
P
os

te
d

on
A

u
th

or
ea

5
M

ay
20

19
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
55

70
30

64
.4

35
62

84
5

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

A classical model of a particle passing double slits
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Abstract

A classical model is presented that, due to electric field, when a particle is passing double slits, a self induced force can arise so

that the particle is impacted by both slits simultaneously to form concentration varying patterns. While this model may not

precisely account for the interference fringes, it raises a question on the origin of the diffraction patterns and imposes restrictions

on wave-particle duality.
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Unlike the general perception that double slit experiment can only be possibly explained within quantum
mechanics (see (Thomas Juffmann et al, 2012; Roger Bach et al, 330AD) and references therein), a classical
model is presented to show that wave-particle duality is insufficient to account for the double slit experiment.
In addition, a single particle can be impacted by both slits simultaneously, thus wave-particle duality may
not even be necessary for double slit experiment.

Conceptually, a particle passing a surface can induce a field that exerts a force on itself to change its own
trajectory. More specifically, a double slit is a surface S with certain portion (the slits) removed, when a
charged particle q (or a molecule as an electric dipole) is passing next to the surface S, charge opposite to q
is induced on the surface with density σ, which will generate a field E, thus exert a force F on the original
charge q. Due to the slit(s) on the surface S, the field E of the induced charge can have a lateral component,
which pulls the charge q towards some regions while pushes the charge q away from other regions. The
outcome would be concentration varying patterns, somewhat like those in a diffraction.

In the following discussion, a surface S is placed at plane z=0. Three configurations of the surface S are
examined, each having no slit, one slit and two slits respectively. With the slits aligned along x axis, non
vanishing lateral component of the induced field in the direction of y axis is computed as an integral over the
surface S so that multiple slits on S can simultaneously have impact on a single passing charge q. We then
study the applicability of the model to show that the various scenarios in the model may impose restriction
on wave-particle duality.

The electric field E due to charge density ρ(x′) is(1998)

E(x) =
1

4πε0

∫
ρ(x′)

x− x′

|x− x′|3
d3x′

(1)
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For induced charge on the surface S, the charge density ρ becomes surface charge density σ. If ŷ is the unit
vector in the direction of positive y axis, the lateral component of the induced field is

Ey = E · ŷ

=
1

4πε0

∫
S

σ(x′, y′)(y − y′)dx′dy′

((x− x′)2 + (y − y′)2 + (z − z′)2)3/2

(2)

For the purpose of this discussion, we are mainly interested in the impact of Ey on the passing charge q, so
(x, y, z) specifies the location of the passing charge q, while (x′, y′, z′) with z′ = 0 is the coordinates of the
induced charge on the surface S.

In the first configuration, the surface S locates at z=0 with no slit on it. Assuming the surface is conducting
and infinite, the Dirichlet boundary condition is

Φ(x′, y′, z′ = 0) = 0

(3)

where Φ is the scalar potential such that E = −∇Φ. When charge q is placed next to the surface at
(x = 0, y, z), as show in fig. 1,

the induced surface charge density can be obtained by method of image(1998)

σ(x′, y′) =
−q

2πε0

|z|
(x′2 + (y′ − y)2 + z2)3/2

(4)

then the lateral component of induced field at charge q can be computed by substitution of (4) into (2). Due
to symmetry

Ey(x = 0, y, z)|0slit = 0

(5)

2



P
os

te
d

on
A

u
th

or
ea

5
M

ay
20

19
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
55

70
30

64
.4

35
62

84
5

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 1: A conducting surface S is placed at plane z=0, a charge q at (0,y,z) and its image at (0,y,-z)

In the second configuration, the surface S at z=0 has one slit along x axis, as shown in fig. 2a.

The presence of the slit changes the distribution of the induced charge so σ differs from (4). (A precise form
of σ depends on various factors, e.g. the thickness of the slit in z direction)

If the slit is small compared to the distance between the charge q and the surface S, the surface charge density
can be approximated with (4). Then the lateral component Ey of induced field at charge q is computed by
substitution of (4) into (2) with the integration over surface S excluding the slit.

Let dEy be the integrand in (2), S1 be the area inside the slit such that S + S1 is the entire plane z=0 and
S1 does not intersect with S, then the integral in (2) can be decomposed

∫
S+S1

dEy =

∫
S

dEy +

∫
S1

dEy

(6)

the left hand side is an integral over the entire plane z=0 (i.e. Ey|0slit in the configuration of no slit), the
first term on the right side is an integral over the surface S excluding the slit (i.e. Ey|1slit in the case of one
slit). From (5), the left side vanishes, so

3
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Figure 2: a) A conducting surface S is placed at plane z=0. On the surface, there is a slit along x axis with
its center at the origin. A negative charge q is passing at (0,y,z). b) Sketch of the lateral component of the
induced electric field at the location of the negative charge q

Ey|1slit =

∫
S

dEy = −
∫
S1

dEy

(7)

Thus the integral over surface S can be derived from the integral over S1, the complementary surface of S.
Physically, the lateral field computed by the integral over S1 arises as if a conducting surface inside the slit
(S1) is filled with charge of the same type of charge q. Thus Ey|1slit tends to push charge q further away
from the slit.

