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André Severo Pereira Gomes, Université de Lille, CNRS, UMR 8523 – PhLAM –
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Abstract

We investigate the ability of mechanical and electronic density functional theory (DFT)-based embedding approaches to describe

the solvent effects on nuclear magnetic resonance (NMR) shielding constants of the 95Mo nucleus in the molybdate ion in aqueous

solution. From the description obtained from calculations with two- and four-component relativistic Hamiltonians, we find that

for such systems spin-orbit coupling effects are clearly important for absolute shielding values, but for relative quantities a scalar

relativistic treatment provides a sufficient estimation of the solvent effects. We find that the electronic contributions to the

solvent effects are relatively modest yet decisive to provide a more accurate magnetic response of the system, when compared

to reference supermolecular calculations. We analyze the errors in the embedding calculations by statistical methods as well

as through a real-space representation of NMR shielding densities, which are shown to provide a clear picture of the physical

processes at play.

Introduction

Nuclear magnetic resonance (NMR) spectroscopy measures the interaction between the magnetic moments
of nuclei and an applied external field, screened by the electrons of the system. NMR is extremely useful for
characterizing molecules and materials since it provides detailed information of the local chemical environ-
ment around the responding nuclei, and does so in a non-destructive manner. In addition to that, it probes
species in their electronic ground state and, in doing so, provides more direct information on the interactions
in that state compared to other techniques.

The screening by the electron cloud of the magnetic interactions between a given atomic isotope K and the
applied external magnetic field, is represented by the so-called NMR shielding constant, σK , which can be
calculated as a second-order derivative of the energy of the molecular system with respect to the magnetic
dipole moment of that nucleus (~mK) and an external magnetic field ( ~B) at the zero-perturbation limit:

σKαβ =
d2E

dBαdmK;β

∣∣∣∣
~B,{~mA}=0

.

(1)

In most cases, what is measured in experiments is not σK but rather a signal relative to a chosen reference
species, the chemical shift δK , though in recent years experimental advances have revived the interest in

2
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determining absolute shielding scales (Aucar & Aucar, 2019; Jackowski & Makulski, 2011; The Determination
of Accurate Nuclear Magnetic Dipole Moments and Direct Measurement of Nmr Shielding Constants, 2012).

NMR spectra can be quite difficult to interpret. The difficulties may come from the complexity due to
the size of composition of the system (species in solution, disordered materials, etc.), the broadening of
signals due to quadrupole interactions (for nuclei with total angular momentum larger than I = 1/2) or
a combination of all of these. (Solid-State Nmr of Quadrupolar Nuclei for Investigations Into Supported
Organometallic Catalysts: Scope and Frontiers, 2572) Because of these difficulties, theoretical modeling has
become indispensable for the interpretation of experiments (missing citation); Charpentier, 2011; (missing
citation). Furthermore, for certain systems exhibiting a wide range of chemical shifts, or long acquisition
times, theory is crucial to guide experiments by providing the approximate regions of the spectra in which
to search for signals.

In this paper we are interested in exploring the use of quantum embedding (Gomes & Jacob, 2012; Ja-
cob & Neugebauer, 2014; Tomasz Adam Wesolowski & Zhou, 5891; Sun & Chan, 2705) to describe the
solvent effects on the NMR shielding constants of the 95Mo on the molybdate dianion in aqueous so-
lution. The molybdate moiety is arguably the simplest experimentally relevant Mo-containing system
that can be studied, and it is often used as an experimental reference system in the determination of
95Mo chemical shifts (in the form of an aqueous solution of sodium molybdate, Na2MoO4 (Evaluation of
95MoNuclearShieldingandChemicalShiftof[mo6x14]2 Clusters in the Liquid Phase, 7673). As such, it can be
seen as ideal test system to evaluate theoretical approaches that can be applied to the modeling of other, more
complicated species. Examples of more complex systems can be found in different classes of molybdenum
oxides containing the MoO3 and MoO4 moieties. These oxides are found as component of catalysts (Schrock,
5512; Jang & Goddard III, 2001; (missing citation), as fission products (High-Temperature Behavior of Dice-
sium Molybdate Cs2moo4: Implications for Fast Neutron Reactors, 2014), and also make up materials that
can be used for applications ranging from nonlinear optical materials (Synthesis and Tunable Nonlinear Ab-
sorption Properties of Zn3mo2o9 Nanosheet Ceramic Material, 1095) to glasses for vitrification of nuclear
waste (Molybdenum in Glasses Containing Vitrified Nuclear Waste, 2005). In most cases, the interest lies in
understanding how the Mo atom modifies the properties (optical, mechanical etc) of the starting material,
and that is where the characterization by NMR becomes interesting.

For materials and complex systems, often treated with band structure methods, the gauge-including projec-
tor augmented wave (GIPAW) (Charpentier, 2011; (missing citation) approach, coupled to density functional
theory (DFT) calculations, is the de facto standard for NMR calculations useful to experimentalists. Quan-
tum embedding, on the other hand, represent a class of theoretical methods, often used in combination to
approaches developed for discrete systems (based on DFT but also on more accurate treatments based upon
wavefunction theory, WFT). In it a given system is treated quantum mechanically but on the basis of a
set of interacting subsystems, for which one can tune the accuracy of the description of each subsystem
(by choosing for instance a DFT or WFT treatment), according to a desired compromise between accuracy
and computational cost. As such, one can describe the interactions between the species of interest and its
surroundings at a fraction of the cost of applying standard DFT or WFT approaches to the whole system.

Contrary to other embedding schemes (missing citation); Cui & Karplus, 3721; Andrea Frank & Exner,
1480), such as those in which only the changes in structure due to the environment are considered (mechan-
ical embedding), or where the environment is represented classically (QM/MM) (Structural Interpretation
of the 31 P Nmr Chemical Shifts in Thiophosphate and Phosphate: Key Effects Due to Spin-Orbit and Ex-
plicit Solvent, 9924), quantum embedding has not yet been extensively used for NMR properties, and this is
particularly the case for the frozen density embedding or subsystem DFT methods (Jacob & Visscher, 1941;
Rosa E. Bulo & Visscher, 2640; Andreas W Götz & Visscher, 1041; Ma lgorzata Olejniczak & Gomes, 8400).
This is unfortunate since these approaches have the advantage of allowing for a seamless combination of dif-
ferent electronic structure approaches (DFT and WFT), but also the combination of different Hamiltonians,
such as those taking into account relativistic effects.

