Reference
1. Tinajero, M. G.; Malik, V. S. An Update on the Epidemiology of Type 2 Diabetes: A Global Perspective. Endocrinol Metab Clin North Am2021 , 50 (3), 337–355.
2. Ma CX, Ma XN, Guan CH, Li YD, Mauricio D, Fu SB. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol . 2022;21(1):74.
3. Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol . 2022;18(9):525-539.
4. Hur HJ, Yang HJ, Kim MJ, Lee KH, Kim MS, Park S. Association of Polygenic Variants with Type 2 Diabetes Risk and Their Interaction with Lifestyles in Asians. Nutrients . 2022;14(15):3222.
5. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol . 2012;8(12):709-716.
6. Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci . 2020;21(17):6275.
7. Brooks-Worrell B, Hampe CS, Hattery EG, et al. Islet Autoimmunity is Highly Prevalent and Associated With Diminished β-Cell Function in Patients With Type 2 Diabetes in the Grade Study. Diabetes . 2022;71(6):1261-1271.
8. Maedler K, Sergeev P, Ris F, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest . 2002;110(6):851-860.
9. Feingold KR, Soued M, Staprans I, et al. Effect of tumor necrosis factor (TNF) on lipid metabolism in the diabetic rat. Evidence that inhibition of adipose tissue lipoprotein lipase activity is not required for TNF-induced hyperlipidemia. J Clin Invest . 1989;83(4):1116-1121.
10. Park JE, Kang E, Han JS. HM-chromanone attenuates TNF-α-mediated inflammation and insulin resistance by controlling JNK activation and NF-κB pathway in 3T3-L1 adipocytes. Eur J Pharmacol . 2022;921:174884.
11. Huang SM, Wu CS, Chiu MH, et al. High glucose environment induces M1 macrophage polarization that impairs keratinocyte migration via TNF-α: An important mechanism to delay the diabetic wound healing. J Dermatol Sci . 2019;96(3):159-167.
12. Allahyani M, Alshalawi AM, Alshalawii MR, et al. Phenotypical evaluation of lymphocytes and monocytes in patients with type 2 diabetes mellitus in Saudi Arabia. Saudi Med J . 2023;44(3):296-305.
13. Mahmoud FF, Haines D, Dashti AA, El-Shazly S, Al-Najjar F. Correlation between heat shock proteins, adiponectin, and T lymphocyte cytokine expression in type 2 diabetics. Cell Stress Chaperones . 2018;23(5):955-965.
14. Wang H, Cao K, Liu S, Xu Y, Tang L. Tim-3 Expression Causes NK Cell Dysfunction in Type 2 Diabetes Patients. Front Immunol . 2022;13:852436.
15. Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med . 1997;14(1):29-34.
16. Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes . 2008;57(12):3239-3246.
17. Ronacher K, Joosten SA, van Crevel R, Dockrell HM, Walzl G, Ottenhoff THM. Acquired immunodeficiencies and tuberculosis: focus on HIV/AIDS and diabetes mellitus. Immunol Rev . 2015;264(1):121-137.
18. Ashraf T, Sarker PK, Hosen MI, Rahman A, Hasan AKMM, Rahman T. Association of Chronic Toxoplasma gondii Infection with Pro-Inflamatory Cytokine Interleukin (IL)-12 Responses in Type-2 Diabetes Mellitus Patients of Bangladesh. J Parasitol Res . 2023;2023:3885160.
19. Wu D, Molofsky AB, Liang HE, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis.Science . 2011;332(6026):243-247.
20. Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity . 2019;50(5):1132-1148.
21. Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol . 2010;125(2 Suppl 2):S33-40.
22. Nishimura S, Manabe I, Nagasaki M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med . 2009;15(8):914-920.
23. Gearty SV, Dündar F, Zumbo P, et al. An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature . 2022;602(7895):156-161.
24. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol . 1986;136(7):2348-2357.
