585.
53. Jia L, Wu C. The biology and functions of Th22 cells. Adv Exp
Med Biol . 2014;841:209-230.
54. Pavel AB, Zhou L, Diaz A, et al. The proteomic skin profile of
moderate-to-severe atopic dermatitis patients shows an inflammatory
signature. J Am Acad Dermatol . 2020;82(3):690-699.
55. Jiang Q, Yang G, Xiao F, et al. Role of Th22 Cells in the
Pathogenesis of Autoimmune Diseases. Front Immunol .
2021;12:688066.
56. Ye J, Ji Q, Liu J, et al. Interleukin 22 Promotes Blood Pressure
Elevation and Endothelial Dysfunction in Angiotensin II-Treated Mice.J Am Heart Assoc . 2017;6(10):e005875.
57. Ratsimandresy RA, Indramohan M, Dorfleutner A, Stehlik C. The AIM2
inflammasome is a central regulator of intestinal homeostasis through
the IL-18/IL-22/STAT3 pathway. Cell Mol Immunol .
2017;14(1):127-142.
58. Van Herck MA, Weyler J, Kwanten WJ, et al. The Differential Roles of
T Cells in Non-alcoholic Fatty Liver Disease and Obesity. Front
Immunol . 2019;10:82.
59. Guo H, Xu BC, Yang XG, et al. A High Frequency of Peripheral Blood
IL-22(+) CD4(+) T Cells in Patients With New Onset Type 2 Diabetes
Mellitus. J Clin Lab Anal . 2016;30(2):95-102.
60. Zhao RX, He Q, Sha S, et al. Increased AHR Transcripts Correlate
With Pro-inflammatory T-Helper Lymphocytes Polarization in Both
Metabolically Healthy Obesity and Type 2 Diabetic Patients. Front
Immunol . 2020;11:1644.
61. Ouyang W, O’Garra A. IL-10 Family Cytokines IL-10 and IL-22: from
Basic Science to Clinical Translation. Immunity .
2019;50(4):871-891.
62. Sano T, Huang W, Hall JA, et al. An IL-23R/IL-22 Circuit Regulates
Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses.Cell . 2015;163(2):381-393.
63. Zhu J, Paul WE. CD4 T cells: fates, functions, and faults.Blood . 2008;112(5):1557-1569.
64. Nakayama T, Hirahara K, Onodera A, et al. Th2 Cells in Health and
Disease. Annu Rev Immunol . 2017;35:53-84.
65. Nj T, Mk J. TCR signal quantity and quality in CD4+ T cell
differentiation. Trends Immunol . 2014;35(12):591-596.
66. Cutolo M, Campitiello R, Gotelli E, Soldano S. The Role of M1/M2
Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front
Immunol . 2022;13:867260.
67. O’Connor JC, Sherry CL, Guest CB, Freund GG. Type 2 diabetes impairs
insulin receptor substrate-2-mediated phosphatidylinositol 3-kinase
activity in primary macrophages to induce a state of cytokine resistance
to IL-4 in association with overexpression of suppressor of cytokine
signaling-3. J Immunol . 2007;178(11):6886-6893.
68. Jung C, Lichtenauer M, Strodthoff D, et al. Alterations in systemic
levels of Th1, Th2, and Th17 cytokines in overweight adolescents and
obese mice. Pediatr Diabetes . 2017;18(8):714-721.
69. Wensveen FM, Valentić S, Šestan M, Turk Wensveen T, Polić B. The
“Big Bang” in obese fat: Events initiating obesity-induced adipose
tissue inflammation. Eur J Immunol . 2015;45(9):2446-2456.
70. Rocha VZ, Folco EJ, Sukhova G, et al. Interferon-gamma, a Th1
cytokine, regulates fat inflammation: a role for adaptive immunity in
obesity. Circ Res . 2008;103(5):467-476.
71. Phu TA, Ng M, Vu NK, Bouchareychas L, Raffai RL. IL-4 polarized
human macrophage exosomes control cardiometabolic inflammation and
diabetes in obesity. Mol Ther . 2022;30(6):2274-2297.