Relativistic effects (Pyykkö, 1988; Dyall & Knut Faegri, 2007; Reiher & Wolf, 2009; Autschbach, 1509)
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(scalar relativistic effects and spin-orbit coupling) are now recognized as important (if not essential) to
approach experimental accuracy in electronic structure calculations. While this is undisputed in the case of
heavy elements (Z > 31), it is increasingly the case that the effects of relativity are recognized and accounted
for even for light systems (first and second-row atoms) when the molecular properties of interest involve a
description of the electronic structure near the nucleus. This is the case of NMR properties (Martin Kaupp
& Malkin, 2004; Autschbach, 2011).

We expect that quantum embedding, if shown to be reliable, can provide a flexible framework and enable
more sophisticated simulations, either by complementing DFT-only approaches such as GIPAW (by easily
letting one explore the use of different relativistic Hamiltonians) or by allowing the use of more accurate
methods, such as those based on the coupled cluster ansatz (Bartlett & Musia l, 2007; Recent Advances
in Wave Function-Based Methods of Molecular-Property Calculations, 2012), thus paving the way for a
quantitative leap in the interpretation of NMR spectra. As the hydrated MoO2−

4 molybdate dianion appears
to have well-structured hydrations shells (Evaluation of 95MoNuclearShieldingandChemicalShiftof[mo6x14]2

Clusters in the Liquid Phase, 7673), we are particularly interested in assessing how well quantum embedding
can effectively reduce the size of the explicit quantum model, by accounting for hydration effects.

The paper is organized as follows: in section we outline the key theoretical aspects underpinning the work.
This is followed in section by a summary of the computational details of our calculations, with a particular
emphasis in detailing which structural models are considered and introducing a shorthand notation to refer
to these. In section we discuss the ability of the different embedding approaches to represent the molybdate
ion in solution, the influence of the different relativistic Hamiltonians on the NMR shielding constants, and
characterize (including in real space) the errors of the different embedding methods. We conclude and offer
perspectives for future work in section .

Theory

In what follows, we employ the standard notation for molecular orbital indices (with i, j, . . . corresponding
to occupied, a, b, . . . - to virtual and p, q, . . . - to general molecular orbitals) and the summation convention
over repeated indices. We use the SI-based atomic units ( ~ = me = e = 1/(4πε0) = 1) (Whiffen, 1978).
Employing the second-quantization formalism and an exponential parametrization of the closed-shell ground
state with the orbital-rotation operator, κ̂ =

∑
pq κpqp

†q,

ψp = ψq exp(−κpq),

(2)

the derivative in Eq. 1 can be further expressed as

d2E

dBαdmK;β

∣∣∣∣
ε=0

=
∂2E

∂κpq∂mK;β

∂κpq
∂Bα

∣∣∣∣
ε=0

+
∂2E

∂Bα∂mK;β

∣∣∣∣
ε=0

,

(3)

where all perturbing fields are collected in ε. Partial derivatives of the orbital rotation parameters ({κpq})
with respect to the perturbing field are optimized in the linear response equations, which in the static-field

4
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regime can be compactly presented as:

E
[2]
0 Xε1 = −E[1]

ε1 ,

(4)

with E
[2]
0 , E

[1]
ε1 and Xε1 corresponding to the electronic Hessian, the property gradient and the solution

vector (Xε1 = (∂κpq/∂ε1)ε=0), respectively (Saue & Jensen, 2003). The two former quantities require the
formulation of various derivatives of Fock or Kohn-Sham matrices, therefore they are strictly connected to
the formalism employed in the calculations.

In this work, we exploit the computational model based on relativistic Hamiltonians (Saue, 3077) and on
the spin-density functional theory (SDFT) (Barth & L. Hedin, 1629; Rajagopal & J. Callaway, 1912; Jacob
& Reiher, 3661). The closed-shell system is described by the electron density (ρ0) and the spin-density
calculated in a non-collinear fashion as a norm of the spin-magnetization vector (s = |ρµ|, µ ∈ {x, y, z}).
Following previous works (Radovan Bast & Saue, 2091; A Fully Relativistic Method for Calculation of Nuclear
Magnetic Shielding Tensors with a Restricted Magnetically Balanced Basis in the Framework of the Matrix
Dirac–Kohn–Sham Equation, 1041; Ma lgorzata Olejniczak & Pecul, 141AD; Ma lgorzata Olejniczak & Gomes,
8400), we collect the electron density and the spin-magnetization vector into one variable - a general density
component, ρk (k ∈ {0, x, y, z}).

This framework becomes slightly modified in the embedding situation. The DFT-subsystem-based ap-
proaches rely on the partitioning of the total system into (interacting) subsystems (Gomes & Jacob, 2012;
Goez & Neugebauer, 2018; Jacob & Neugebauer, 2014), which is realized by expressing the electron density
of the full system as a sum of electron densities of subsystems (Wesolowski & Warshel, 8050; Wesolowski
& Weber, 1996; Wesolowski & Weber, 2002; Tomasz Adam Wesolowski & Zhou, 5891) (the same applies to
the spin density if it is included in the formalism),

ρtotk (~r) = ρIk(~r) + ρIIk (~r)

(5)

Consequently, the total energy may be decomposed into contributions corresponding to energies of subsystems
and the interaction energy term which depends on the (spin) densities of all subsystems,

Etot[ρ
tot
k ] = EI [ρ

I
k] + EII [ρ

II
k ] + Eint[ρ

I
k, ρ

II
k ]

(6)

The analytical formula for the interaction energy term can be derived from the (S)DFT expression for the
energy of the full system and reads as:

5
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where, in addition to terms describing the interaction of the electron density of a subsystem with the electron
density and the nuclear potential of another subsystem and a term related to the nuclear repulsion energy
between subsystems (first four terms in Eq. ??), the non-additive exchange-correlation (Enadd

xc ) and kinetic
energy (T nadd

s ) contributions emerge. These non-additive contributions (Sebastian Höfener & Visscher,
441AD) are defined as:

Xnadd ≡ Xnadd[ρIk, ρ
II
k ] = X[ρtotk ]−X[ρIk]−X[ρIIk ]

(7)

and they depend on the general density components of all subsystems. In typical FDE calculations, one
subsystem is chosen as active , while another subsystem constitute its environment . In this setting, the
active density (e.g. ρIk) is optimized by solving the so-called Kohn-Sham (KS) equations for a constrained
electron density (KSCED) (Wesolowski & Warshel, 8050), in which an effective KS potential known from a
standard (S)DFT is augmented by the embedding potential responsible for describing the interaction of an
active subsystem with the environment (here: ρIIk ):

vIemb;k(~r) =
δEint

δρIk(~r)
=
δEnadd

xc

δρIk
+
δT nadd

s

δρIk
+ vIInuc(~r) +

∫
ρII0 (~r′)

|~r − ~r′|
d~r′.

It is also possible to relax the density of the environment by solving the analogous KSCED equations set up
for ρIIk . Repeating this procedure in an iterative manner, known as the freeze-thaw (Christoph R. Jacob &
Visscher, 1011) (FnT) cycle allows to optimize the densities of all subsystems.

At this point it should be noted that although FDE is formally exact, its practical realization requires
approximation to the non-additive exchange-correlation and kinetic energies. This is typically done with ap-
proximate density functionals, which - especially for the kinetic energy part - have limited accuracy (Gomes
& Jacob, 2012; Jacob & Neugebauer, 2014; Subsystem-Dft Potential-Energy Curves for Weakly Interacting
Systems, 1432; Accurate Frozen-Density Embedding Potentials As a First Step Towards a Subsystem De-
scription of Covalent Bonds, 1641; Denis G. Artiukhin & Neugebauer, 2341). From the presence of the
interaction energy term in the total energy expression (Eq. 5) and from its functional dependence on the
densities of all subsystems, it becomes evident that the quantities which in the linear response theory are

formulated as various energy derivatives (E
[2]
0 , E

[1]
ε1 in Eq. 4) now have to be augmented with analogous

derivatives of Eint.

These additional contributions, derived by using the chain rule, involve the first- and second-order derivatives
of Eint with respect to the densities of subsystems - the embedding potential (Eq. 8) and the embedding
kernel (see (Ma lgorzata Olejniczak & Gomes, 8400) for details). In effect, the property gradient and the
electronic Hessian (Eq. 4) are elegantly subdivided into contributions from isolated subsystems and terms
related to the interaction input (Sebastian Höfener & Visscher, 441AD). In practice, these derivatives can be
coded analogously to the exchange-correlation terms in standard (S)DFT technique. There is, however, an
additional difficulty in the molecular property calculations, specific to the embedding setting. Namely, one
needs to account for the fact that the property of interest arises as a response of the full system - comprising
of all subsystems - to certain external perturbations. In particular, for the NMR shielding tensor of a nucleus
K this can be symbolically expressed as

σKαβ = σK,Iαβ + σK,IIαβ . (8)

Assuming that the nucleus K belongs to subsystem I, the term σK,IIαβ can be interpreted as an effect that the
perturbation due to Bα in subsystem II has in the point of the center of nucleus K - an idea analogous to the

6
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concept of the nucleus independent chemical shift (NICS) (Nucleus-Independent Chemical Shifts: A Simple
and Efficient Aromaticity Probe, 6317). A final complication in the formulation of the NMR shielding tensor
arises as a consequence of the dependence of this property operator (more specifically - the Zeeman term) on
the choice of the gauge origin, which leads to unphysical results in incomplete basis set regime. The typical
remedy is to use the London atomic orbitals (LAOs) (F. London, 1937; Trygve Helgaker & Ruud, 1999)
instead of atomic orbitals, however with the price of the need to calculate additional terms in the property
gradient (Miroslav Iliaš & Jensen, 1241; Ma lgorzata Olejniczak & Pecul, 141AD; Ma lgorzata Olejniczak &
Gomes, 8400).

The NMR shielding tensor (Eqs. 1, 3) can also be determined from numerical integration of the NMR shielding
density (Jameson & Buckingham, 5684; Jameson & AD Buckingham, 3366). This property density can be
calculated (analytically) in real space by using the relation to the magnetically-induced current density, jB -
also a second-order tensor quantity, which in the relativistic framework (Radovan Bast & Saue, 2009; David
Sulzer & Saue, 2068) reads

jB =
d~j

d ~B

∣∣∣∣∣
~B=0

; ~j = −eψ†i c~αψi. (9)

The NMR shielding density is an integrand in the following expression:

σKαβ = − 1

c2

∫
1

r3K

(
~rK ×~j Bα

)
β
d~r.

(10)

This reformulation of σKαβ has multiple advantages. First, it allows to recalculate the NMR shielding values
(therefore serves as a test of a fully-analytical approach), secondly it opens the possibility to visualize the
NMR shielding density on meshes, which has already proved to be an invaluable asset in the post-production
analysis process (Ma lgorzata Olejniczak & Gomes, 8400). Additional advantage of this formulation is that
the NMR shielding density of a nucleus K can easily be calculated in any point in space, even if that point
and the center of nucleus K belong to different subsystems, what permits to evaluate the second term of
Eq. 8 (Jacob & Visscher, 1941).

Computational details

The solvated molybdate structures used in this work are taken from the Car-Parrinello molec-
ular dynamics (CPMD (Hutter, 2011)) calculations of Nguyen and coworkers (Evaluation of
95MoNuclearShieldingandChemicalShiftof[mo6x14]2 Clusters in the Liquid Phase, 7673). We considered
517 snapshots, each containing the molybdate ion and 20 water molecules. For additional details, the reader
is referred to the aforementioned paper. From these we defined four basic structural models:

• a supermolecular system, containing the molybdate ion and all water molecules;

• a subsystem embedding model, where the molybdate ion (and depending on the case, selected water
molecules) is the active subsystem and the (remaining) water molecules make up the environment,
but in which a given number of water molecules nearest to the active subsystem are relaxed through
freeze-thaw cycles while the others remain frozen. We will refer to this model as FnT.