25. O’Garra A, Robinson D. Development and function of T helper 1 cells.Adv Immunol . 2004;83:133-162.
26. Langenhorst D, Haack S, Göb S, et al. CD28 Costimulation of T Helper 1 Cells Enhances Cytokine Release In Vivo. Front Immunol . 2018;9:1060.
27. Winer S, Chan Y, Paltser G, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med . 2009;15(8):921-929.
28. Matia-Garcia I, Vadillo E, Pelayo R, et al. Th1/Th2 Balance in Young Subjects: Relationship with Cytokine Levels and Metabolic Profile.J Inflamm Res . 2021;14:6587-6600.
29. Satomura A, Oikawa Y, Haisa A, et al. Clinical Significance of Insulin Peptide-specific Interferon-γ-related Immune Responses in Ketosis-prone Type 2 Diabetes. J Clin Endocrinol Metab . 2022;107(5):e2124-e2132.
30. AlAfaleq NO, Hussein TM, Al-Shouli ST, et al. Proinflammatory cytokine profiles in prediabetic Saudi patients. Saudi J Biol Sci . 2023;30(8):103714.
31. Sheikh V, Zamani A, Mahabadi-Ashtiyani E, Tarokhian H, Borzouei S, Alahgholi-Hajibehzad M. Decreased regulatory function of CD4+CD25+CD45RA+ T cells and impaired IL-2 signalling pathway in patients with type 2 diabetes mellitus. Scand J Immunol . 2018;88(4):e12711.
32. Suri S, Mitra P, Abhilasha A, et al. Role of interleukin-2 and interleukin-18 in newly diagnosed type 2 diabetes mellitus. J Basic Clin Physiol Pharmacol . 2021;33(2):185-190.
33. Bae HR, Choi MS, Kim S, et al. IFNγ is a Key Link between Obesity and Th1-Mediated AutoImmune Diseases. Int J Mol Sci . 2020;22(1):208.
34. Aly RH, Ahmed AE, Hozayen WG, et al. Patterns of Toll-Like Receptor Expressions and Inflammatory Cytokine Levels and Their Implications in the Progress of Insulin Resistance and Diabetic Nephropathy in Type 2 Diabetic Patients. Front Physiol . 2020;11:609223.
35. McGillicuddy FC, Chiquoine EH, Hinkle CC, et al. Interferon gamma attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. J Biol Chem . 2009;284(46):31936-31944.
36. Sun Y, Wang B, Hu Q, et al. Loss of Lkb1 in CD11c+ myeloid cells protects mice from diet-induced obesity while enhancing glucose intolerance and IL-17/IFN-γ imbalance. Cell Mol Life Sci . 2023;80(3):63.
37. Bi L, Ren Y, Feng M, et al. HDAC11 Regulates Glycolysis through the LKB1/AMPK Signaling Pathway to Maintain Hepatocellular Carcinoma Stemness. Cancer Res . 2021;81(8):2015-2028.
38. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells.Annu Rev Immunol . 2009;27:485-517.
39. Xiao QP, Zhong YB, Kang ZP, et al. Curcumin regulates the homeostasis of Th17/Treg and improves the composition of gut microbiota in type 2 diabetic mice with colitis. Phytother Res . 2022;36(4):1708-1723.
40. Bapat SP, Whitty C, Mowery CT, et al. Obesity alters pathology and treatment response in inflammatory disease. Nature . 2022;604(7905):337-342.
41. Cavallari JF, Denou E, Foley KP, Khan WI, Schertzer JD. Different Th17 immunity in gut, liver, and adipose tissues during obesity: the role of diet, genetics, and microbes. Gut Microbes . 2016;7(1):82-89.
42. Van Herck MA, Vonghia L, Kwanten WJ, et al. Diet Reversal and Immune Modulation Show Key Role for Liver and Adipose Tissue T Cells in Murine Nonalcoholic Steatohepatitis. Cell Mol Gastroenterol Hepatol . 2020;10(3):467-490.
43. Zhu L, Song H, Zhang L, Meng H. Characterization of IL-17-producing Treg cells in type 2 diabetes patients. Immunol Res . 2019;67(4-5):443-449.