A sketch of Ey in the presence of one slit and negative charge q is shown in fig. 2b, in region where |y| is
large, charge q is far away from the slit as if it is next to a surface without slit, Ey falls to zero. When
charge q is at y > 0, Ey < 0, thus induce a force on the negative charge q to push it further in the positive
y direction. For y < 0, Ey > 0, the induced force pushes the negative charge q further in the negative y
direction. As a result, the distribution of charge q is spread wider along y axis.

In the third configuration, the surface S at z=0 has two slits, each along x axis, as shown in fig. 3a.

In an approach similar to the case of one slit, define S1 the area inside the slit #1, S2 the area inside the
slit #2, then S + S1 + S2 is the entire plane z=0, and the integral in (2) can be decomposed

∫
S+S1+S2

dEy =

∫
S

dEy +

∫
S1

dEy +

∫
S2

dEy
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Figure 3: a) A conducting surface S is placed at plane z=0. On the surface, there are 2 slits along x axis
with their centers at (0,-d/2,0) and (0,d/2,0) respectively. A negative charge q is passing at (0,y,z). b)
Sketch of the lateral component of the induced electric field at the location of the charge q

(8)

again, the left side vanishes due to (5), then

Ey|2slits =

∫
S

dEy = −
∫
S1

dEy −
∫
S2

dEy

(9)

With (7), the integral over S1 in (9) is the lateral component of induced field of slit #1, the integral over S2

in (9) is the lateral component of induced field of slit #2, thus Ey|2slits is equivalent to a superposition of
induced fields of each of the slits. To certain degree, such superposition of induced fields resembles those in
wave theory.

For the slit centering at (0,-d/2,0), Ey can be approximated with the curve of fig. 2b shifting by -d/2. Like-
wise, Ey of the slit at (0,d/2,0) can be approximated with the curve of fig. 2b shifting by d/2. Superposition
of the two slits gives rise to the sketch of Ey in fig. 3b, due to the superposition, fields at certain region
cancel out, thus ripples arise.
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The lateral component Ey of the induced field will alter the trajectory of charge q. Under the impact of
Ey, the charge q tends to aggregate at certain area along the y axis, while escape other area. For Ey of the
shape as in fig. 3b, fringe like spatial distribution can arise.

As eqn. (7) and (9) show, the lateral component Ey of the induced field is derived by integration over the
whole surface S, with all slits on the surface excluded from the integration. Thus all slits contribute (in a
subtractive way) to define the surface over which the integral is computed. Therefore Ey is dependent on all
slits on the surface S, which subsequently have impact on the motion of charge q, even if the charge q does
not pass through some of the slits.

In addition to define the surface of integration, slit(s) also have impact on the integrand in (7) and (9). In
the above treatment of single and double slits, the induced surface charge density σ is assumed to be the
same as if the surface has no slit, this is not strictly precise, as the surface charge density (4) is derived from
boundary condition (3). When the surface contains slits of various configurations, the boundary condition
is different from (3), then the induced charge density deviates from eqn. (4), and Ey varies accordingly.

The self induced field is present when the passing charge is on either side of the surface. Even after charge q
passed the slit, change of the surface configuration (e.g. shut one slit) can still alter the distribution of the
induced surface charge, thus affect the motion of the charge q.

The presented analysis is only dealing with one particular setup among various possible situations. In
one variation, the above analysis assumes a conducting surface S. In real experiments, the surface can be
dielectric, so the induced charge density differs from eqn. (4).

In another variation, the above analysis only deals with charged passing particle q, in reality, the passing
particle can be molecules, which lacks free charge. However, while a non-polarized molecule (such as H2)
does not induce any charge on the surface, a polarized molecule (e.g. HCl) carries electric dipole, which can
still induce surface charge and impact its own motion. Furthermore, one can also expect the magnetic dipole
moment of a passing particle to induce some interaction with the surface.

To apply the conceptual model of self induced force in the various cases of charged particle, polarized/non-
polarized molecule or conducting/dielectric surface, a thorough analysis of the lateral component Ey of
induced field should take those different configurations into account, so that each case can be treated in an
appropriate way accordingly. This is in contrast to wave-particle duality, which takes a uniform approach,
without differentiating the various scenarios.

The impact of induced charge can change the motion, thus spatial distribution of the passing particle, which
is similar to the effect of wave-particle duality. Questions then arise, is the self induced force independent of
the wave particle duality?

In the case that the model of self induced force is somehow related to wave-particle duality, what is the
relationship between the two models? Since the presented self induced force is deterministic, it is unlikely
that the probabilistic wave-particle duality is underlying the self induced force. Then can the self induced
force actually lie at the root of wave-particle duality?

If the model of self induced force is completely unrelated to the wave-particle duality, when a particle
passes through the slit(s) on a surface, its motion is impacted by both the self induced force and the
wave-particle duality independently. The outcome would be a combination of the two models and deviate
from either pure wave-particle duality, or pure self induced force. As wave-particle duality takes a uniform
approach, without differentiating charged particle, polarized molecule, non-polarized molecule, or conducting
vs dielectric surface, it seems insufficient to account for all scenarios of the self induced force.
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