loading page

Non-atrial fibrillation cardiac phenotypes associated with common atrial fibrillation genotypic risk
  • +1
  • Sunil Kapur,
  • Samantha Beik,
  • Leah Gillon,
  • Calum MacRae
Sunil Kapur
Brigham and Women's Hospital
Author Profile
Samantha Beik
Brigham and Women's Hospital
Author Profile
Leah Gillon
Brigham and Women's Hospital
Author Profile
Calum MacRae
Brigham and Women's Hospital
Author Profile

Abstract

Background: Atrial fibrillation (AF) genetics studies have focused on a linear genotype- phenotype relationship, i.e. genetic predisposition to the arrhythmia. Genome wide association studies have implicated numerous upstream mechanisms responsible for AF. Objective: We hypothesized that the genetic predisposing factors for AF might be associated with non-AF clinical phenotypes and sought to characterize electrophysiology parameters as a function of AF genetic risk. Methods:. Biosamples were obtained from 405 subjects for classification of carrier status at 12 single nucleotide polymorphisms with a known association to AF allowing calculation of a validated AF genetic risk score. We then analyzed subgroups within the total population; in order to understand the effect on (a) sinus node function and cardiac conduction (b) primary atrial flutter (c) left atrial appendage morphology. Results: We evaluated 405 patients consisting of a range of genetic risk scores from −1.016 to +2.178. Within this, we identified 86 patients without prescribed chronotropic pharmacotherapy with a 24-hour Holter recording to investigate sinus node function; 181 patients with invasive H-V measurement at the time of electrophysiologic study to investigate cardiac conduction; 78 undergoing cavotricuspid isthmus ablation for typical atrial flutter without prior diagnosis of AF; and 284 patients with cardiac imaging of the left atrial appendage. Conclusions: A common AF genetic risk score is associated with a number of non-AF electrophysiologic relevant phenotypes. Sinus node function, AV node physiology, post flutter ablation AF risk, atrial appendage morphology all appear to be associated with the common genetic AF risk.