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Abstract

Microbial decomposition of soil organic matter is a key component of the global carbon cycle. As Earth’s climate changes,

the response of microbes and microbial enzymes to rising temperatures will largely determine the soil carbon feedback to

atmospheric CO2. While increasing attention focuses on physiological and ecological mechanisms of microbial responses,

the role of evolutionary adaptation remains little studied. To address this gap, we developed an ecosystem-evolutionary

model of a soil microbe-enzyme system under warming. Constraining the model with observations from five contrasting sites

reveals evolutionary aggravation of soil carbon loss to be the most likely outcome; however, temperature-dependent increases

in mortality could cause an evolutionary buffering effect instead. We generally predict a strong latitudinal pattern, from

small evolutionary effects at low latitude to large evolutionary effects at high latitudes. Accounting for microbial evolutionary

adaptation will likely be critical for improving projections of Earth system responses to climate change.

INTRODUCTION

Microorganisms are key drivers of global biogeochemical cycles (Falkowski et al.2008). In terrestrial ecosys-
tems, soil microbes decompose organic matter, returning carbon to the atmosphere as carbon dioxide (CO2)
(Waksman & Starkey 1931).In vitro and in situ experiments suggest that changes in microbial decompo-
sition with warming are an important feedback to climate (Davidson & Janssens 2006; Singh et al. 2010;
Frey et al. 2013). Soil microbial populations may respond to increasing temperature through physiologi-
cal mechanisms such as individual metabolic adjustment (Bradford et al. 2008; Tucker et al. 2013) and
ecological mechanisms such as shifts in population abundance or community composition (Wei et al.2014;
Creamer et al. 2015). Given the short generation time, large population sizes and genetic variation of many
microbial organisms, evolutionary adaptive responses of microbial populations to warming are also likely
(Padfield et al. 2016; Schaum et al. 2017). Indeed, rapid evolutionary adaptation of microbial populations
to environmental change, especially temperature gradients (Bennett & Lenski 2007), is well documented
in laboratory systems. However, the functional, ecosystem-level consequences of microbial adaptive evolu-
tion remain poorly understood, and how microbial evolutionary adaptation to warming may contribute to
carbon-climate feedbacks is unknown (Monroe et al.2018).

Key to microbial decomposition of soil organic matter is the production by microbes of extracellular en-
zymes (exoenzymes), that diffuse locally in the soil and bind to soil organic matter compounds (Ratledge
1994). Because the fitness cost of exoenzyme production (Harder & Dijkhuizen 1983) (reduced allocation to
growth, Fig. 1a) is paid by individual microbes whereas fitness benefits (larger resource pool) are received
by microbial collectives (Velicer 2003), we expect genetic variation in exoenzyme production (Trivedi et
al.2016) to be under strong selection (Rainey & Rainey 2003; Velicer 2003). Our objective is to evaluate
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how exoenzyme production responds to selection under environmental warming, and how the evolutionary
response of exoenzyme production impacts decomposition and soil organic carbon stock (SOC). Our focus
is on soil bacteria, which typically have a large potential for rapid evolutionary adaptation to environmental
change (Koskella & Vos 2015).

To this end, we develop and analyze a novel ecosystem-evolutionary model, starting with an ecosystem model
of microbe-enzyme decomposition first proposed by Allison et al. (2010) (Fig. 1a), and modified to take
microbial evolutionary adaptation into account. Amongst ecosystem models of soil microbial decomposition
(reviewed in Abs and Ferriere (2020)), Allison et al. ’s model is the simplest of theCDMZ type, where
C denotes the size of a single pool of SOC, D , the size of the dissolved organic carbon (DOC) pool,M ,
the microbial biomass, and Z , the size of a single pool of exoenzymes. The focal microbial trait is the
fraction of assimilated carbon allocated to exoenzyme production (Sinsabaugh & Moorhead 1994; Allison
2012; Steinweg et al. 2013), or ‘exoenzyme allocation fraction’, denoted by φ . The balance of assimilated
carbon, 1 - φ , is allocated to microbial growth. The effect of temperature on soil microbial activity is
mediated by enzymes kinetics, with exoenzymes driving the decomposition rate, and intra-cellular enzymes
involved in resource uptake and microbial biomass synthesis. In general, as temperature increases, Allison
et al .’s (2010) ecosystem model predicts a decline in equilibrium SOC due to faster enzyme kinetics, hence
a positive feedback to atmospheric CO2 and warming.

