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2018 Capstones

As part of the urban metabolism, city buildings consume resources

and use energy, producing environmental impacts on the surrounding

air by emitting plumes of pollution. Plumes that have been observed

in Manhattan range from water vapor emitted from heating and cool-

ing systems’ steam vents to CO2 and dangerous chemical compounds

(e.g. ammonia, methane). City agencies are interested in detecting

and tracking these plumes as they provide evidence for signs of urban

activity, cultivation of living and working spaces and can support the

provision of services whilst monitoring environmental impacts. The

Urban Observatory at New York University’s Center for Urban Sci-

ence and Progress (CUSP-UO) continuously images the Manhattan

skyline at 0.1 Hz, and day-time images can be used to detect and

characterize plumes from buildings in the scene. This project built

and trained a deep convolutional neural network for detection and

tracking of these plumes in near real-time. The project created a

large training set of over 1,100 actual plumes as well as sources of

contamination such as clouds, shadows and lights, and applied the

1
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relevant network architecture for training of the model. The trained

convolutional neural network was applied to the archival Urban Ob-

servatory data between two time periods: 26th October-31st Decem-

ber 2013 and 1st January-13th March 2015 to generate detections of

building plume activity during those time periods. Buildings with

high plume ejection rates were identified, and all plumes could be

classified by their color (i.e. carbon vs water vapor). The final result

was a detection of plumes emitted during the time periods that the

dataset spans.

1 Introduction

Smoke plumes contribute significantly to the air pollution in cities

posing serious health risks including heart disease, lung cancer, and

asthma. The New York City Department of Health recently esti-

mated that up to 2,700 premature deaths a year could be attributed

to fine particulate matter and ozone in the air (NYC Health, 2013;

Mills et al., 2008). In 2005, it was estimated that approximately

10,000 buildings in the city burned number 4 and 6 heating oils,

which emit more air polluting Particulate Matter (PM) 2.5, Sulphur

Dioxide (SO2) and nickel than alternative fuels NYC Health (2013).

In 2007, NYC launched a sustainability program, titled PlaNYC,

which aims to bring significant emission reductions, with a goal of

30%, by 2030 (City of New York, 2013). According to City of New

York (2010), NYC buildings account for 75% of all of greenhouse

gas emissions (including CO2), meaning that in order to enact the

necessary change, building energy usage needs to be addressed and

understood. The wider implications of this study could impact many

different city agencies and departments such as those overseeing en-

2
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ergy, environment, health, transport, buildings, and housing.

The traditional methods for detection of plumes rely on extensive

groups of connected sensors (sensor networks) that provide a local

measure of air quality by detecting the presence of particles in the

air. (Brink and Pebesma, 2013) This would require a dense and ex-

tensive network in order to gain a comprehensive view of the entire

city, requiring permission from building owners to use their build-

ings, and a team to maintain the network. Additionally, all nodes

need network connectivity to support data transfer, making the pro-

cess cumbersome and costly. This project’s objective is to make the

spatio-temporal tagging of the plumes a real-time and viable process

using image data.

Automatic image-based smoke detection models from the literature

span a variety of different methods, many using hand-engineered

features (e.g. threshold setting). Çelik et al. (2007) take a statistical

approach, using color models to detect both regions with smoke and

those with fire which are constructed using hand-engineered color

features such as setting thresholds for the color range. Yuan (2008)

attempts to improve the false alarm rate of video-based smoke detec-

tion algorithms by incorporating the orientation of the smoke’s mo-

tion, helping remove the disturbance of other moving objects. Gubbi

et al. (2009); Ko et al. (2013) use visual codebook style represen-

tations to detect the presence of smoke, employing support vector

machines (SVMs) and random forest classifiers, respectively.

Recognizing that the existing literature was primarily rule-based

models and hand-engineered features, and the potential of Convolu-

tional Neural Networks (CNNs) given their demonstrated success in

3
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image classification, Karpathy et al. 2014. Frizzi et al. (2016) trained

CNNs to detect fire and smoke in still images. Convolutional neural

networks (CNNs) have emerged as the state-of-the-art image classi-

fication algorithm due to its efficient architecture that takes advan-

tage of the stationarity and locality of patterns found in images and

videos. Unlike other machine learning methods, Convolutional Neu-

ral Networks do not rely on engineered features, but rather extract

the features most relevant for classification automatically based on a

labeled training set. CNNs perform well for the goal of image classi-

fication; however what about the more detailed question of where a

specific object is within an image. This may be the case for a plume

(or multiple plumes) within an image. To correctly identify where

the main objects in the images, Faster R-CNN is a specific form of

CNN that includes a region proposal network which hypothesizes ob-

ject locations via bounding boxes, and in a more efficient way than

its predecessors, R-CNN and Fast R-CNN (Ren et al., 2017).