The electron densities and electrostatic potential for the environment are obtained either from calcula-
tions on individual water molecules (and we refer to a “fragmented” environment) or by these forming
a single subsystem (and we refer to a “grouped” environment);

7
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• a frozen density embedding model, in which all water molecules in the environment are kept frozen.
We will refer to this model as FDE, and the same notations for the environment (“fragmented” or
“grouped”) as for FnT is used;

• an isolated molybdate ion. As the structures of the latter are not obtained in the gas phase but rather
through the CPMD calculations, this model is equivalent to that of mechanical embedding, and as
such we will refer to it as “mechanical embedding”.

Using the labels “A” for the molybdate ion and “B” for the water molecules, and indices g and f to denote
the “g rouped” or “f ragmented” environment, we shall use the following shorthand notation to represent
these four cases: [Active |Relaxed |Frozen]. This means, for example, that the supermolecular model is
denoted by [A+ 20B|0|0] (all species are in the active fragment), the mechanical embedding by [A|0|0], and
a FnT model in which 20 molecules make up the environment but in which 11 are relaxed (and all are taken
as individual fragments), is denoted by [A|11Bf |9Bf ].

The execution of all calculations, including the preparation of the different fragments, has been handled with
the PyADF (Pyadf a Scripting Framework for Multiscale Quantum Chemistry, 2328) scripting framework.
In all calculations, we employ Becke integration grids, and a gaussian nuclear charge distribution (Visscher &
Dyall, 1997) to describe the finite nuclear volume (Andrae, 2000), PBE (John P. Perdew & Ernzerhof, 3865;
John P. Perdew & Ernzerhof, 1396) exchange-correlation functional. For subsystem embedding and FDE
embedding calculations (see below), we have employed the PW91k (A. Lembarki & H. Chermette, 5328) and
PBE (John P. Perdew & Ernzerhof, 3865; John P. Perdew & Ernzerhof, 1396) functionals for calculating the
non-additive kinetic and exchange-correlation contributions, respectively, and used a monomer expansion for
the basis sets. In the case of subsystem embedding, we have performed 5 freeze-thaw cycles. In the NMR
calculations we employ London orbitals.

One- and two-component calculations

The scalar relativistic (SR) and spin-orbit (SO) ZORA (E. Van Lenthe & Baerends, 6505; E. Van Lenthe
& Snijders, 9783; E. Van Lenthe & Snijders, 1996; Van Lenthe, 8943) calculations have been performed
with the ADF (software for chemistry & materials, n.d.) code, using the TZ2P basis sets (E. Van Lenthe &
Baerends, 1142). The NMR calculations have been performed with the NMR program.

Four-component calculations

The calculations employing the Dirac-Coulomb (DC) Hamiltonian have been performed with the Dirac
code (DIRAC, 2018), revision 54ab939. For the Mo atom the dyall.cv3z basis (Dyall, 2007) is used, and for
all lighter atoms the aug-cc-pVTZ (Jr, 1007) basis is used. To aid in the convergence of the SCF procedure,
in all calculations we have used the atomic start procedure, described in the DIRAC documentation.

For the subsystem embedding and FDE embedding calculations NMR calculations, we remain in the un-
coupled response approximation, but take into account contributions from the spin density according to
Ref. (Ma lgorzata Olejniczak & Gomes, 8400). We note that unless otherwise noted, the embedding calcu-
lations make use of results of embedded ZORA calculations with ADF (embedding potentials, electrostatic
potentials and frozen electron densities and gradients of the density for the environment).

The NMR shielding densities used in the analysis of the embedding methods (see section ) have been
obtained with the analysis module of the Dirac code, and are based on four-component calculations with
the DC Hamiltonian and equation 10. In the case of embedded calculations, following equation 8, it was
necessary to also perform calculations for the environment using the position of the Mo atom as the ~rK
position.
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Plotting

All graphs have been prepared with Matplotlib (Hunter, 2007) python library, with the exception of the
volumetric density and NMR shielding density plots, for which the Mayavi (Ramachandran & Varoquaux,
2011) python library has been used.

Results and discussion

In what follows we are interested in the isotropic part of the NMR shielding tensor of the 95Mo nucleus, σiso,
which is defined as:

σiso = 1/3(σ11 + σ22 + σ33)

(11)

where the indices refer to the principal axes of the tensor according to the Mason’s notation (J. Mason,
1993), with σ11 ≤ σ22 ≤ σ33.

Minimal structural model

An embedding-based computational strategy takes its most effective form, from a computational cost per-
spective, when the smallest possible molecular moiety can be considered as the active subsystem, and the
rest of the system as the environment. In this work such a situation would correspond, as discussed above,
to having only the MoO2−

4 ion in the active subsystem. In this subsection we explore this model.

Structural and electronic effects on NMR shieldings

We start the discussion with the analysis of the influence of the geometry of molecular complexes on σiso
based on the SR-ZORA calculations. This is summarized in Figure 1, which shows the values of σiso obtained
for a subset of 100 geometries out of the 517 considered MD simulations.

An interesting observation that emerges from this figure is that the description offered by different ap-
proximations (FnT, FDE, mechanical embedding) is not consistent for all the snapshots. While for certain
geometries the electronic part of embedding is an essential component of the model in order to approach
the supermolecular σiso values, for others these contributions are negligible and the mechanical embedding
is sufficient to reproduce the supermolecular baseline.

9
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Figure 1: σiso (in ppm) for a subset of the snapshots considered (snapshots 400 to 500), obtained from SR-
ZORA calculations for the supermolecule ([A+20B|0|0]), electronic (FnT:[A|11Bf |9Bf ] and FDE:[A|0|20Bf ])
and mechanical ([A|0|0]) embedding.