To investigate how evolutionary adaptation to warming may affect decomposition, we account for the exis-
tence of heritable variation (Alster et al.2016; Trivedi et al. 2016) in the exoenzyme allocation fraction,φ .
We then use evolutionary game theory and adaptive dynamics modeling (Geritzet al. 1998; Brännström et
al. 2013) to derive the selection gradient of trait φ and compute the microbial evolutionarily stable strat-
egy (ESS), φ *, at any given temperature. Changing temperature alters the selection gradient, henceφ *.
Knowing how the evolutionarily stable trait value φ * changes as temperature increases, we can evaluate
how the ecosystem equilibrium changes from both the direct effect of warming on enzyme kinetics, and the
indirect effect mediated by microbial evolutionary adaptation to warming (Fig. 1b, c). By comparing the
response of the SOC stock that our ecosystem evolutionary model predicts (EVOL response) to the response
predicted by the ecosystem CDMZ model in the absence of evolution (ECOS response, assuming φ to be a
fixed parameter), we can evaluate the contribution of microbial evolutionary adaptation (EVO effect) to the
direction and magnitude of the SOC stock response to climate warming (Fig. 1b, c).

To illustrate how EVO effects may vary in real ecosystems, we use available data (Germanet al. 2012) on
the decomposition kinetic parameters in five sites of increasing latitude and decreasing mean annual tem-
perature. We evaluate ECOS and EVOL responses for each site, and compare them within and among sites.
Our analysis identifies parameters and temperature dependencies that critically influence the strength of
evolutionary effects. We discuss how these evolutionary effects relate to previous consideration of ‘adapta-
tion’ in microbial responses to climate warming (Allisonet al. 2010; Wieder et al. 2013; Allison 2014). We
also discuss how, in natural systems, evolutionary adaptation may interact with ecological responses such as
species sorting and community shifts (O’Brienet al. 2013; Boon et al. 2014; Strauss 2014). We highlight how
our results could inform future empirical work, and conclude with implications for Earth system modeling
and forecasting.

METHODS

Ecosystem model and temperature dependencies

We use Allison et al.’s (2010) microbe-enzyme model of litter decomposition to describe the ecosystem
dynamics of C , D ,M , and Z , given litter input, leaching rates, and soil temperature (equations (1a-d)
in Box 1, Fig. 1a and Supplementary Fig. 1). DOC uptaken by individual cells is allocated to exoenzyme
production (fraction φ ) or microbial biomass, with enzyme production efficiency denoted by γ Z and microbial
growth efficiency (MGE) denoted by γ M.

At the molecular and cellular level, the effect of warming on microbial decomposition is mediated by the
temperature sensitivity of intra- and extra-cellular enzymatic activity (Wallensteinet al. 2009; German et
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al. 2012; Burns et al.2013). In the baseline ‘kinetics-only’ scenario of temperature-dependent decomposi-
tion, microbial uptake parameters (maximum uptake rate, half-saturation constant) and exoenzyme kinetics
parameters (maximum decomposition rate, half-saturation constant) increase with temperature (Hochachka
& Somero 2002; Davidson & Janssens 2006) in a logistic manner (equations (2a-d) in Box 1). Two other
scenarios have been proposed for the influence of temperature on decomposition. In the microbial mortality
scenario, the microbial death rate also increases with temperature (equation (3) in Box 1). This could be due
to a higher risk of predation or pathogenic infection at higher temperatures, or faster microbial senescence
due to higher protein turnover (Hagerty et al.2014). In the microbial growth efficiency (MGE) scenario, MGE
(the fraction of carbon allocated to growth that actually contributes to microbial biomass, as opposed to
being released as CO2via growth respiration) decreases with warming (Allison et al.2010; Wieder et al. 2013)
(equation (4) in Box 1), which could be due to higher maintenance costs at higher temperature (Sinsabaugh
et al.2013).