44. Li Y, Chen S, Zhao T, Li M. Serum IL-36 cytokines levels in type 2 diabetes mellitus patients and their association with obesity, insulin resistance, and inflammation. J Clin Lab Anal . 2021;35(2):e23611.
45. Lin W, Song H, Shen J, et al. Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism.Front Physiol . 2023;14:1110926.
46. Huang T, Song J, Gao J, et al. Adipocyte-derived kynurenine promotes obesity and insulin resistance by activating the AhR/STAT3/IL-6 signaling. Nat Commun . 2022;13(1):3489.
47. Zhao Y, Luan H, Jiang H, et al. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling.Phytomedicine . 2021;84:153519.
48. Lee SH, Jhun J, Byun JK, et al. IL-17 axis accelerates the inflammatory progression of obese in mice via TBK1 and IKBKE pathway.Immunol Lett . 2017;184:67-75.
49. Zhang L, Liu M, Liu W, et al. Th17/IL-17 induces endothelial cell senescence via activation of NF-κB/p53/Rb signaling pathway. Lab Invest . 2021;101(11):1418-1426.
50. Barbie TU, Alexe G, Aref AR, et al. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. J Clin Invest . 2014;124(12):5411-5423.
51. Chen C, Zhang Q, Liu S, Lambrechts M, Qu Y, You Z. AZD5363 Inhibits Inflammatory Synergy between Interleukin-17 and Insulin/Insulin-Like Growth Factor 1. Front Oncol . 2014;4:343.
52. Eyerich S, Eyerich K, Pennino D, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest . 2009;119(12):3573-3585.
53. Jia L, Wu C. The biology and functions of Th22 cells. Adv Exp Med Biol . 2014;841:209-230.
54. Pavel AB, Zhou L, Diaz A, et al. The proteomic skin profile of moderate-to-severe atopic dermatitis patients shows an inflammatory signature. J Am Acad Dermatol . 2020;82(3):690-699.
55. Jiang Q, Yang G, Xiao F, et al. Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases. Front Immunol . 2021;12:688066.
56. Ye J, Ji Q, Liu J, et al. Interleukin 22 Promotes Blood Pressure Elevation and Endothelial Dysfunction in Angiotensin II-Treated Mice.J Am Heart Assoc . 2017;6(10):e005875.
57. Ratsimandresy RA, Indramohan M, Dorfleutner A, Stehlik C. The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway. Cell Mol Immunol . 2017;14(1):127-142.
58. Van Herck MA, Weyler J, Kwanten WJ, et al. The Differential Roles of T Cells in Non-alcoholic Fatty Liver Disease and Obesity. Front Immunol . 2019;10:82.
59. Guo H, Xu BC, Yang XG, et al. A High Frequency of Peripheral Blood IL-22(+) CD4(+) T Cells in Patients With New Onset Type 2 Diabetes Mellitus. J Clin Lab Anal . 2016;30(2):95-102.
60. Zhao RX, He Q, Sha S, et al. Increased AHR Transcripts Correlate With Pro-inflammatory T-Helper Lymphocytes Polarization in Both Metabolically Healthy Obesity and Type 2 Diabetic Patients. Front Immunol . 2020;11:1644.
61. Ouyang W, O’Garra A. IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity . 2019;50(4):871-891.
62. Sano T, Huang W, Hall JA, et al. An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses.Cell . 2015;163(2):381-393.
63. Zhu J, Paul WE. CD4 T cells: fates, functions, and faults.Blood . 2008;112(5):1557-1569.
64. Nakayama T, Hirahara K, Onodera A, et al. Th2 Cells in Health and Disease. Annu Rev Immunol . 2017;35:53-84.
65. Nj T, Mk J. TCR signal quantity and quality in CD4+ T cell differentiation. Trends Immunol . 2014;35(12):591-596.
66. Cutolo M, Campitiello R, Gotelli E, Soldano S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front Immunol . 2022;13:867260.
