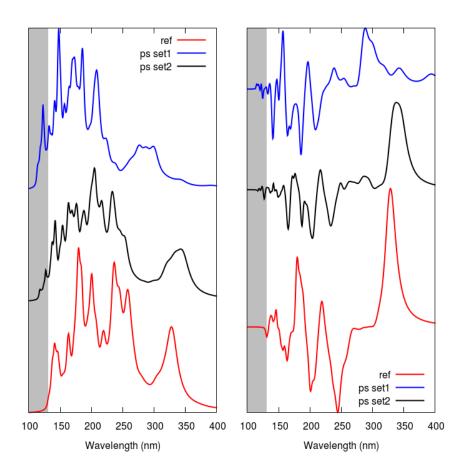
Pseudopotential-Fragment Spectroscopy for Organic Molecules and Carbon Allotropes


Alexander Punter¹, Paola Nava², and Yannick Carissan³

¹Université d'Aix-Marseille ²Aix-Marseille Université ³Institut des Sciences Moleculaires de Marseille

April 28, 2020

Abstract

Building on a previous work, pseudopotential sets are developed and tested for a variety of sp^2 and sp^3 carbon fragments. These fragments contain only one or two explicit protons and electrons, and make use of non-atom-centred potentials. They are tested with Density Functional Theory calculations in a selection of chemical environments in which several physical characteristics, including orbital and first ionisation energies, are found to be well-reproduced. They are then employed in the reproduction of molecular absorption spectra for large organic molecules and carbon allotropes, and are found to recreate both absorption and ECD spectra to a high accuracy. They are also found significantly to increase the computational efficiency of TDDFT calculations in which they are used.

Hosted file

main.pdf available at https://authorea.com/users/286431/articles/410638-pseudopotential-fragmentspectroscopy-for-organic-molecules-and-carbon-allotropes