The model parameters (microbial life history parameters, thermal dependencies, enzyme parameters, carbon
inputs) were constrained by experimental and observational data (Allisonet al. 2010; Allison 2012; German
et al. 2012) (see Abs and Ferriere 20 for a review, Supporting Notes 2 for details and Supplementary Table
1). Within these parameter ranges, the ecosystem model outputs are consistent with target empirical values
(targetC of the order of 100 mg cm-3, M about 2% of C , Z about 1% of M , and limiting Dclose to zero).
(Zhanget al. 2014) (2014) provided some more direct validation by successfully fitting a CDMZ model to
time series of field measurements of soil respiration from a specific ecosystem (semiarid savannah subject
to episodic rainfall pulses). How scenarios of temperature-dependence and parameter values influence the
response of equilibrium C to temperature is shown in Supplementary Fig. 4 and commented on in the
Supplementary Note 3.

Evolutionary model of exoenzyme production

Assuming heritable variation in the exoenzyme allocation fraction trait,φ , we use the framework of adaptive
dynamics (Metz et al.1992; Geritz et al. 1998) to predict the strength and direction of selection on trait φ and
the evolutionarily stable value,φ *. In this framework, evolution is modeled as a competition process between
a ‘resident strategy’ (wild-type) and alternate strategies (mutants) within a set of feasible phenotypes. In
a given environment (e.g. at a given temperature), an evolutionarily stable strategy (ESS) is a phenotype
that when resident, no mutant can invade. The adaptive dynamics framework provides the mathematical
criteria to identify ESSs and check their attractivity, i.e. that they can be reached by a sequence of small
evolutionary steps, each step involving the replacement of a resident phenotype by a mutant phenotype. Here
the set of feasible phenotypes is the range (φ min, φ max) at a given temperature, for which the non-trivial
ecosystem equilibrium exists (see Box 1). The derivation of the selection gradient and evolutionarily stable
trait value, φ *, as a function of temperature T , is presented in Box 2.

Ecosystem response (ECOS) and ecosystem evolutionary response (EVOL) to warming

As temperature rises from T 0 to T , the direction and magnitude of the microbial adaptive response is
measured byϕ = ϕ∗ (T )−ϕ∗ (T0), which depends on the scenario of temperature dependence. The ecosystem-
evolutionary response (EVOL response) of SOC is given by

(9) EVOL response = ΔC EVOL(T0 , T ) = C (T ,φ *(T )) – C (T0 ,φ *(T0 ))

where C (T , φ ) denotes ecosystem equilibriumC at temperature T , given enzyme allocation fractionφ .
The EVOL response is to be compared with the response in the absence of evolution (ECOS response):

(10) ECOS response = ΔC ECOS(T 0, T ) = C (T ,φ *(T 0)) –C (T 0,φ *(T 0))

in which the enzyme allocation fraction is fixed at itsT 0 -adapted value,φ *(T 0) (Fig. 1c).

We measure the magnitude of the evolutionary effect (EVO effect) as the difference between the EVOL
response averaged over the temperature range (T 0, T ) and the ECOS response averaged over the same
temperature range, normalized by the ECOS response:

3
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(11) EVO effect =

∣∣∣∫ TT0 CEVOL(T0,T )−
∫ T
T0
CECOS(T0,T )

∣∣∣∣∣∣∫ TT0 CECOS(T0,T )
∣∣∣

This evaluation allows us to compare EVO effects across systems that differ in the magnitude of their
ECOS response. In all simulations we use T = T0 + ∆T where ΔT = 5 °C. In general, the ECOS and EVOL
responses are monotonic, close-to-linear functions ofT over the considered temperature ranges(T0, T0+∆T ),
which makes all our comparative analyses almost insensitive to our choice of ΔT .

Sensitivity analysis

We analysed the model sensitivity by varying parameters over two orders of magnitude (as in (Allisonet
al. 2010) – except γ M andγ Z for which we used the whole range over which the non-trivial ecosystem
equilibrium is stable (Supplementary Table 2). To assess the significance of our findings for real ecosystems,
we focused on five sites for which empirical data (German et al. 2012) could be used to constrain the model.
The five sites contrast strongly in their initial temperature, T 0, and decomposition kinetics, vDmax(T ) and
KD
m(T ) for which we selected the Arrhenius equations (equations (2a-d) in Box 1) that best fit the relations

used in (German et al. 2012) (Supplementary Table 3).