Model σ̄iso ± std
[A+ 20B|0|0]216 −845.7± 45.4
[A|11Bf |9Bf ]216 −839.1± 45.2
[A|11Bf |9Bf ]216Dirac −428.3± 45.5

Table 1: Mean values for the isotropic NMR shielding constant (σiso, in ppm) for the different computational
models, and the respective standard deviations (std), obtained from a subset of 216 CPMD snapshots
chosen following the analysis of the normal probability plot (see supplemental information for details). The
4-component embedding calculations ([A|11Bf |9Bf ]216Dirac) are performed using embedding potentials and
frozen densities obtained from the SR-ZORA [A|11Bf |9Bf ]216 model.

This is also reflected in the similarity of the mean values of the 95Mo NMR shielding constants calculated
over all the snapshots for all the considered approximations (FnT, FDE, mechanical embedding), featured
as σ̄iso in Table ??. However, the choice of the computational model does affect the standard deviation of
the σiso values distribution - in this case the variance of the NMR shielding values over all the snapshots is
significantly smaller if electronic embedding is included in the calculations. This signifies that the data from
electronic embedding calculation is statistically less disperse, therefore in this case these can be considered
as more accurate for the modeling of σiso.

10
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Figure 2: Correlations between σiso (in ppm) and the mean distance between Mo and the oxygen atoms in
the Molybdate ion (r̄[Mo-O], in Å), obtained from SR-ZORA calculations for various models: (a) isolated
[A|0|0]; (b) FDE [A|0|20Bf ]; (c) FnT [A|11Bf |9Bf ]; and (d) Supermolecule [A+ 20B|0|0] for all snapshots.

In order to understand these structural dependencies of σiso values, we decided to define a measure, the
mean distance between the centers of Mo atom and O atoms in MoO2−

4 , hereafter referred to as r̄[Mo-O],
and to plot the σiso vs r̄[Mo-O] in Figure 2.

The first conclusion of this figure is that there is a significant correlation between the σiso and r̄[Mo-O] for all
approximations, as seen from the large values of R2. The largest correlation between these two quantities was
found for the mechanical coupling (R2 = 0.992) and the lowest for the supermolecular results (R2 = 0.945),
which indicates the possibility that the effect of the interaction between two subsystem on σiso values cannot
be simply attributed to the structural variations, or at least the ones represented by the r̄[Mo-O] measure.
The FDE and FnT methods recover some of the r̄[Mo-O]-dependent contributions, as illustrated by the
correlation coefficients (R2 = 0.962 and 0.976 for FnT and FDE, respectively). The slope of the linear
regression also shows a better agreement between supermolecule and electronic embedding calculations than
between supermolecule and mechanical embedding.

However, the linearity of the relationship between σiso and r̄[Mo-O] is interesting since the NMR shielding
tensor is considered to be a local property. Yet, as we shall discuss below, there might be other long-range
effects that dampen the r−2 dependence of the corresponding property operator.

Since there is a non-negligible difference between the description of the supermolecular and embedded
schemes, we have investigated the correlation between r̄[Mo-O] and the values of the differences of σiso
obtained from embedding calculations and the supermolecular ones, denoted by ∆ in Figure 3. From these
results, we see that there is in fact no correlation between the two variables (R2 ≤ 0.214), even though
we nevertheless observe that there is a much larger dispersion of the data for the mechanical embedding
than for the electronic embedding, further indicating that the latter better approximates the supermolecular
calculations.

These ∆ values are a measure of the error of a given embedding approximation with respect to the su-
permolecular standard, which therefore cannot be attributed to the molecular geometry represented by the
r̄[Mo-O] descriptor. It remains to be tested whether this error can be associated with other structural
descriptors (for instance, ones taking into account the asymmetry around the Mo nucleus in a given envi-
ronment) or whether it should be attributed to more subtle effects, for instance due to spin-orbit coupling,
which we discuss in the following.

11
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Figure 3: Difference between the embedded models (a) isolated [A|0|0]; (b) FDE [A|0|20Bf ]; and (c) FnT
[A|11Bf |9Bf ], and the supermolecule SR-ZORA results (∆, in ppm) as a function of the mean distance
between Mo and the oxygen atoms in the Molybdate ion (r̄[Mo-O]).

Assessment of spin-orbit Hamiltonians

In order to assess the importance of spin-orbit interactions on the the solvent effects, we begin by considering
the SO-ZORA Hamiltonian. The σ̄iso values and standard deviations for supermolecular and embedded
calculations are shown in Table ??.

From these we observe that there are no major differences with respect to the SR-ZORA results (see Table ??)
if it comes to the magnitude of the solvent effects for all approaches. We do observe some differences in the
error patterns, with both electronic embedded models now being closer to the supermolecular σ̄iso values
than the mechanical embedding case, though once more the FDE σ̄iso is the closest to the supermolecular
one. The standard deviations in each embedded model show the same pattern as in the SR-ZORA, with
FnT yielding the smallest and mechanical embedding the largest std values.

Comparing the results in Tables ?? and ?? we also observe significant changes on the absolute σ̄iso values,
which for SO-ZORA are upshifted by around 260 ppm from the SR-ZORA values. Such a spin-orbit effect
on the absolute NMR shielding values is well-known and extensively discussed in the literature (Relativistic
Heavy-Atom Effects on Heavy-Atom Nuclear Shieldings, 2006; Micha l Jaszuński & Ruud, 2017), and therefore
we refer the readers to the review (Micha l Jaszuński & Ruud, 2017) and recent examples. (Relativistic Heavy-
Atom Effects on Heavy-Atom Nuclear Shieldings, 2006; Alkan & Dybowski, 2018; Y. Ootani & H. Fukui,
2006; Valentin A. Semenov & Krivdin, 4908; Holmes & Schurko, 1785)

The nearly identical behavior of embedded SR-ZORA and SO-ZORA can be seen, first, as a manifestation
of the fact that, since there are no significant spin-orbit coupling effects on the electronic structure of the
solvent, the environment electron densities and electrostatic potentials will be rather similar in the two
sets of calculations (SR and SO), as we can see from the rather similar standard deviations for all models
considered. Second, since the Mo atom is not very heavy, spin-orbit coupling is not expected to bring about
qualitative differences on the electron density of the MoO2−

4 ion.

