
P
os

te
d

on
A

u
th

or
ea

12
D

ec
20

19
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
57

6
18

05
9.

96
40

11
46

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Non-monotonic and distinct temperature responses of soil microbial

functional groups of different origins and in different soils

Zhongkui Luo1, Zuoxin Tang2, Xiaowei Guo2, Jiang Jiang2, and Osbert Sun3

1Zhejiang University - Zijingang Campus
2Affiliation not available
3Beijing Forestry University

May 5, 2020

Abstract

The fate of soil carbon (C) under climatic warming predominantly depends on temperature sensitivity of soil microbial func-

tioning, but it is poorly understood. Using temporal measurements of soil respiration in an incubation experiment with

cross-inoculation of microbial communities to contrasting soils, we constrained a microbial-explicit C model to infer tempera-

ture responses of two general microbial functional groups: fast-growing r- vs slow-growing K-strategists. We found that the two

groups exhibit distinct, non-monotonic temperature responses. Both historical environment, under which the microbial com-

munities were originated, and current environment, under which the microbial communities are colonized/adapted, significantly

shape the temperature responses of the two groups. Our findings highlight the importance of combined effects of historical

and current environment on microbial decomposition for regulating soil C dynamics under warming. We suggest that distinct,

non-monotonic temperature responses of microbial functional groups may cause pronounced feedbacks between soil C dynamics

and warming depending on climate-soil-microbe interactions.

Introduction

Soil carbon (C) cycling is primarily driven by microbial communities which use soil organic matter as energy
sources and replenish soil C pool via microbial debris (Bardgett et al. 2008; McGuire & Treseder 2010;
Schimel & Schaeffer 2012; Crowther et al. 2019). As microbial metabolism is inherently a temperature-
dependent process, a great number of studies have tried to detect changes in soil microbial metabolic
properties (e.g., substrate use efficiency and enzyme activities) under warming conditions and then de-
rive relationships of these changes with soil C dynamics (Allison et al. 2010; Freyet al. 2013; Wieder et al.
2013). Yet, a mechanistic relationship of microbial respiration with temperature and microbial functional
properties is difficult to be established (Karhu et al. 2014; Carey et al. 2016; Walker et al. 2018), due to
challenges in accurately measuring microbial functional properties, high spatiotemporal variability of mi-
crobial community and activity, and confounding environmental constrains in situ . To better predict soil
C dynamics under climate change, especially warming, an explicit understanding of microbial mechanisms
underpinning variations of temperature sensitivity of microbial decomposition with environmental conditions
(e.g., temperature, substrate availability and soil physiochemical properties) is needed.

Microbial decomposition of soil organic materials is an integrated consequence of a series of microbial pro-
cesses such as C use efficiency, enzyme activity, growth and mortality. It is reasonable to expect that
temperature responses of microbial decomposition may strongly depend on how individual microbial func-
tional properties respond to warming as well as on their combined responses. We hypothesize that microbial
functional properties such as growth efficiency and enzyme activity exhibit distinct temperature responses
(Karhu et al. 2014; Walkeret al. 2018; Min et al. 2019). Indeed, by conducting a meta-analysis syn-
thesizing global datasets, Chen et al (2018) found that activities of cellulase and ligninase enzymes exert
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different responses to temperate changes, resulting in shift of soil C composition and alteration of overall
vulnerability of soil C as a cohort to climatic warming. We postulate that this kind of differential responses
are common for other microbial functional properties, and the specific response is nonlinear and strongly
depend on local climate and soil conditions. For a typical microbial functional property, we assume that
its temperature response can be monotonic or non-monotonic (Fig. 1). A monotonic response defines that
microbial functional property preserves consistent positive or negative responses to temperature (Fig. 1a
and b), while a non-monotonic response suggests the existence of turning point(s) with inverse response at
the two sides of the turning point (Fig. 1c and d). In systems with different climate, soil, vegetation and/or
management conditions, we further assume that the temperature responses of microbial properties among
systems can be parallel or nonparallel (Fig. 1). Parallel and nonparallel responses define that the response
of the microbial functional property to temperature exhibits the same pattern among soils (Fig. 1a and c)
and is soil-dependent (Fig. 1b and d), respectively.