RESULTS

ESS enzyme allocation fraction at given temperature

The exoenzyme allocation fraction ESS, φ *, corresponds to a maximum of microbial fitness relative to other
trait values, and therefore depends on the parameters defining microbial net growth rate, i.e. MGE (γ M),
maximum uptake rate (vUmax), mortality (d M), and local competitive advantage to exoenzyme producers, or
‘competition asymmetry’ (c 0):

(8)ϕ∗(T ) = 1− dM
γM vUmax

− 1
c0

Note that c 0, the degree of competition asymmetry, measures the differential availability of enzymatically
produced dissolved organic carbon (DOC) to different microbial strains. Competition asymmetry is shaped
by diffusion of exoenzymes and DOC, and by microbial mobility, and is thus likely influenced by soil physical
properties, such as texture or moisture. For simplicity, we assume that competition asymmetry is independent
of temperature.

At a fixed temperature, the model predicts that microbes invest less in exoenzymes when exposed to hostile
conditions causing high mortality (d M), low MGE (γ M), low maximal uptake rate (vUmax), and/or low
competitive advantage to producers (c 0). Conversely, microbes are selected to allocate more resource into
exoenzyme production when more favourable growth conditions yield a better ‘return on investment’ (Schimel
& Weintraub 2003).

Effect of warming on the enzyme allocation fraction ESS

According to equation (8), the adaptive response of exoenzyme allocation to warming depends on how the
MGE, maximum uptake, and mortality vary with temperature. We investigate how parameters influence
the direction and sensitivity of the exoenzyme allocation fraction ESS to temperature by calculating the
derivative of φ * with respect to T , for each scenario of temperature dependence (Supplementary Note 4,
Supplementary Fig. 5a-d). In the baseline ‘kinetics-only’ scenario (in which vUmax is the only parameter in
equation (8) that depends on temperature), increasing temperature creates more favorable growth conditions
through higher resource uptake capacity (highervUmax), which selects for higher investment in exoenzyme pro-
duction (Supplementary Fig. 5a), resulting in lower equilibrium SOC. This is an evolutionary amplification
of the positive feedback to warming driven by the ECOS response. Because dφ */dT is proportional to both
exp(1/T ) and 1/T 2, the sensitivity of φ * to temperature is strongest across low temperatures (Supplemen-
tary Note 4, Supplementary Fig. 5a). The adaptive response is generally greatest (and the amplification of
the positive climate feedback strongest) when warming enhances microbial growth potential (by increasing
vUmax) under initially hostile conditions (high dM , low γM , low vUmax due to low intrinsic uptake rate vU0 and/or
high activation energyEUv , low initial temperature T 0).

4
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In the temperature-dependent mortality scenario, both mortality and uptake respond exponentially to tem-
perature. Microbes evolve a higher investment in exoenzyme production in response to warming if the
change in resource uptake capacity remains greater than the change in mortality rate; otherwise, microbes
evolve a lower investment (Supplementary Note 4 and Supplementary Fig. 5b, c). In the MGE-temperature
dependent scenario, the response of φ * to temperature is proportional to the inverse of an exponential func-
tion of temperature (through the uptake rate, vUmax) times a linear function of temperature (through MGE)
(Hagertyet al. 2014). As a consequence, at low initial temperature, the adaptive response of the allocation
strategy to warming is mainly driven by the thermal dependence of resource uptake, and microbes adapt
by increasing their resource investment in exoenzyme production. For ecosystems that are initially warmer,
the microbial evolutionary adaptation to warming (lower allocation to exoenzymes) is mainly driven by the
reduction of MGE (Supplementary Note 4 and Supplementary Fig. 5d).

We therefore conclude that microbial evolutionary adaptation to warming generally leads to larger resource
allocation to exoenzyme production and a stronger positive carbon feedback to warming, with a greater
response in initially colder ecosystems. There are two cases where positive soil C feedbacks to warming (due
to higher enzyme kinetic rates) could be attenuated or even reversed: temperature sensitive mortality, or
temperature-dependent MGE in an initially warm ecosystem (Supplementary Fig. 5c, d). Next we examine
the magnitude of the amplification, attenuation, or reversal of positive carbon feedbacks to warming.