This project aims to create a method for detecting and recording

plumes of pollution in NYC using images gathered from the Urban

Observatory at New York University’s Center for Urban Science and

Progress (CUSP-UO). The CUSP-UO studies the complex interac-

tions between the physical, natural, and human components of the

city as a coherent, definable system with the goal of enhancing public

well-being, city operations, and future urban plans. CUSP-UO con-

tinuously images the Manhattan skyline at 0.1 Hz, for use in image

based detection which is synoptic, persistent and non-intrusive. The

daytime images can be used to detect and characterize plumes from

buildings in the scene (Dobler et al., 2015). The project also aims

to identify various statistics such as the origin, count and frequency

4
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of the plumes. This will be performed by constructing a training

dataset which will be used to train Faster R-CNN models for plume

location. The locations can then be mapped to geographic coordi-

nates to identify a given source building.

2 Data description

This project uses images from the CUSP-UO cityscape, collected

every day across two distinct time periods: October 26th through

December 31st 2013 and January 1st through March 13th 2015.

2160x4096 pixel RGB images with 8-bit depth are sampled every

10 seconds. The CUSP-UO has several camera deployments. The

camera used in this paper is located in 1 Metrotech Center at an

elevation of approximately 800 ft from the ground, pointing north.

These images capture a diverse set of buildings from the Lower East

Side up to Midtown of Manhattan (Figure 1).

The images will be divided into a training, testing and validation

sets. Due to visibility concerns, only daytime images are considered,

where daytime is defined to be between 5:00AM and 06:00PM year

round. Most days comprise ˜8,630 images in total, with ˜4,700 day-

time images. Some days have significantly less (Figure 2) and are

likely periods where the camera had to be taken offline for main-

tenance. One day 2/9/2015 doesn’t have any images. The camera

was likely undergoing maintenance on that day. The total number

of images the CUSP-UO is 1,133,811 with 612,902 during daytime

hours.

5
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Figure 1: Image from the CUSP-UO, a facility that continuously images the New York City skyline. This
camera is located at 1 Metrotech Center facing north.

Figure 2: Number of images per day from the CUSP UO 1MTC location for the days being considered
between 10/26-12/31 in 2013 and 01/01-03/13 in 2015. The typical day has 4,675 images per day between
5:00AM and 6:00PM.

3 Methodology

The approach taken for detection of polluting plumes in New York

City was as follows:

6
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1. Background subtraction - a differencing technique is ap-

plied to the images to remove stationary features which are com-

mon between images, and highlight differences between static and

moving objects, including people, vehicles, clouds, shadows, and

of course pollution plumes .

2. Image labelling for compilation of training set - us-

ing visual inspection of differenced images paired with statistical

heuristics to identify images containing plumes along with other

sources of noise and perturbance which a model may pick up as

signal.

3. Model development - training and testing of Faster-RCNN

model to develop a plume detection algorithm for use across the

larger set of images (those not previously included in the training

or testing set).

4. Plume detection census - run the model across the complete

set of images to compile a census of all plumes along with statistics

such as source, frequency, and type of plume emitted by buildings

in the images.

4 Results

The Faster R-CNN model was trained on a down-sampled set of all

tagged annotations (Table 1).

Class Total Train Test Validation
Plume 11618 5703 3480 2435
Light 400 186 133 81
Cloud 258 122 75 61

Shadow 158 80 44 34
Ambiguous 15 8 3 4

Table 1: Summary of down-sampled tagged annotations

7
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The average precision (mAP) on the test set for detection of Plumes is

61.6%. Compared to the other classes, the model is best at detecting

plumes with the highest mean AP, mean Recall and mean Precision.

The mean Precision across all classes is relatively low, with mean

Precision for plumes around 14.0%, whilst all other classes the mean

Precision is less than 1%. The low mAP rates for the other classes

is a result of the incomplete tagging. This was more severe with

the sources of contamination because fewer examples were captured

for each of those classes, both proportionally to the number of con-

taminants in the dataset and relative to the total plume count.

Class Mean Average Precision Mean Recall Mean Precision
Plume 0.62 0.7 0.14
Light 0.06 0.23 0.0
Cloud 0.07 0.18 0.0

Shadow 0.24 0.52 0.0
Ambiguous 0.22 0.33 0.0

Table 2: Summary of mean AP, mean recall, mean precision

In this ROC curve for plumes, it shows the tradeoff between sensi-

tivity and specificity, and the closer the curve follows the left-hand

border and then the top border of ROC space, the more accurate the

test.