An appealing feature of the SR-ZORA and SO-ZORA calculations is their relatively modest computational
cost, which has allowed us to consider a rather large number of snapshots (including for the supermolecular
system). This makes them ideal tools for exploring the importance of relativistic effects across the periodic
table while considering a great number of configuration from molecular dynamics or the effect of increasing

12
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the size of of the active space. As discussed above, this allowed us to verify that SR-ZORA calculations
already capture the solvent effects for the molybdate case.

The exploration of a large number of snapshots also provided data with which to guide us in reducing the
number of CPMD snapshots used for the more expensive calculations employing the DC Hamiltonian. With
the help of normal probability plots (see supplemental information), we have been able to use the SR-ZORA
data to reduce the number of snapshots to 216, roughly half of the original sample space, while at the same
time assuring to keep a normal distribution of σiso values for the SR-ZORA (supermolecule and embedded)
calculations. We subsequently used this reduced sample to perform the DC calculations, for which results
are shown in Table 1.

While we cannot directly compare the standard deviations from the DC results to those of tables ?? and ??
we see from the table that the DC standard deviation values are close to the SR-ZORA ones, calculated with
the same reduced sample of snapshots, and therefore we expect to see a similar error behavior for DC as
for ZORA, had we used the original sample size. Furthermore, as was the case when improving the ZORA
Hamiltonian with the addition of spin-orbit coupling, the more accurate treatment of relativistic effects
afforded by the DC Hamiltonian introduces a further upshift of about 150 ppm with respect to SO-ZORA,
on the values of σ̄iso, so that the difference between the SR-ZORA and DC results is now a little over 410
ppm.

This is a significant difference, given the growing interest in recent years in determining absolute shielding
scales. Taking into account the steep computational cost of performing 4-component supermolecular calcula-
tions over hundreds of structures from MD simulations, we consider electronic embedding to be a promising
way to calculate absolute NMR shielding constants in complex environments.

Larger active subsystems

The results above suggest that the minimal structural model for solvated molybdate (comprising only the
anion) is a rather good one for obtaining NMR shieldings in solution. In this section, we explore the effect
of explicitly including nearest neighbor water molecules in the calculation.

As we have found little quantitative differences in the behavior of the embedding approaches for the different
Hamiltonians, and that it is computationally very expensive to perform a systematic expansion of the active
subsystem while averaging over hundreds of snapshot, here we have decided to focus on selected SR-ZORA
calculations.

We therefore take two snapshots (numbered 10 and 85), representing respectively structures yielding NMR
shieldings close to the σiso value and towards the tails of the distribution. Figure 4 summarizes our results.
We only show results for up to 11 water molecules added to the active subsystem, due to the fact that no
significant qualitative changes occur beyond this number.

For snapshot 10 (σiso closer to σiso) we observe significant differences between embedding methods, with the
subsystem embedding model ([A+pB|(11−p)Bf |9Bf ]) yielding results which are only a few ppm below the
reference supermolecular calculations. The FDE model ([A+ pB|0|(20− p)Bf ])) introduces more significant
errors (over 10 ppm underestimation with respect to supermolecule), which from prior findings we can can
attribute to the importance of relaxing the environment species around a highly charged active subsystem.
The mechanical embedding model fares the worst (over 40 ppm underestimation to supermolecule).

Adding one water molecule to the active subsystem greatly improves the results for all embedding models,
and gets the electronic embedding ones in very close agreement to the reference. From two to four explicit
waters, however, we see a degradation of the electronic embedding results, which now overestimate σiso.
At around six explicit water molecules, which roughly corresponds to the first solvation shell around the
molybdate ion (Evaluation of 95MoNuclearShieldingandChemicalShiftof[mo6x14]2 Clusters in the Liquid
Phase, 7673), the electronic embedding methods have converged to the reference result, and show no further

13
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significant variations. The mechanical embedding model, on the other hand, shows small errors but does not
show converged results even after 11 explicit water molecules.

Figure 4: Variations of σiso (in ppm) with increasing number of water molecules in the active subsystem for
selected structures (top: snapshot 10; bottom: snapshot 85). All values are computed with the SR-ZORA
Hamiltonian.

We note that a similar analysis has been carried out for 4-component calculations for snapshot 10, but re-
stricting the reference calculations to 6 water molecules due to constraints in our computational resources (see
computational details and supplemental information). As we observe the same trends in the DC calculations
as in the SR-ZORA ones, we do not discuss the former explicitly.

For snapshot 85 (σiso away from σiso) we also observe the embedding approaches are pretty much converged
to the reference after the first solvation shell is explicitly included. However, the behavior is quite different
from snapshot 10 for the smaller number of explicitly included waters. Without any water molecule in the
active subsystem, all methods underestimate σiso, and the mechanical embedding model is the worst among
the three, but as the number of explicitly included water molecules increases, the electronic embedding
methods do not show any improvement until that number reaches five.

The analysis of the snapshots in Figure 4 provides a first, but somewhat indirect, indication that electronic
embedding approaches are more reliable than mechanical embedding for two key structural models: the
embedded MoO2−

4 , and the [MoO4(H2O)6]2− species. For a partial first solvation shell, it is nevertheless
difficult to comprehend what is actually taking place from just following the σiso values.

Real-space analysis of embedding

One can try to identify the underlying differences between embedding and supermolecular calculations by
investigating the systems in real space. One option is to follow the differences in the electron density for
the two treatments, as often done for other properties and previously done by Bulo and coworkers (Rosa E.
Bulo & Visscher, 2640) for NMR shieldings.

Figure 5 presents the difference in SR-ZORA density between the reference and the electronic embedding
models ([A|11Bf |9Bf ] and [A|0|20Bf ]). It is important to note here that this figure does not present density
isosurfaces, but rather a volumetric description (i.e. the accumulated values ranging from lower (0.00) to the
upper (0.01) bound considered) of the electron density. This representation has the advantage of enabling
the visualization of high and low density regions in the same plot.

14
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Figure 5: Volumetric plot of the difference of SR-ZORA electron densities between (a) [A|11Bg|9Bf ] and
[A + 20B|0|0]; and (b) [A|11Bf |9Bf ] and [A|11Bg|9Bf ] for snapshot 10. Displayed are difference density
values at each grid point between 0.00 and 0.01 a.u.