72. Huang SCC, Smith AM, Everts B, et al. Metabolic Reprogramming
Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage
Alternative Activation. Immunity . 2016;45(4):817-830.
73. Lee SE, Kang SG, Choi MJ, et al. Growth Differentiation Factor 15
Mediates Systemic Glucose Regulatory Action of T-Helper Type 2
Cytokines. 2017;66(11):2774-2788.
74. Togashi Y, Nishikawa H. Regulatory T Cells: Molecular and Cellular
Basis for Immunoregulation. Curr Top Microbiol Immunol .
2017;410:3-27.
75. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance.Eur J Immunol . 2010;40(7):1830-1835.
76. Ishikawa A, Wada T, Nishimura S, et al. Estrogen regulates
sex-specific localization of regulatory T cells in adipose tissue of
obese female mice. PLoS One . 2020;15(4):e0230885.
77. He B, Wu L, Xie W, et al. The imbalance of Th17/Treg cells is
involved in the progression of nonalcoholic fatty liver disease in mice.BMC Immunol . 2017;18(1):33.
78. Gajic D, Koprivica I, Stojanovic I, Saksida T. Defective
immunosuppressive function of Treg cells in visceral adipose tissue in
MIF deficient mice. Cytokine . 2021;138:155372.
79. Beppu LY, Mooli RGR, Qu X, et al. Tregs facilitate obesity and
insulin resistance via a Blimp-1/IL-10 axis. JCI Insight .
2021;6(3):e140644, 140644.
80. Sabapathy V, Stremska ME, Mohammad S, Corey RL, Sharma PR, Sharma R.
Novel Immunomodulatory Cytokine Regulates Inflammation, Diabetes, and
Obesity to Protect From Diabetic Nephropathy. Front Pharmacol .
2019;10:572.
81. Wara AK, Wang S, Wu C, et al. KLF10 Deficiency in CD4+ T Cells
Triggers Obesity, Insulin Resistance, and Fatty Liver. Cell Rep .
2020;33(13):108550.
82. Cipolletta D, Feuerer M, Li A, et al. PPAR-γ is a major driver of
the accumulation and phenotype of adipose tissue Treg cells.Nature . 2012;486(7404):549-553.
83. Guzmán-Flores JM, Ramírez-Emiliano J, Pérez-Vázquez V, López-Briones
S. Th17 and regulatory T cells in patients with different time of
progression of type 2 diabetes mellitus. Cent Eur J Immunol .
2020;45(1):29-36.
84. Fagninou A, Nekoua MP, Sossou D, Moutairou K, Fievet N, Yessoufou A.
Th2-Immune Polarizing and Anti-Inflammatory Properties of Insulin Are
Not Effective in Type 2 Diabetic Pregnancy. J Immunol Res .
2020;2020:2038746.
85. Wang C, Wang H, Dai L, et al. T-Helper 17 Cell/Regulatory T-Cell
Imbalance in COPD Combined with T2DM Patients. Int J Chron
Obstruct Pulmon Dis . 2021;16:1425-1435.
86. Yuan N, Zhang HF, Wei Q, Wang P, Guo WY. Expression of
CD4+CD25+Foxp3+ Regulatory T Cells, Interleukin 10 and Transforming
Growth Factor β in Newly Diagnosed Type 2 Diabetic Patients. Exp
Clin Endocrinol Diabetes . 2018;126(2):96-101.
87. Xu Q, Zhang X, Li T, Shao S. Exenatide regulates Th17/Treg balance
via PI3K/Akt/FoxO1 pathway in db/db mice. Mol Med .
2022;28(1):144.
88. Guindi C, Khan FU, Cloutier A, et al. Inhibition of PI3K/C/EBPβ axis
in tolerogenic bone marrow-derived dendritic cells of NOD mice promotes
Th17 differentiation and diabetes development. Transl Res .
2023;255:37-49.
89. Han JM, Patterson SJ, Speck M, Ehses JA, Levings MK. Insulin
inhibits IL-10-mediated regulatory T cell function: implications for
obesity. J Immunol . 2014;192(2):623-629.