We used a data-model integration approach to test our hypotheses. Process-based microbial C models are
a powerful tool to understand key microbial processes governing soil C cycling, because they are usually
equipped with equations explicitly simulating microbial growth, enzyme activity, respiration, death, sub-
strate use efficiency etc., which are otherwise difficult, if not impossible, to measure in situ but are key
parameters determining soil C turnover. If these parameters are properly constrained using observational
data under well-designed experiments, microbial-explicit models can provide valuable insights into detailed
microbial processes. In this study, we used experimental data from a fully reciprocal incubation experiment
(Tang et al. 2018) to constrain the model. The experimental data involved reciprocal transplant of microbial
inoculums to three sterilized soils from three contrasting forest ecosystems. The incubation was conducted
at three temperatures (5, 15 and 25 °C) for 61 days, capturing several critical phases of microbial growth
from initial exponential increase due to microbial colonization of the sterilized soil, to rapid decrease due to
depletion of preferential SOC substrates, to a relative stable state. This dataset provides a good opportunity
to test whether the microbial model can capture these distinct phases, and to assess whether and how mi-
crobial community structure (which is represented by three microbial inoculum origins), soil physiochemical
environment (which is represented by three sterilized soils from different climate zones), temperature and
their interactions influence microbial functional properties.

Materials and Methods

Data sources

The measurements of microbial respiration from a fully reciprocal incubation experiment we recently pu-
blished (Tang et al. 2018) were used in this study. In brief, the incubation was conducted as a full factorial
design consisting of three sterilized soils (which were collected from the 0–10 cm mineral soil layer in cool
temperate, warm temperate, and subtropical forests, respectively), three microbial inoculums (which were
originated from the three soils), and three incubation temperatures (5, 15, and 25°C) under a constant soil
moisture of 50% of soil water holding capacity, with five replicates. Before incubation, soils were treated with
autoclaving (121°C, 45 min) twice in succession and again 24 h later for complete sterilization. Then, the
sterilized soil was pre-incubated for 4 days at the designated temperatures (5, 15, and 25°C) to confirm the
effectiveness of sterilization. After confirming the sterilization, the microbial inoculum was introduced into
the sterilized soil, and then the soil was incubated for another 61 days to enable microbial community to
grow and stabilize. During the 61-day incubation period, microbial respiration rates (i.e., CO2 efflux from
the incubated soil at the unit of μg CO2-C g-1 SOC day-1) were measured on day 0, 1, 2, 4, 6, 9, 13, 19, 32,
39, 45, 52 and 61. Microbial biomass C was measured at the start and end of the experiment. The standard
deviation (σ ) and mean (μ ) of the five replicates at each measurement were used to construct the prob-
ability distribution function (PDF) for microbial respiration rates assuming normality. The PDF was used
to quantify uncertainties in model simulations induced by measurement uncertainty (see data assimilation
section).

A microbial carbon model

2
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We developed a microbial model to simulate microbial respiration and biomass. In the model, SOC is divided
into labile (SOCl, which is readily available for microbes) and recalcitrant pools (SOCr, which has to be
depolymerized or degraded by microbial extracellular enzymes before it can be assimilated). Microbes are
the engine of the transformation of the two C pools and are divided into two functional groups, namely
r-strategists (Mr) and K-strategists (i.e., MK). A detailed description about the rationale of modeling two
microbial functional groups can be found in Wieder et al. (2014, 2015). Microbial processes considered
in the model include uptake/assimilation of SOCl by microbes and death of microbes. The two microbial
groups were simulated using Michaelis-Menten equation:

dM

dt
= MGE • Vmax,U •M • SOCl

KU + SOCl
− τ •M, (1)

where MGE is the microbial growth efficiency,Vmax, U the maximum microbial uptake rate of SOCl, KU the
corresponding half-saturation constant for the uptake, and τ the death rate of M. The change of SOCl and
SOCrcan be respectively written as:

dSOCl

dt
= f • τ •M + Vmax,ED • SOCr •

M

KED +M
− Vmax,U •M • SOCl

KU + SOCl
, (2)

dSOCr

dt
= (1 − f) • τ •M − Vmax,ED • SOCr •

M

KED +M
, (3)

where f is the fraction of dead microbes contributing toSOCl , while the remaining fraction 1 – f contributes
to SOCr . The model simulates extracellular enzyme degradation of SOCr using reverse Michaelis-Menten
equation (Ahrens et al. 2015), andVmax,ED is the maximum degradation rate by extracellular enzymes
excreted by microbes, and KED the corresponding half-saturation constant of microbial biomass for the
degradation. In the model, microbial respiration (MR) is the only source of CO2 efflux, and calculated as
the difference between total C uptake and that used for microbial growth:

dMR

dt
= (1 −MGE) • Vmax,U •M • SOCl

KU + SOCl
. (4)