From Figure 5 we clearly see that inaccuracies in the embedding calculations, due to (for instance) the approx-
imate treatment of the non-additive kinetic energy term, introduce small errors in the densities throughout
the whole space. These errors tend to build up (green to red colors) in the regions away from the core of
the MoO2−

4 unit, and for the [A|11Bf |9Bf ] model they tend to be more significant around the second sol-
vation shell, given that first solvation shell is fully relaxed in the presence of MoO2−

4 . We also see from that
figure that there is a small but non-negligible effect on the densities of the environment when we consider
the molecules as a single subsystem or as a collection of fragments–as, in the latter, we create additional
frontiers between subsystems, due to the monomer expansion and the eventual buildup of errors due to the
approximate kinetic energy functionals.

Whatever the case, the analysis of the electron density is at odds with our findings for the mean values of
shielding, since there appears to be nothing that points to significant errors in the region of the Mo-O bonds.
This suggests that trying to understand the behavior σiso values from changes in the electron density is not
a suitable strategy.

An alternative to the visualization of the electron density is the analysis of the property densities. We
have provided a first example for such an analysis for the analysis of embedding in the description of our
4-component implementation of subsystem embedding theory for magnetic properties, but for rather small
systems (Ma lgorzata Olejniczak & Gomes, 8400). Here we provide the analysis of a more complex example,
while at the same time forsaking the use of isosurfaces in favor of volumetric plots.

Because the analysis of shielding densities is only implemented in the DIRAC code, we have restricted
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ourselves to the [MoO4(H2O)p]
2− species (p = 1 − 6). These species are then considered as our references,

and both mechanical and electronic embedding calculations considering only the molybdate ion in the active
subsystem have been performed for each value of p. All fragments have therefore been treated with the DC
Hamiltonian, with the embedding potentials being determined with freeze-thaw calculations using DIRAC.
The results of these calculations are found in Figure 6, where we present the shielding density for the
95Mo atom on the references, along with the differences in shielding density between the references and the
electronic and mechanical embedding results. For the embedding calculations, contributions from the solvent
water molecules at the location of the Mo atom are obtained with the NICS procedure.

The first striking feature of the embedding results is that, unlike for the electron densities, the error in the
embedding calculations is indeed localized within the MoO2−

4 species, in particular around the Mo atom. In
addition to that, there are smaller errors also at the positions of the molybdate oxygen atoms.

We believe this points to a physical process that, while involving a rather local operator (the hyperfine
operator has an effective r−2 dependence), makes the resulting property σiso (described as the cross product
of the hyperfine and the magnetically induced current density) have a much less localized nature, and with
that non-negligible contributions rather far from the responding atom (in the vicinity of the oxygen atoms)
arise.

This goes to explain why, in both types of embedding, the dependence of σiso on the number of water
molecules is so significant: while the water molecules themselves do not contribute significantly to the
shielding density, their absence (in the case of mechanical embedding) or the relatively inaccurate represen-
tation of the active and environment subsystems (in the case of electronic embedding) is enough to perturb
the contribution to the shielding density around the molybdate oxygen atoms.

Furthermore, we see that as the first solvation shell is built up by including the nearest water molecules to
the active subsystem (we show in Figure 6 only the even p values, see supplemental information for the odd
values), the perturbation on the molybdate oxygen atoms is not accounted for in a systematic manner by the
embedding methods, so that errors may build up even in regions in which water molecules had already been
added. We do not yet possess the analysis tools to fully understand the interplay between these different
effects, and are currently pursuing the development of new analysis approaches to address the issue.

Beyond these similarities, we nevertheless see that the errors for the mechanical embedding calculations,
though of similar magnitude than those for the electronic embedding, extend much farther than for the
latter, and explain why electronic embedding is more reliable.
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Figure 6: Volumetric plots of shielding densities and differences in shielding densities between 0.0 and
0.1 ppm, computed with the DC Hamiltonian, for [MoO4(H2O)p]

2− with increasing number of p water
molecules. Left column: Supermolecule ([A + pB|0|0]); Middle column: difference between supermolecular
and electronic embedding ([A|6Bg|0]) calculations; Right column:difference between supermolecular and
mechanical embedding ([A|0|0]+[0|6Bg|0]) calculations. For embedded models, water molecule contributions
to 95Mo shielding densities are calculated with the NICS method.

Conclusions and perspectives

In this manuscript we provide an assessment of approaches based upon the frozen density embedding (FDE)
framework for the creation of computationally efficient models capable of capturing solvent effects on NMR
shieldings of heavy elements. We have investigated how water influences the shielding of 95Mo in the
molybdate dianion (MoO2−

4 ), which can be at times a reference for 95Mo NMR experiments, or a precursor
for building Mo-containing materials.

A particular strength of FDE in this context is the ease with which different relativistic Hamiltonians can
be used for different parts of the system. Here it allowed to compare the scalar relativistic (SR) and 2-
component spin-orbit (SO) ZORA Hamiltonians, and the 4-component Dirac-Coulomb (DC) Hamiltonian
to describe the active subsystem while using the SR ZORA Hamiltonian for the aqueous environment.

From our calculations on different structural models, employing a large set of structures obtained from
CPMD trajectories from work previously described in the literature, we have established that for the 95Mo
mean isotropic shielding value, there are weak but non-negligible solvent shifts, due to the modification of
the response of the electronic wavefunction of solute by the solvent. We find that even an approach along
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the lines of mechanical embedding yields a mean isotropic shielding value in good agreement with reference
results obtained with standard DFT calculations on the full system.

Such mechanical embedding calculations, however, show a much larger spread of shielding values (for the
different CPMD snapshots) with respect to the reference calculations than either of the electronic embedding
variants considered. This leads us to conclude that electronic embedding is in fact an essential component
for computational models.

By investigating the dependence of the isotropic shielding value from embedding calculations on the size of
the active subsystems for selected CPMD snapshots, we have observed that convergence to the reference
calculations it not monotonic and large discrepancies may still occur until roughly a full first solvation shell
is explicitly included in the active subsystem (Structural Interpretation of the 31 P Nmr Chemical Shifts in
Thiophosphate and Phosphate: Key Effects Due to Spin-Orbit and Explicit Solvent, 9924).