The model provides regional proposal suggestions for objects within

the image along with a likelihood the object belongs to a given class.

Figure 5 shows a number of examples of these region proposal sug-

gestions for classification of plumes and the other classes within the

image. Most of the detentions in these images are plumes, although

reviewing closely you will see a detection of a light in the top right

8
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Figure 3: ROC curve for Plumes

corner of one of the images.

9
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Figure 4: ROC curves by class

Figure 5: Example detection of plumes using trained model on test images. A threshold of 0.8 was applied
for detections.

5 Conclusions

In this study, an image-based method for detection of polluting

plumes from dense urban environments was presented. The approach

fitted a regional convolutional neural network to continuously sam-

pled images for New York city’s skyline. We showed the mean

average precision of detecting plumes is 61.66 % on the testing set.

During the labeling of the training set, it was found that the tem-

poral context was effective for the disambiguation of plumes and

other plume-like patterns. It is believed that the model performance

would improve by integrating that contextual information through

10
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the use of a 3D CNN, such as Region Convolutional 3D Network (R-

C3D) (Xu et al. 2017), which can be used to extract spatiotemporal

features capturing activities, accurately localizing the start and end

times of each plume.

6 Supplementary materials

6.1 Methodology (Technical description)

6.2 Background subtraction and statistical heuristics

Plumes are difficult to identify in the original images because there

are many other distracting features in the cityscape. To control for

this, background subtraction methods (Figure 6), were employed in

order to remove stationary objects from the frame. This works as

a noise attenuation method which both subtracts out irrelevant fea-

tures for detecting plumes and removes a majority of the features

that are specific to this cityscape and makes the model more gener-

alizable.

The polluting plumes emitted by buildings evolve in shape and opti-

cal depth over a couple of minutes or shorter. This characteristic

evolution was exploited by showing a group of consecutive back-

ground subtracted images in order over time to identify plumes as

they change in shape, expand and track the trajectory as they rise

into the air. Background images were created by averaging the sur-

rounding images and taking the difference between the target image

11
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Figure 6: Background subtraction of the image with a plume. All stationary features are removed (shown in
white) and moving objects are highlighted in black. The plume is visible slightly off to the left center of the
image. Other differences in the image include the cars on the motorway, movements in the river and faint
grey patches which may be light, reflection, and shadows on the buildings.

and the averaged baseline. Once subtracted from the target im-

age, plumes are visible in the resulting frame, along with any other

changes to the image such as cars, clouds, and other features which

will constitute potential contaminants (false positives).

The following section provides detail on the application used for tag-

ging of plumes and other features. We also provide a description of

the different features tagged and examples in both the original and

background subtracted images.

6.3 Image Labeling

In order to apply labels to the images and extract plumes to gener-

ate the training set, a web-based tool was built using d3.js, a data

visualization library in Javascript Bostock et al. (2011), and Flask, a

web application framework in Python (Ronacher et al., 2010), as is

seen in Figures 7 and 8. The tool allowed us to apply bounding box

12
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labels to batches of consecutive images; collect summary statistics

on number of tags per day, or per image; linked tags between images

to track appearance of the same plume across multiple images; as

well as account for who applied tags to which images to assess for

intrinsic human bias. The images are manipulated in Python and

OpenCV (Bradski, 2000) before displaying the images on screen.

Figure 7: The plume labeling tool. Here the calendar application is displayed showing number of images per
day, and number of labels which have been applied by day.

Examples of tags applied:

The tags applied included the following:

1. Plumes (two types of plumes will be outlined below)

2. Clouds

3. Shadows

4. Lights, and an

13
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Figure 8: The user can browse the images in sequence and draw bounding boxes around instances of plumes.
Here the original image is displayed. Generally, the background subtracted images will be used for labeling.

5. Ambiguous (miscellaneous) identifier

Further detail on the characteristics and features attributable to these

tags is provided below.

6.3.1 Plume (black smoke cloud)

Description: A number of buildings in New York emit large black

pollution plumes (as shown on the left-hand side of Figure 9). Often

these are from large (and old) boilers used for building heating.

Features / Attributes: A typical example appears in around

3-10 consecutive UO images. The background subtracted images

show the plume highly concentrated at the point of emission, and

expanding and diffusing as the plume progresses and dissipates into

the air.