Data assimilation with the microbial model

We run the model at daily time step and was constrained to capture the observed time courses of microbial
respiration (μg CO2-C g-1 SOC day-1) and microbial biomass (μg microbial biomass C g-1 soil C) using the
Nelder-Mead algorithm which allows linear inequality constraints of model parameters (Lange, 2010). The
sum of the probability density of predictions (θ , i.e., the objective function of the algorithm) was maximized
to target the best agreement between model predictions and observations for each of the 27 treatments (i.e., 3
temperatures × 3 soil types × 3 microbial inoculums), taking into account the uncertainty in measurements:

θ =

n∑
i=1

1√
2 • π • σ2

i

• e
− (xi−µi)

2

2•σ2
i , (5)

where µi is the mean of ithobservations (i.e., the mean of the PDF of the measurements),σi the standard de-
viation of ithobservations (i.e., the standard deviation of the PDF of the measurements), xi the corresponding
model predictions, n the total sample size of observations including microbial respiration and biomass. The
optimization was repeated 200 times independently, generating 200 ensembles representing the parameters’
posterior distributions and including uncertainties induced by variation in observations and by parame-
ter equifinality (Luo et al. 2015, 2017). Focusing on seven microbial-related parameters (i.e.,V max, U, V

max, ED,K U, K ED, τ ,f , and MGE , Table 1), then, we estimated their means and 95% confidence interval

3
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through 5,000 bootstrapped samples of the 200 estimates. If the 95% CIs of a parameter under different
treatments do not overlap, the treatments were considered having significant effect on that parameter.

For the initial pool size of labile C (i.e., SOCl), we assumed a prior uniform distribution ranging from 0 to
10% of measured initial total SOC content (microbial biomass was considered separately) at the beginning
of the experiment (SOC0, which is different among the three soils), given that SOCl + SOCr = SOC0.
In a specific soil, SOCl and SOCr at the start of the experiment were assumed to keep the same for all
temperature and microbial inoculum treatments, since temperature and microbial inoculums cannot change
initial sizes of SOC pools. For the initial pool size of Mr and MK, the sum of them was assigned to the
measured total microbial biomass C in microbial inoculums, while the proportional composition of Mr and
MK was optimized. We generated prior uniform distributions for model parameters, acknowledging different
growth strategies of microbial functional groups, i.e., fast-growing r- (Mr) and slow-growing K-strategists
(MK) (Weider et al. 2014, 2015, and references therein). Specifically, Vmax,Uwas assumed to range from
0 (i.e., no C assimilated by microbes) to 10 day–1 (ten times of microbial biomass C), with a precondition
that Vmax,U(r) > Vmax,U(K) (hereafter, we use a subscript to indicate microbial functional groups, i.e., r and
K for r- and K-strategists respectively). KU was assumed to range from 0 (i.e., microbial C assimilation
is not limited by substrate availability) to the initial pool size, with a precondition thatKU(r) > KU(K).
Vmax,ED was assumed to range from 0 (i.e., no degradation) to 1 day–1 (100% degradation of SOCr),
with a precondition thatVmax,U(r) < Vmax,U(K). KED was assumed to range from 0 (i.e., extracellular
degradation is not limited by microbial biomass) to the initial microbial pool size, with a precondition
thatKED(r) < KED(K). τ was assumed to range from 0 (no microbial death) to 1 day–1 (100% microbial
death), with a precondition of τr > τK , while MGE was assumed to range from 0.1 to 0.8, with a precondition
of MGEr < MGEK.

Simulation experiments using the optimized model

Using the optimized model, we conducted a modeling experiment to further demonstrate the consequences
of microbial origin, soil type and temperature (which were reflected by optimized model parameters under
the 27 microbial origin by soil type by temperature combinations) on soil microbial respiration. To do so,
the optimized model was re-run for 61 days with a constant C input rate of 100 μg C g–1soil C day–1 for all
soils under all microbial inoculums and temperatures. Cumulative microbial respiration during the 61-day
simulation was calculated for each of the 27 microbial origin by soil type by temperature combinations. The
difference of cumulative microbial respiration between simulations with and without C input was calculated,
and compared among the 27 combinations, with its average and 95% confidence interval were estimated
based on simulations using the 200 optimized parameter ensembles This comparison enables us to assess
that how microbes of different origins and in different soils respond to C input under different temperatures.