90. Pitmon E, Meehan EV, Ahmadi E, Adler AJ, Wang K. High glucose
promotes regulatory T cell differentiation. PLoS One .
2023;18(2):e0280916.
91. Andersen MH, Schrama D, Thor Straten P, Becker JC. Cytotoxic T
cells. J Invest Dermatol . 2006;126(1):32-41.
92. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+
T cell differentiation. Nat Rev Immunol . 2012;12(11):749-761.
93. Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8+ T
cell differentiation. Nat Rev Immunol . 2018;18(5):340-356.
94. Majdoubi A, Lee JS, Kishta OA, et al. Lack of the E3 Ubiquitin
Ligase March1 Affects CD8 T Cell Fate and Exacerbates Insulin Resistance
in Obese Mice. Front Immunol . 2020;11:1953.
95. Kiran S, Kumar V, Murphy EA, Enos RT, Singh UP. High Fat
Diet-Induced CD8+ T Cells in Adipose Tissue Mediate Macrophages to
Sustain Low-Grade Chronic Inflammation. Front Immunol .
2021;12:680944.
96. Yi HS, Kim SY, Kim JT, et al. T-cell senescence contributes to
abnormal glucose homeostasis in humans and mice. Cell Death Dis .
2019;10(3):249.
97. Lee YH, Kim SR, Han DH, et al. Senescent T Cells Predict the
Development of Hyperglycemia in Humans. Diabetes .
2019;68(1):156-162.
98. Khan IM, Perrard XY, Brunner G, et al. Intermuscular and
perimuscular fat expansion in obesity correlates with skeletal muscle T
cell and macrophage infiltration and insulin resistance. Int J
Obes (Lond) . 2015;39(11):1607-1618.
99. Ghazarian M, Revelo XS, Nøhr MK, et al. Type I Interferon Responses
Drive Intrahepatic T cells to Promote Metabolic Syndrome. Sci
Immunol . 2017;2(10):eaai7616.
100. Zhang F, Wang C, Wen X, et al. Mesenchymal stem cells alleviate rat
diabetic nephropathy by suppressing CD103+ DCs-mediated CD8+ T cell
responses. J Cell Mol Med . 2020;24(10):5817-5831.
101. Monteiro-Sepulveda M, Touch S, Mendes-Sá C, et al. Jejunal T Cell
Inflammation in Human Obesity Correlates with Decreased Enterocyte
Insulin Signaling. Cell Metab . 2015;22(1):113-124.
102. Wang L, Sun P, Wu Y, Wang L. Metabolic tissue-resident CD8+ T
cells: A key player in obesity-related diseases. Obes Rev .
2021;22(3):e13133.
103. Chapman NM, Boothby MR, Chi H. Metabolic coordination of T cell
quiescence and activation. Nat Rev Immunol . 2020;20(1):55-70.
104. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease.Nat Rev Immunol . 2011;11(2):98-107.
105. Zhang Y, Ma XZ, Zhao XY, et al. AGEs-RAGE-KCa3.1 pathway mediates
palmitic acid-induced migration of PBMCs from patients with type 2
diabetes. Heliyon . 2023;9(4):e14823.
106. Nyambuya TM, Dludla PV, Nkambule BB. T cell activation and
cardiovascular risk in type 2 diabetes mellitus: a protocol for a
systematic review and meta-analysis. Syst Rev . 2018;7(1):167.
107. Kiran S, Rakib A, Kodidela S, Kumar S, Singh UP. High-Fat
Diet-Induced Dysregulation of Immune Cells Correlates with Macrophage
Phenotypes and Chronic Inflammation in Adipose Tissue. Cells .
2022;11(8):1327.
108. Boldizsár F, Berki T, Miseta A, Németh P. Effect of hyperglycemia
on the basal cytosolic free calcium level, calcium signal and
tyrosine-phosphorylation in human T-cells. Immunol Lett .
2002;82(1-2):159-164.
109. Pauken KE, Wherry EJ. SnapShot: T Cell Exhaustion. Cell .
2015;163(4):1038-1038.e1.