67. O’Connor JC, Sherry CL, Guest CB, Freund GG. Type 2 diabetes impairs insulin receptor substrate-2-mediated phosphatidylinositol 3-kinase activity in primary macrophages to induce a state of cytokine resistance to IL-4 in association with overexpression of suppressor of cytokine signaling-3. J Immunol . 2007;178(11):6886-6893.
68. Jung C, Lichtenauer M, Strodthoff D, et al. Alterations in systemic levels of Th1, Th2, and Th17 cytokines in overweight adolescents and obese mice. Pediatr Diabetes . 2017;18(8):714-721.
69. Wensveen FM, Valentić S, Šestan M, Turk Wensveen T, Polić B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur J Immunol . 2015;45(9):2446-2456.
70. Rocha VZ, Folco EJ, Sukhova G, et al. Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res . 2008;103(5):467-476.
71. Phu TA, Ng M, Vu NK, Bouchareychas L, Raffai RL. IL-4 polarized human macrophage exosomes control cardiometabolic inflammation and diabetes in obesity. Mol Ther . 2022;30(6):2274-2297.
72. Huang SCC, Smith AM, Everts B, et al. Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity . 2016;45(4):817-830.
73. Lee SE, Kang SG, Choi MJ, et al. Growth Differentiation Factor 15 Mediates Systemic Glucose Regulatory Action of T-Helper Type 2 Cytokines. 2017;66(11):2774-2788.
74. Togashi Y, Nishikawa H. Regulatory T Cells: Molecular and Cellular Basis for Immunoregulation. Curr Top Microbiol Immunol . 2017;410:3-27.
75. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance.Eur J Immunol . 2010;40(7):1830-1835.
76. Ishikawa A, Wada T, Nishimura S, et al. Estrogen regulates sex-specific localization of regulatory T cells in adipose tissue of obese female mice. PLoS One . 2020;15(4):e0230885.
77. He B, Wu L, Xie W, et al. The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice.BMC Immunol . 2017;18(1):33.
78. Gajic D, Koprivica I, Stojanovic I, Saksida T. Defective immunosuppressive function of Treg cells in visceral adipose tissue in MIF deficient mice. Cytokine . 2021;138:155372.
79. Beppu LY, Mooli RGR, Qu X, et al. Tregs facilitate obesity and insulin resistance via a Blimp-1/IL-10 axis. JCI Insight . 2021;6(3):e140644, 140644.
80. Sabapathy V, Stremska ME, Mohammad S, Corey RL, Sharma PR, Sharma R. Novel Immunomodulatory Cytokine Regulates Inflammation, Diabetes, and Obesity to Protect From Diabetic Nephropathy. Front Pharmacol . 2019;10:572.
81. Wara AK, Wang S, Wu C, et al. KLF10 Deficiency in CD4+ T Cells Triggers Obesity, Insulin Resistance, and Fatty Liver. Cell Rep . 2020;33(13):108550.
82. Cipolletta D, Feuerer M, Li A, et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells.Nature . 2012;486(7404):549-553.
83. Guzmán-Flores JM, Ramírez-Emiliano J, Pérez-Vázquez V, López-Briones S. Th17 and regulatory T cells in patients with different time of progression of type 2 diabetes mellitus. Cent Eur J Immunol . 2020;45(1):29-36.
84. Fagninou A, Nekoua MP, Sossou D, Moutairou K, Fievet N, Yessoufou A. Th2-Immune Polarizing and Anti-Inflammatory Properties of Insulin Are Not Effective in Type 2 Diabetic Pregnancy. J Immunol Res . 2020;2020:2038746.
85. Wang C, Wang H, Dai L, et al. T-Helper 17 Cell/Regulatory T-Cell Imbalance in COPD Combined with T2DM Patients. Int J Chron Obstruct Pulmon Dis . 2021;16:1425-1435.
86. Yuan N, Zhang HF, Wei Q, Wang P, Guo WY. Expression of CD4+CD25+Foxp3+ Regulatory T Cells, Interleukin 10 and Transforming Growth Factor β in Newly Diagnosed Type 2 Diabetic Patients. Exp Clin Endocrinol Diabetes . 2018;126(2):96-101.