Results

Pooling all data together, the optimized microbial model could explain 92% and 93% of the variances in
observed microbial respiration (MR, Fig. 2a) and biomass carbon (MB, Fig. 2b), respectively. Fig. 3 shows
an example demonstrating that the temporal dynamics of MR, including an exponential increase in MR
until reaching a peak and a gradual decline to a relatively stable state, can be well captured by the model.
Different parameter ensembles taking into account measurement uncertainty could equally-well simulate
MR, due to parameter equifinality. This example also highlighted that microbial communities originated
from different soils exhibit quite different temporal dynamics of respiration (e.g., the peak respiration rate)
though inoculated into the same soil under the same temperature (Fig. 3a vs 3c vs 3e). Microbial biomass
C could also be captured by the model (Fig. 3b, d, and f). However, because of the availability of only
two measurements at the start and end of the experiment, the model predicted great uncertainties over the
experimental duration.

For most microbial-related parameters, the responses to temperature were non-monotonic and non-parallel
(Fig. 1d), depending on microbial and soil origins (Fig. 4). This was true for both r- and K- strategists (Fig.
4). For example, the death rate (τ ) of K-strategists decreased when temperature increased from 5 to 15 °C,
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but increased when temperature increased from 15 to 25 °C, in all soils using the same microbial inoculum
from Dinghu soil (i.e., non-monotonic); MGE, microbial growth efficiency, showed the similar pattern (Fig.
4).V max, U, the maximum C uptake rate by microbes, showed inverse responses to temperature changes in
Dinghu and Changbai soils using the microbial inoculum originated from Dinghu (i.e., non-parallel, Fig. 4).
The two functional groups displayed substantial discrepancies in terms of the magnitude and direction of
their temperature responses. For example, MGE of the K-strategists under different temperatures was more
stable than that of r-strategists (Fig. 4). It is intriguing to note that K U, the half saturation constant of C
uptake by microbes, K ED, the half saturation constant of C degradation by extracellular enzymes, and f ,
the fraction of dead microbes transformed to the labile C pool, were relatively consistent among soils and
microbial inoculums, particularly for K-strategists, compared to other parameters (Fig. 4).

Simulations using the constrained model shown that microbial respiration responded positively, but distinctly,
to the same rate of C input among the three soils inoculated with the same microbial inoculum as well as
among the three microbial inoculums inoculated to the same soil (Fig. 5). In general, microbial respiration
was much more sensitive to C input changes (i.e., no C input vs C input rate of 100 μg C g–1 soil C day–1)
under 15 °C than under 5°C. For example, in Dinghu soil inoculated with Dinghu microbial inoculum, C
input had negligible effect on microbial respiration under 5 °C, but had significantly increased microbial
respiration by 92 μg CO2-C g-1 SOC under 15 °C (Fig. 5a). Contrary to expectation, however, further
increasing temperature from 15 °C to 25 °C did not further increase microbial respiration (Fig. 5). Indeed, C
input resulted in much higher changes in microbial respiration under 15 °C than under 25 °C in Dinghu soils
inoculated with Baotianman and Changbai microbial inoculums (Fig. 5a), in Baotianman soil inoculated
with Baotianman microbial inoculum (Fig. 5b), and in Changbai soil inoculated with Baotianman microbial
inoculum (Fig. 5c).

Discussion

Our simulation results found several interesting points regarding the temperature responses of microbial
functional properties. First, most microbial properties exhibited nonlinear and non-monotonic responses to
temperature. This suggests that optimal temperature may exist for microbial functioning such as MGE
(which is equivalent to microbial C use efficiency), rates of uptake of labile substrates and extracellular
degradation of recalcitrant C fractions. A number of empirical studies assessing the temperature sensitivity
of microbial enzyme activities also have observed similar phenomenon (Hobbs et al. 2013; Alsteret al. 2016b,
a). For MGE, a key parameter determining the transformation of soil C, for example, its relationship with
temperature is widely disputed and inconclusive; it may be positive (Manzoniet al. 2012; Ye et al. 2019),
negative (Sinsabaughet al. 2016), or non-monotonic (Qiao et al. 2019). Qiao et al. (2019) derived a piecewise
linear function with a minimum MGE at 20 °C to model global MGE observations. Our modelling results
captured such variable temperature responses. This may largely due to that an emergent microbial functional
property (e.g., MGE) involves multiple microbial processes such as assimilation efficiency, biomass-specific
respiration, enzyme production, and respiratory costs of enzyme production (Hagertyet al. 2018).

