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This is a preprint Journal Club review of Memory sequencing reveals heritable single cell gene
expression programs associated with distinct cellular behaviors by Sydney M Shaffer, Benjamin L
Emert, Ann E. Sizemore, Rohit Gupte, Eduardo Torre, Danielle S Bassett, and Arjun Raj. The preprint
was originally posted on July 27, 2018 (DOI: https://doi.org/10.1101/379016).

Dear authors,

Thank you for posting your work as a preprint on BioRxiv. We discussed your work at our latest quantitative
and systems biology journal club at UCLA. Below is a summary of our feedback containing our main remarks,
points of discussion, and suggestions.

This study aimed to identify genes and groups of genes that exhibit memory persisting over multiple cell
divisions. The authors hypothesized that any such genes would manifest phenotypically as rare cell subsets
within a seemingly homogeneous population. To test their hypothesis, they developed a clever new method,
termed MemorySeq, which adapts the classic Luria-Delbrück fluctuation experiment to examine gene expres-
sion at the genome scale. In this experiment, a clonal population of cells was passed through a bottleneck
and gene expression was quantified by RNA sequencing. Genes that exhibited high inter-clonal expression
variability were identified as exhibiting multi-generational memory. MemorySeq also allowed them to identify
genes that conferred drug resistance, confirming that heritable expression can create specialized cell subsets.
In general, the methods were innovative and well-suited to analyze gene expression heritability at the sys-
tems scale. The paper was very clearly written and the figures were, for the most part, well-presented. Our
comments are outlined below.

Major points

To validate MemorySeq results at the single cell level, the authors used single molecule RNA FISH and
time-lapse fluorescence microscopy. Time-lapse microscopy was used to establish a rough estimate for the
fluctuation timescale (for NGFR) and conclude that cells traverse the high and low states over an 8 day period.
Given the limited scope of data presented, it is difficult to know if this is true. Considering experimental
variability and measurement error, we do not believe that a single cell (Fig. 2E) is sufficient to establish this
conclusion. A larger sample of cells exhibiting this behavior, along with some quantification of the fluctuation
timescales, would help to make the argument more convincing. In addition, a comparison should be made to
a fast fluctuating (non-heritable) gene as a control. Second, the images are difficult to interpret as they seem
to contain imaging or analysis artifacts (such as lines and saturated brightness). This should be corrected.
Third, we found it surprising that the authors did not take advantage of the power of this method to further
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corroborate MemorySeq. Although we appreciate the significant challenges associated with tracking cells
over 8 days of imaging (especially given the motility of certain cancer cell lines), a lineage analysis would
provide excellent validation for their LD experiment. One approach to improve the performance of automated
tracking is to plate H2B-iRFP/NGFR-mNeon green cells sparsely amongst unmarked cells and track only
the marked cells.

Next, the authors presented a method by which new resistance genes might be identified. They validate
the method by identifying two genes (NGFR and CA9, Figs. 3 and 4) that have been previously linked to
resistance. The authors should reference previous work identifying and mechanistically characterizing the
relationship between CA9 expression and drug resistance1-3. Demonstrating the potential power afforded by
MemorySeq in finding a novel target(s) would elevate the impact of the work. After identifying such a target,
the authors could sort based on the expression of that gene and perform resistance assays.

The authors attempt to link drug resistance to heritable gene expression. However, they don’t directly test
the hypothesis that heritable gene expression confers a selective advantage to drug treatment. We think the
best approach would have been a classic Luria-Delbrück experiment: treat different clonal lineages separately
with drugs and measure survival. One would expect a greater degree of inter-clonal variability in survival
compared to that of mixed populations (similar to noise control). This could be achieved by expanding single
clones and treating each population with drug (where cells are guaranteed to be related) and comparing the
fraction killed to a mixed noise control. If the authors’ conclusion is true, this experiment should reveal
that most wells are entirely susceptible to drug while a small percentage are largely resistant, giving the
distinctive long-tail distribution observed for gene expression of resistance-related genes.

Minor points

We were curious about what exactly the heritability genes were. Aside from the obvious clinical relevance
of resistance genes, we were excited to know what the ontogeny signatures would reveal about heritability
genes. In other words, what genes are cells designed to inherit best? Although the LD genes from the two
cell lines were not highly overlapping, it would have been interesting to see whether they possess overlapping
GO signatures.

Regarding the analysis of co-regulated genes (Fig. 5C), we felt that the comparison of R2 values between the
bulk RNA-Seq and smFISH would have been better visualized and interpreted using a scatter plot instead
of heatmaps.

When discussing “intermediate memory”, paragraph 2 of main text. The authors should mention some of
the papers that take genetically identical cells and investigate population heterogeneity maintained across
divisions due to inherited gene expression of molecular network state4-8.

Thank you again for posting your work on BioRxiv. We had a wonderful discussion about the paper in our
journal club and we hope you find our comments useful.

Author names (ordered alphabetically)

Alon Oyler-Yaniv, Jen Oyler-Yaniv, Maeve Nagle, Ryan Lannan, Simon Mitchell, Zachary Hemminger, and
all of the remaining members of the WESQWorld Journal Club
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