87. Xu Q, Zhang X, Li T, Shao S. Exenatide regulates Th17/Treg balance via PI3K/Akt/FoxO1 pathway in db/db mice. Mol Med . 2022;28(1):144.
88. Guindi C, Khan FU, Cloutier A, et al. Inhibition of PI3K/C/EBPβ axis in tolerogenic bone marrow-derived dendritic cells of NOD mice promotes Th17 differentiation and diabetes development. Transl Res . 2023;255:37-49.
89. Han JM, Patterson SJ, Speck M, Ehses JA, Levings MK. Insulin inhibits IL-10-mediated regulatory T cell function: implications for obesity. J Immunol . 2014;192(2):623-629.
90. Pitmon E, Meehan EV, Ahmadi E, Adler AJ, Wang K. High glucose promotes regulatory T cell differentiation. PLoS One . 2023;18(2):e0280916.
91. Andersen MH, Schrama D, Thor Straten P, Becker JC. Cytotoxic T cells. J Invest Dermatol . 2006;126(1):32-41.
92. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol . 2012;12(11):749-761.
93. Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8+ T cell differentiation. Nat Rev Immunol . 2018;18(5):340-356.
94. Majdoubi A, Lee JS, Kishta OA, et al. Lack of the E3 Ubiquitin Ligase March1 Affects CD8 T Cell Fate and Exacerbates Insulin Resistance in Obese Mice. Front Immunol . 2020;11:1953.
95. Kiran S, Kumar V, Murphy EA, Enos RT, Singh UP. High Fat Diet-Induced CD8+ T Cells in Adipose Tissue Mediate Macrophages to Sustain Low-Grade Chronic Inflammation. Front Immunol . 2021;12:680944.
96. Yi HS, Kim SY, Kim JT, et al. T-cell senescence contributes to abnormal glucose homeostasis in humans and mice. Cell Death Dis . 2019;10(3):249.
97. Lee YH, Kim SR, Han DH, et al. Senescent T Cells Predict the Development of Hyperglycemia in Humans. Diabetes . 2019;68(1):156-162.
98. Khan IM, Perrard XY, Brunner G, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond) . 2015;39(11):1607-1618.
99. Ghazarian M, Revelo XS, Nøhr MK, et al. Type I Interferon Responses Drive Intrahepatic T cells to Promote Metabolic Syndrome. Sci Immunol . 2017;2(10):eaai7616.
100. Zhang F, Wang C, Wen X, et al. Mesenchymal stem cells alleviate rat diabetic nephropathy by suppressing CD103+ DCs-mediated CD8+ T cell responses. J Cell Mol Med . 2020;24(10):5817-5831.
101. Monteiro-Sepulveda M, Touch S, Mendes-Sá C, et al. Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling. Cell Metab . 2015;22(1):113-124.
102. Wang L, Sun P, Wu Y, Wang L. Metabolic tissue-resident CD8+ T cells: A key player in obesity-related diseases. Obes Rev . 2021;22(3):e13133.
103. Chapman NM, Boothby MR, Chi H. Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol . 2020;20(1):55-70.
104. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease.Nat Rev Immunol . 2011;11(2):98-107.
105. Zhang Y, Ma XZ, Zhao XY, et al. AGEs-RAGE-KCa3.1 pathway mediates palmitic acid-induced migration of PBMCs from patients with type 2 diabetes. Heliyon . 2023;9(4):e14823.
106. Nyambuya TM, Dludla PV, Nkambule BB. T cell activation and cardiovascular risk in type 2 diabetes mellitus: a protocol for a systematic review and meta-analysis. Syst Rev . 2018;7(1):167.
107. Kiran S, Rakib A, Kodidela S, Kumar S, Singh UP. High-Fat Diet-Induced Dysregulation of Immune Cells Correlates with Macrophage Phenotypes and Chronic Inflammation in Adipose Tissue. Cells . 2022;11(8):1327.
108. Boldizsár F, Berki T, Miseta A, Németh P. Effect of hyperglycemia on the basal cytosolic free calcium level, calcium signal and tyrosine-phosphorylation in human T-cells. Immunol Lett . 2002;82(1-2):159-164.