We have found our results to be stable with respect to changes in the way the environment was described
by FDE, that is, irrespective of whether we used embedding potentials obtained with the same (SR-ZORA
or SO-ZORA) Hamiltonian throughout, or by using a combination of SR-ZORA based environment electron
densities and electrostatic potentials together with a DC based calculation for the active subsystem.

This points to the possibility of devising efficient computational models for Mo-containing compounds, in
which SR-ZORA DFT calculations are used to prepare embedding potentials for more sophisticated, 4-
component based calculations on the Mo-containing regions of interest. The latter approach is particularly
interesting to investigate the absolute shieldings for molecules in complex environments.

We have found a significant shift (around 260 ppm) when changing from the SR-ZORA to the SO-ZORA
Hamiltonian, and another significant shift (around 150 ppm) when changing from the SO-ZORA to the DC
Hamiltonians. However, given the rather systematic nature of the differences observed, for chemical shifts
of Mo complexes it is likely that the SR-ZORA Hamiltonian provides sufficient accuracy.

Finally, we have explored the visualization of the electron and shielding densities, as a means to provide
further insight on the mechanisms behind the solvent effects, in addition to the performance (and short-
comings) of the embedding approaches. Our results underscore the point we have made previously, in that
changes in shielding densities are better understood from the analysis of the differences of the corresponding
shielding densities rather than from the changes in electron density.

Furthermore, we observe that the major source of errors in embedding calculations comes from the regions
around the Mo nucleus, with less important discrepancies coming from all around the MoO2−

4 species. As the
major difference between the FDE and reference calculations lies in the use of approximate kinetic energy
functionals to describe the respective non-additive contributions, this suggests that for magnetic properties
it would be of interest to try to improve the performance of such functionals.
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Supplemental information

Influence of the embedding model on 95Mo shielding values

snapshot 10 snapshot 85

Model σiso ∆σrefiso σiso ∆σrefiso

[A+ 20B|0|0] [ref ] -805.141 -1054.585
[A|11Bf |9Bf ] -808.887 -3.746 -1034.507 20.078
[A|11Bg|9Bf ] -808.879 -3.738 -1035.921 18.664
[A|0|20Bf ] -822.851 -17.710 -1028.881 25.704
[A|0|11Bg + 9Bf ] -822.446 -17.305 -1032.424 22.161

Table 2: SR-ZORA values of σiso as a function of the fragmentation of the first solvation layer of MoO2−
4 ,

and ∆σrefiso , with respect to the supermolecule [A+ 20B|0|0] reference, for snapshots 10 and 85.

The electron densities and electrostatic potential for the environment are obtained either from calculations
on individual water molecules (and we refer to a “fragmented” environment, noted f) or by these forming
a single subsystem (and we refer to a “grouped” environment, noted g). We have looked at the influence
of these two wait of treating the water molecules for two snapshots of the CPMD trajectories, snapshot 10
yielding results close to the average and snapshot 85 standing in the tail of the result distribution.

Table 2 reveals that the σiso values obtained with FDE and FnT embeddings are marginally sensitive to the
way the embedding density is calculated. For the sake of minimizing the computational cost, we will rely on
“fragmented” water clusters for the generation of the FnT and FDE embedding potentials.
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Influence of the relativistic Hamiltonian on σiso

Figure 7: Evolution of the isotropic shielding σiso (in ppm) as a function of the number of water molecules
p in the active system ([A + pB|0|0]) or in the FnT process ([A|pBg|0]), with Dirac (top) and with ADF
(bottom), for snapshot 10.

In the manuscript, we have noted that the change of relativistic Hamiltonian from SR-ZORA (ADF) to DC
(DIRAC) translates into a change 410ppm of the absolute shielding constant for the [A|11Bf |9Bf ] model (See
Table 3). To verify whether this shift is independent of the chemical model, we have performed a systematic
comparison of σiso values obtained with SR-ZORA and DC Hamiltonians for molybdate [MoO4(H2O)p]

2−

hydrated by p = 1, 6 water molecules either treated explicitly ([A+pB|0|0]ADF and [A+pB|0|0]Dirac), or by
an embedding potential treating the (H2O)p water molecules as a “grouped” water cluster ([A|pBg|0]ADF
and [A|pBg|0]Dirac. The values drawn on Figure 7 reveal very similar trends between the SR-ZORA and
DC values. For both Hamiltonians, the difference between FnT ([A|pBg|0]) values and the supermolecular
[A+ pB|0|0]), vanishes at p = 6 water molecules.

Statistical analysis of σiso values; selection of a snapshot subset

Figure 8 plots the distribution of the σiso values obtained from the 517 snapshots (red dotted line). With the
aim of performing DC calculations, which are computationally more expensive that the ADF ones, it was
necessary to reduce the number of snapshots, but keeping a normal distribution. The Normal probability
plots of Figures 9 and 10, reveal that the ADF values, both for supermolecular calculations (dashed red line)
and FnT calculations (black line) obtained for a subset of 216 snapshots follow a normal law, though with
a smaller variance. The DC values (red lines) have the same statistical distribution, shifted by 411ppm.
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Figure 8: Normalized Gaussians representing σiso (in ppm). The red dotted line refers to supermolecular
ADF for all snapshots ([A + 20B|0|0]ADF ), while the red dashed line refers to the subset of 216 selected
snapshots ([A+ 20B|0|0]216ADF ). The FnT ADF calculations ([A|11Bf |9Bf ]216ADF ) for this 216 snapshot subset
are drawn with a black line, while the DIRAC calculations using SR-ZORA (ADF) embedding potentials
and electrostatic potentials are drawn in red.

Figure 9: Normal Probability Plot of σiso for the 216 selected snapshots with ADF
(FnT) : [A|11Bf |9Bf ]216ADF .
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Figure 10: Normal Probability Plot of σiso for the 216 selected snapshots with
[A|11Bf |9Bf ]216Dirac : [A|0|0]216−ADFDirac .
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