14
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Figure 9: Example of tagged plume, cloud, shadow, light, ambiguous object shown in both the original image
(left) and background subtracted image (right)

Figure 10: Animation of tagged Black smoke cloud plume in original image (The first “still image” is the
frame before plume originates)

Figure 11: Animation of tagged Black smoke cloud plume in background subtracted image (The first “still
image” is the frame before plume originates)

Source of contamination: Detection of black smoke plumes is

highly variable across days inspected, due to weather and visibility

considerations such as snow and fog. Wind is also a large determinant

in visibility as high wind speeds cause faster dissipation.

Issues / challenges: Another challenge with these black smoke

plumes as they rise into the air above the city skyline is they appear

very similarly to clouds in the sky. The temporal context is very

useful in disambiguating them, as the object trajectory is distinct

from clouds.

15
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6.3.2 Plume (steam vents)

6.3.3

Figure 12: Example of multiple steam vents tagged in single image. As shown there are 14 distinct steam
vents tagged in this particular image, with the original shown on the left, and background subtracted image
shown on the right.

Description: New York City has a large steam system for the

purposes of heating and cooling high rise buildings and businesses.

Steam vents in New York are often the result of outside water coming

into contact with pipes from the steam system network; and this is

more common in the winter with snow and rain.

Features / Attributes: The steam vents are seen in the UO

images as a continuous small plume of grey-white cloud streaming

from the tops of buildings, shown in Figure 9. As in Figure 12, there

may be over 10 or more steam vents in a single image.

Source of contamination: Detection of steam vents is dependent

on conditions observed over particular time periods. Variables such

as wind, temperature, lighting, rain and snow can all impact both the

occurrence of steam plumes, along with ability to detect these plumes

in the UO images. Whilst rain and snow can make the occurrence

of steam vent more common when they come into contact with the

hot pipes; they also make their visibility more difficult in the images

we have available.

Issues / challenges: A large number of these steam vents appear,
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particularly on cold winter days. The small and continuous nature

of these plumes means complete tagging is time consuming. There

may also be days where there is at least one of these steam vents in

every single image for the whole day.

6.3.4 Clouds

Description: Clouds are visible masses of water droplets or other

particles above skyline. Level of cloud cover varies considerably, typ-

ically moving across the skyline from left to right of the image.

Features / Attributes: The slower moving clouds often do not

appear in the background subtracted images because of the low rate

of change in color and movement. Time periods with higher cloud

activity tended to have high activity across the entire sky.

Source of contamination: For detection of polluting plumes,

clouds pose a source of noise when they are dense, moving quickly

and follow the same trajectory as a partially dissipated black smoke

plume follows after it has risen above the city skyline. These are

particular sources of signal we are interested in tagging so model can

learn to distinguish as non-plumes.

Issues / challenges: The objective of tagging clouds is not to

identify images containing clouds, but rather those which may serve

as a source of noise for our model aimed at detecting plumes. Efforts

were concentrated on tagging clouds which have similar features to

the plumes of interest.

6.3.5 Shadow

Description: Shadows appear in the images as the result of light

being shone, or blocked (e.g. by clouds) on part of the image over

17
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short periods of time. High levels of shadow appear during the sunrise

and sunset periods each day; and may also appear during other parts

of the day dependent on weather and visibility conditions.

Features / Attributes: The shadows appear as building silhou-

ettes in the background subtracted image. A feature we can use to

distinguish shadows from plumes are the distinct edges and outlines

of the buildings characteristic of the shadow when compared with

the free-form characteristic of plumes.

Source of contamination: The shadows appear as a source of

noise for detection of pollution plumes as they result in very dark

spots and differences in the background subtracted images. This may

appear like the originating source of a plume as typically the shadows

are dense and can change a lot between images. The shadows can also

move between images as the light or cloud moves across the image,

although typically movements are horizontal across the image, rather

than a rise into the air like plumes do.

Issues / challenges: Frequency and form of shadows can vary

considerably across images. The objective of tagging shadows is to

provide examples of inter-image motion that are not plumes to im-

prove the model’s precision.

6.3.6 Light

Description: Lights appear in the skyline at different time pe-

riods, most frequently before sunrise and after sunset. Lights are

also observed on the tops of buildings and tall structures as collision

avoidance measures for aircraft which may fly overhead.

Features / Attributes: The lights appear again as small, round

objects in the skyline and present as bright areas in the original im-
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age. The lights may appear in single images such as flashing warning

lights atop building, or consecutive images when they are switched

on, or off.

Source of noise: Lights are a densely concentrated object in the

differenced image. They appear very similarly to when smoke clouds

initiate, although they are stationary and do not dissipate in subse-

quent images like the pollution clouds do.