110. Nyambuya TM, Dludla PV, Mxinwa V, Nkambule BB. A systematic review
and meta-analysis on the regulation of programmed cell death-1 on
T-cells in type 2 diabetes. Medicine (Baltimore) .
2021;100(15):e25488.
111. Shi B, Du X, Wang Q, Chen Y, Zhang X. Increased PD-1 on
CD4(+)CD28(-) T cell and soluble PD-1 ligand-1 in patients with T2DM:
association with atherosclerotic macrovascular diseases.Metabolism . 2013;62(6):778-785.
112. Beltra JC, Manne S, Abdel-Hakeem MS, et al. Developmental
Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying
Transcriptional and Epigenetic Landscape Control Mechanisms.Immunity . 2020;52(5):825-841.e8.
113. McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T Cell Exhaustion During
Chronic Viral Infection and Cancer. Annu Rev Immunol .
2019;37:457-495.
114. Sun P, Jin Q, Nie S, et al. Unlike PD-L1, PD-1 Is Downregulated on
Partial Immune Cells in Type 2 Diabetes. J Diabetes Res .
2019;2019:5035261.
115. Zhou Y, Zhang H, Yao Y, Zhang X, Guan Y, Zheng F. CD4+ T cell
activation and inflammation in NASH-related fibrosis. Front
Immunol . 2022;13:967410.
116. Rattik S, Engelbertsen D, Wigren M, et al. Elevated circulating
effector memory T cells but similar levels of regulatory T cells in
patients with type 2 diabetes mellitus and cardiovascular disease.Diab Vasc Dis Res . 2019;16(3):270-280.
117. Solinas C, Gu-Trantien C, Willard-Gallo K. The rationale behind
targeting the ICOS-ICOS ligand costimulatory pathway in cancer
immunotherapy. ESMO Open . 2020;5(1):e000544.
118. Zhang HY, Ruan LB, Li Y, et al. ICOS/ICOSL upregulation mediates
inflammatory response and endothelial dysfunction in type 2 diabetes
mellitus. Eur Rev Med Pharmacol Sci . 2018;22(24):8898-8908.
119. Yang TT, Song SJ, Xue HB, Shi DF, Liu CM, Liu H. Regulatory T cells
in the pathogenesis of type 2 diabetes mellitus retinopathy by miR-155.Eur Rev Med Pharmacol Sci . 2015;19(11):2010-2015.
120. Moschovaki Filippidou F, Kirsch AH, Thelen M, et al. Glucagon-Like
Peptide-1 Receptor Agonism Improves Nephrotoxic Serum Nephritis by
Inhibiting T-Cell Proliferation. Am J Pathol .
2020;190(2):400-411.
121. Ntika S, Jois H, Lång K, et al. Elevated Glucagon-like Peptide-1
and a Th2 Shift May Support Reduced Prevalence of Thoracic Aortic
Aneurysm in Patients with Diabetes. J Cardiovasc Dev Dis .
2021;8(11):143.
122. He J, Dai P, Liu L, et al. The effect of short-term intensive
insulin therapy on inflammatory cytokines in patients with newly
diagnosed type 2 diabetes. J Diabetes . 2022;14(3):192-204.
123. Mahmoud M, Juntunen M, Adnan A, et al. Immunomodulatory Functions
of Adipose Mesenchymal Stromal/Stem Cell Derived from Donors with Type 2
Diabetes and Obesity on CD4 T cells. Stem Cells .
2023;41(5):505-519.
124. Zha J, Chi XW, Yu XL, et al. Interleukin-1β-Targeted Vaccine
Improves Glucose Control and β-Cell Function in a Diabetic KK-Ay Mouse
Model. PLoS One . 2016;11(5):e0154298.
125. Tan CL, Kuchroo JR, Sage PT, et al. PD-1 restraint of regulatory T
cell suppressive activity is critical for immune tolerance. J Exp
Med . 2021;218(1):e20182232.
126. Touch S, Clément K, André S. T Cell Populations and Functions Are
Altered in Human Obesity and Type 2 Diabetes. Curr Diab Rep .
2017;17(9):81.
127. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The
burgeoning family of unconventional T cells. Nat Immunol .
2015;16(11):1114-1123.