loading page

Iterative approximations of common fixed points with simulation results in Banach spaces
  • Ashis Bera,
  • Ankush Chanda,
  • Lakshmi Kanta Dey
Ashis Bera
National Institute of Technology Durgapur
Author Profile
Ankush Chanda
VIT University
Author Profile
Lakshmi Kanta Dey
National Institute of Technology Durgapur
Author Profile

Abstract

In this article, we propose the Abbas-Nazir three step iteration scheme and employ the algorithm to study the common fixed points of a pair of generalized $\alpha$-Reich-Suzuki non-expansive mappings defined on a Banach space. Moreover, we explore a few weak and strong convergence results concerning such mappings. Our findings are aptly validated by non-trivial and constructive numerical examples and finally, we compare our results with that of the other noteworthy iterative schemes utilizing MATLAB $2017$a software. However, we perceive that for a different set of parameters and initial points, the newly proposed iterative scheme converges faster than the other well-known algorithms. To be specific, we give an analytic proof of the claim that the novel iteration scheme is also faster than that of Liu et al.