109. Pauken KE, Wherry EJ. SnapShot: T Cell Exhaustion. Cell . 2015;163(4):1038-1038.e1.
110. Nyambuya TM, Dludla PV, Mxinwa V, Nkambule BB. A systematic review and meta-analysis on the regulation of programmed cell death-1 on T-cells in type 2 diabetes. Medicine (Baltimore) . 2021;100(15):e25488.
111. Shi B, Du X, Wang Q, Chen Y, Zhang X. Increased PD-1 on CD4(+)CD28(-) T cell and soluble PD-1 ligand-1 in patients with T2DM: association with atherosclerotic macrovascular diseases.Metabolism . 2013;62(6):778-785.
112. Beltra JC, Manne S, Abdel-Hakeem MS, et al. Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms.Immunity . 2020;52(5):825-841.e8.
113. McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu Rev Immunol . 2019;37:457-495.
114. Sun P, Jin Q, Nie S, et al. Unlike PD-L1, PD-1 Is Downregulated on Partial Immune Cells in Type 2 Diabetes. J Diabetes Res . 2019;2019:5035261.
115. Zhou Y, Zhang H, Yao Y, Zhang X, Guan Y, Zheng F. CD4+ T cell activation and inflammation in NASH-related fibrosis. Front Immunol . 2022;13:967410.
116. Rattik S, Engelbertsen D, Wigren M, et al. Elevated circulating effector memory T cells but similar levels of regulatory T cells in patients with type 2 diabetes mellitus and cardiovascular disease.Diab Vasc Dis Res . 2019;16(3):270-280.
117. Solinas C, Gu-Trantien C, Willard-Gallo K. The rationale behind targeting the ICOS-ICOS ligand costimulatory pathway in cancer immunotherapy. ESMO Open . 2020;5(1):e000544.
118. Zhang HY, Ruan LB, Li Y, et al. ICOS/ICOSL upregulation mediates inflammatory response and endothelial dysfunction in type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci . 2018;22(24):8898-8908.
119. Yang TT, Song SJ, Xue HB, Shi DF, Liu CM, Liu H. Regulatory T cells in the pathogenesis of type 2 diabetes mellitus retinopathy by miR-155.Eur Rev Med Pharmacol Sci . 2015;19(11):2010-2015.
120. Moschovaki Filippidou F, Kirsch AH, Thelen M, et al. Glucagon-Like Peptide-1 Receptor Agonism Improves Nephrotoxic Serum Nephritis by Inhibiting T-Cell Proliferation. Am J Pathol . 2020;190(2):400-411.
121. Ntika S, Jois H, Lång K, et al. Elevated Glucagon-like Peptide-1 and a Th2 Shift May Support Reduced Prevalence of Thoracic Aortic Aneurysm in Patients with Diabetes. J Cardiovasc Dev Dis . 2021;8(11):143.
122. He J, Dai P, Liu L, et al. The effect of short-term intensive insulin therapy on inflammatory cytokines in patients with newly diagnosed type 2 diabetes. J Diabetes . 2022;14(3):192-204.
123. Mahmoud M, Juntunen M, Adnan A, et al. Immunomodulatory Functions of Adipose Mesenchymal Stromal/Stem Cell Derived from Donors with Type 2 Diabetes and Obesity on CD4 T cells. Stem Cells . 2023;41(5):505-519.
124. Zha J, Chi XW, Yu XL, et al. Interleukin-1β-Targeted Vaccine Improves Glucose Control and β-Cell Function in a Diabetic KK-Ay Mouse Model. PLoS One . 2016;11(5):e0154298.
125. Tan CL, Kuchroo JR, Sage PT, et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J Exp Med . 2021;218(1):e20182232.
126. Touch S, Clément K, André S. T Cell Populations and Functions Are Altered in Human Obesity and Type 2 Diabetes. Curr Diab Rep . 2017;17(9):81.
127. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol . 2015;16(11):1114-1123.