Second, microbial functional groups respond distinctly to temperature. In general, the simulation results
indicated that K-strategists are more tolerant of temperature changes than r-strategists. The fast-growing
r-strategists are mainly bacteria-dominated and consume labile C substrates such as sugars with fast rates,
while slow-growing K-strategists are fungi-dominated and consume recalcitrant substrates such as lignin
with slow rates. As such, r-strategists may be more often limited by substrate availability due to accelerated
depletion of labile substrates under warming, while K-strategists are more persistent with temperature
change because of slow decomposition of recalcitrant substrates. This result is consistent with empirical
observations. A 12-year warming experiment in a grassland found that warming mainly impacts the activity of
bacteria rather than fungi (Zhou et al.2012). Laboratory incubation experiments also suggested that different
prokaryotic trophic groups (e.g., copiotrophs vs oligotrophs) responded differently to changes in temperature
regimes, due to distinct dynamics of soil C fractions (e.g., labile vs recalcitrant fractions) in response to
temperature changes as a consequence of preferential, selective substrate utilization by microbial groups
(Bai et al. 2017). To elucidate the mechanisms underpinning the distinct response of microbial functional
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groups to temperature changes, temporal monitoring of both substrate availability with different lability and
microbial community composition is required.

Third, the simulation results suggest that both historical (i.e., microbial origin) and current environments
(i.e., sterilized soil and laboratory incubation) modulate microbial functioning. The importance of historical
environment has been proven by results that microbial communities of different origins (i.e., soils from
the three contrasting forest ecosystems) show distinct, non-parallel temperature responses when they are
inoculated to the same soil (Fig. 3). This finding provides rationale for modelling the legacy effect (Jurburg
et al. 2017; Glassman et al. 2018; Fukasawa et al. 2019). Using a reciprocal multifactorial growth chamber
experiment with soil microbial communities from different origins, a recent field study also showed that soil
microbial communities of different origins vary in their response to climate change factors including warming
(Rasmussenet al. 2019). On the other hand, the same microbial community also shows distinct, non-parallel
temperature responses when inoculated to different soils (Fig. 3), demonstrating the importance of current
environment in regulating microbial functioning. Discrepancies in substrate quality and availability and
environmental constrains between original and new environment would partially explain such phenomenon
(Qin et al. 2019). For these reasons, microbial-mediated soil C dynamics may strongly depend on both
local historical and current environmental conditions (e.g., climate, soil, and management-induced changes
in soil environment)(Wu et al. 2010; Bradford et al. 2019). Indeed, these distinct, non-monotonic, and non-
parallel temperature responses of microbial properties have significant consequences on microbial respiration
in response to changes in C inputs (Fig. 5). This is supported by the distinct cumulative microbial respiration
and their temperature responses among soil types and microbial origins in the dataset (Tang et al. 2018).

Conceptual C pool-based models (e.g., RothC and Century) driven by first-order kinetics are still dominant in
soil C modelling. The first-order decay nature of conceptual C pools makes the conceptual C models powerless
to simulate the respiration pattern in our dataset (Fig. 2), which nonetheless is normal in situ . For example,
extreme climate events such as drought and flooding may result in marked changes in microbial growth and
respiration (Lloret et al. 2015; Meisner et al. 2018). The intrinsic fluctuating nature of environment does
require us to explicitly model microbial decomposition processes which may actively interact with historical
and current environment, particularly in a world with more frequent extreme climate events. Microbial models
have another advantage compared to conceptual C models. That is, more state variables and parameters
in microbial models can be measured or reasonably estimated. In conceptual C models, almost all state
variables and parameters (except total SOC content) have to be statistically fitted, e.g., the size of each C
pool (because it is conceptual and thus unmeasurable) and its potential decay rate constant, resulting in
large uncertainties in model predictions (Luo et al.2017). Rather, a series of state variables and parameters in
microbial models can be measured directly like microbial biomass and respiration, total C content, and even
microbial groups with their particular functional properties, such that the uncertainties in model predictions
would be reduced. For example, the result in Fig. 2 implies that another measurement of microbial biomass
catching its peak may further constrain model parameters.