Issues / challenges: The lights comparably easy to identify for

tagging, relative to clouds and shadow. They appear as a very pro-

nounced difference in the background subtracted images, with a static

shape over time.

6.3.7 Ambiguous identifier

Description: The “ambiguous” label was used to tag any mis-

cellaneous sources of perturbance which may be confused as signal.

The identifier hasn’t been used widely. Features include birds flying

overhead; helicopter and aircraft; shadows of plumes on buildings

(it’s not really a plume, and it’s not our typical representation of a

shadow either).

Features / Attributes: The ambiguous identifier is mainly used

as a catch-all for other sources of potential noise. If certain subclasses

appear as false positives frequently, they may be revisited and further

codified as what they actually represent (e.g. aircraft; shadow of a

plume etc.)

Source of noise: These ambiguous identifiers will be used to pro-

vide extra information about miscellaneous signals that can’t be cap-
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tured by the existing labels. The example shown below in Figure 9

is the shadow of a plume on a building.

Issues / challenges: The ambiguous identifiers are quite sparse

and will most likely have minimal effect on model training, however

they have been included where the feature appear pronounced and

similar to the plumes found either elsewhere in the image or previous

images.

Summary of tags applied

For compilation of the training set, images were reviewed across sev-

eral days, with a goal to tag 5,000 different examples of plumes; and

1,000 different examples of clouds, lights and shadows respectively.

Figure 13 below show number of plumes, clouds, lights, shadows and

other categories identified (represent count of bounding boxes).

Figure 13: The number of individual bounding boxes gathered for each label. This includes separate counts
for each frame that the plume appears in.
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6.4 Model Architecture

The model architecture will be based on Faster R-CNN, a state-

of-the-art object detection CNN that uses a region proposal algo-

rithm to hypothesize object locations (Ren et al., 2017). CNN uses

a serious of pattern detectors that the model learns from training

data, and classify images in ImageNet training set into the differ-

ent classes (Krizhevsky et al., 2017). In order to derive object loca-

tion information, R-CNN (the antecedent to Fast R-CNN and Faster

R-CNN) creates region proposals, using a process called Selective

Search (Girshick et al., 2014), and run the images in bounding boxes

through a pre-trained AlexNet and finally use SVM to classify ob-

jects. To speed up and simplify R-CNN, Ross Girshick came up Fast

R-CNN with RoI (Region of Interest) Pooling, which shares the for-

ward pass of a CNN for an image across its subregions (Girshick,

2015). Based on the works of CNN, Faster R-CNN was chosen, as

it runs more quickly and efficiently by reusing the convolutional fea-

tures for both the image classification and the region proposal (Ren

et al., 2017).

Figure 14: Complete Faster-RCNN architecture used for detection of pollution plumes in UO images.

21



P
os

te
d

on
A

u
th

or
ea

15
A

p
r

20
19

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
55

5
3
41

09
.9

54
20

30
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

The detailed model architecture was developed and tested on the

PASCAL Visual Object Classes (VOC) dataset. Ren et al. (2017)

included existing image sets, development kit functions, classifica-

tion functions, detection functions, segmentation functions and lay-

out functions. The Faster R-CNN model will be used as the founda-

tion for training the model for detecting the plumes, and weights pre-

trained on the VOC 2007 dataset will be used to initialize the model.

The dataset used was converted into the PASCAL VOC data anno-

tation format for easier compatibility with the existing code base.

6.5 Plume detection census

An important piece of information to extract from instances of plumes

is the building that the plume originated from. This is a non-trivial

task because it requires reconstructing 3D information from using

only a 2D image. Photogrammetry is a field of research that is used

to undertake this, and an existing mapping from image pixel to the

3-dimensional location was used to geolocate the plume with respect

to its building of origin.

7 Discussion

Visual identification of instances of plumes is performed over a subset

of the dataset in order to generate a labeled dataset for training the

model. Due to the large number of images, the process of labeling

was very time-consuming. In order to improve the efficiency of the

process, statistical heuristics were used to find points of separation

between images that contained plumes and those that do not. This
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approach whilst useful, was not always conclusive and one aspect

to be wary of were the selection biases associated with any of these

techniques. Other challenges associated with labeling the dataset in-

cluded variations in weather and visibility patterns across different

time periods which made plumes difficult to identify. Additionally

to this, usage patterns vary throughout the time periods meaning

that frequency, volume, and type of plumes varied considerably. We

needed to be conscious of this when identifying the training set to

ensure a suitably representative set of images were reviewed (by mul-

tiple different reviewers) to tag enough plumes across different con-

ditions such that the model will be be more robust to environmental

variations.
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