In conclusion, we have demonstrated that a microbial model simulating two microbial functional groups could
well capture the temporal dynamics of microbial respiration. The simulation results provide novel insights
into understanding microbial decomposition processes in response to warming. Microbial functional groups
in terms of their substrate utilization strategies, enzyme activity, and a series of metabolic processes exhibit
distinct, non-monotonic temperature responses. This may complicate the prediction of soil C dynamics
in response to climatic warming. The consequences of such distinct, non-monotonic response of microbial
decomposition processes on long terms soil C dynamics could be substantial, and should be further verified
based on long term measurements. In addition, our results demonstrated that both previous and current
environments significantly shape temperature responses of microbial functional groups, resulting in that
the fate of soil C under climatic warming is local soil- and climate-dependent. Above all, our data-model
integration reveals that the soil-climate-microbe interactions may play a vital role in determining the fate
of soil C under climatic warming, which should be properly considered in Earth system models to provide
reliable predictions.
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Figure Legends

Fig. 1. Hypothesized temperature responses of microbial functional properties. For a typical
microbial functional property (e.g., carbon use efficiency) of a typical microbial functional group from a typ-
ical soil, its relationship with temperature may be monotonic (a and b , i.e., the direction of the relationship
does not change) or non-monotonic (c and d , i.e., the direction reverses at turning point(s)). For a typical
microbial functional property (e.g., carbon use efficiency) of microbial communities from different soils, their
relationship with temperature may be parallel (a and c , i.e., keep the same pace among soils) or nonparallel
(b and d , i.e., do not keep the same pace among soils) among the soils.

Fig. 2. Observed and modeled microbial respiration (MR) and biomass carbon (MB). This
figure shows the overall performance of the optimized model by pooling all data under all soil by microbial
origin by temperature treatments. Horizontal and vertical bars show one standard deviation of observed
and modeled values, respectively (5 replicates for observed, and 200 simulations for modeled). For microbial
biomass carbon, there is only one measurement at the end of the experiment for model optimization (the
measurement at the start of the experiment is used for model initialization). Grey dashed lines show the 1:1
line, and black solid lines show the fitted regression line. All data were natural-log transformed.

Fig. 3. Observed vs modeled temporal dynamics of microbial respiration (MR, left panels)
and biomass carbon (MB, right panels).This figure shows the results in BT soil under three microbial
inoculum origins (a and b, Dinghu; c and d, Baotianman; e and f, Changbai) under 15degC. Circles show
the measured average, while error bars show one standard deviation (n = 5). Grey lines show the model
predictions under 200 parameter ensembles taking into account measurement uncertainties and parameter
equifinality. Please note the different scales of y axes.

Fig. 4. Temperature responses of seven microbial parameters of two functional groups of
different origins and in different soils.Circles show the average and bars show its 95% confidence interval
derived by conducting 200 independent optimizations taking into account measurement uncertainty and
parameter equifinality. If the error bars for the same parameter are overlapped, the difference is significant.KU

and KED are normalized to the initial total soil carbon content. See Table 1 for the explanation of the seven
microbial parameters.

Fig. 5. Changes in microbial respiration (MR) in response to carbon input under different
temperatures . The microbial model was run for 61 days with a constant C input rate of 100 μg C g–1 soil
C day–1 using the optimized model parameters without C input. The difference of cumulative MR between
simulations with and without C input was calculated (i.e., ΔMR). Error bars show the 95% confidence
intervals estimated based on 200 simulations using the optimized 200 ensembles of model parameters for
each soil × microbe × temperature combination.

Table 1. Model parameters and their prior ranges used for model optimization.
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Parameter Description Unit Prior range

Parameter Description Unit Prior range

MGE Microbial growth efficiency – 0.1–0.9
τ Death rate of microbes day–1 0–1
f Fraction of dead microbes as labile soil C – 0–1
Vmax,U Maximum uptake rate of labile C by microbes g labile C g–1 microbial C day–1 0–100
KU Half-saturation constant of labile C uptake by microbes g labile C g–1 soil C 0–0.1
Vmax.ED Maximum extracellular degradation rate of recalcitrant C day–1 0–0.01
KED Half-saturation constant of microbes for degradation g microbial C g–1 soil C 0–0.1

Figure 1

Figure 2
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Figure 3
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Figure 4
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Figure 5

13



P
os

te
d

on
A

u
th

or
ea

12
D

ec
20

19
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
57

6
18

05
9.

96
40

11
46

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

14