Comparing the ECOS and EVOL responses to warming

The evolutionary ecosystem response of SOC equilibrium to warming combines the non-evolutionary re-
sponse of the ecosystem and the evolutionary adaptive response of exoenzyme production (Fig. 1c). In
all three scenarios of temperature dependence, the SOC non-evolutionary equilibrium generally decreases
as temperature or resource allocation to exoenzymes increases (Fig. 1b, Supplementary Figs. 3 and 4,
Supplementary Note 3). The negative effect of temperature results from the SOC equilibrium being mostly
sensitive to the maximum decomposition rate (vDmax) (Supplementary Note 3). As the maximum decompo-
sition rate increases with warming, the SOC equilibrium decreases. The SOC equilibrium is always lower in
systems where microbes invest more resources in exoenzymes because, all other parameters being fixed, a
larger exoenzyme allocation fraction entails that more exoenzymes are produced per unit time, which leads
to more SOC decomposed per unit time (Supplementary Note 1).

We therefore predict that, without evolution, the equilibrium soil carbon stock shrinks as the climate warms,
in all scenarios of temperature dependence (Fig. 3). The strongest losses occur in initially cold systems
due to the non-linear response of the maximum decomposition rate (vDmax), hence of the SOC equilibrium,
to temperature (Fig. 3, Supplementary Figure 4). We expect microbial evolutionary adaptation to alter
the non-evolutionary response according to the scenario, from aggravating soil carbon loss in systems where
microbes adapt to warming with higher exoenzyme production, to buffering carbon loss from soils where
microbes adaptively respond to warming with a lower exoenzyme allocation fraction (Fig. 1c).

As expected, the simulated ecosystem-evolutionary change in SOC equilibrium in response to warming
(Figs. 2, 3) mirrors the evolutionary adaptive response of the exoenzyme allocation fraction to warming
in all scenarios of temperature dependence (Supplementary Figs. 5a-d). In the baseline scenario, microbes
always evolve a higher enzyme allocation fraction in response to rising temperature; as a consequence,
evolutionary adaptation amplifies the non-evolutionary soil carbon loss due to warming (Fig. 3a). The effect
of evolution is strongest in ecosystems characterized by conditions that are hostile to microbial growth (low
initial temperature, T 0; high mortality, dM ; low MGE, γM ; low maximum uptake rate,vU0 ) (Fig. 2, Fig. 3a,
Supplementary Fig. 6), where the adaptive response of the exoenzyme allocation fraction is most pronounced
(Supplementary Fig. 5a). Strong evolutionary effects are robust to the other model parameters – enzyme
parameters (efficiency, production) and environmental parameters (litter input, leaching) (Supplementary
Figs. 6 and 7, Supplementary Note 5), which have no influence on the relationship between φ * and
temperature (equation (8)). The model also predicts stronger evolutionary effects when the differential
access to resources between microbial strains is small (low c 0) (equation (8), Fig. 2c, d). Small competition
asymmetry selects for microbes allocating little to exoenzymes (low φ *); due to the non-linear response of
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SOC equilibrium to φ , this causes the SOC equilibrium to be more sensitive to variation in the exoenzyme
allocation fraction (Supplementary Note 1, Supplementary Fig. 3).

In the temperature-dependent mortality scenario, the strength of the effect of temperature on mortality is
an important determinant of the evolutionary adaptive response to warming. When mortality is moderately
sensitive to temperature, the positive response of φ * to warming is attenuated. As a result, the evolutionary
aggravation of soil carbon loss is less severe (Fig. 3b). When mortality is strongly sensitive to tempera-
ture, warming creates more hostile conditions for microbial growth, therefore φ * decreases with warming.
Evolutionary adaptation then buffers the loss of soil carbon (negative EVO effect, Fig. 3c).

In the temperature-dependent MGE scenario, the direction (positive or negative) of the response of φ * to
warming is determined by the initial temperature T 0. The evolutionary effect parallels the response of φ
*. At low T 0,φ * increases strongly with temperature, causing an aggravation of soil carbon loss (positive
evolutionary effect). In contrast, at highT 0, φ * decreases strongly with warming, thus opposing the non-
evolutionary response (negative evolutionary effect) and promoting carbon sequestration instead (Fig. 3d).
At intermediate T 0, φ * is weakly sensitive to temperature, and the effect of evolutionary adaptation to
warming is negligible.

Model predictions using empirical data from five sites

To illustrate how evolutionary effects may vary in real ecosystems, we used available data (Germanet al.
2012) on the decomposition kinetic parameters from five sites of increasing latitude and decreasing mean
annual temperature (Costa Rica, California, West Virginia, Maine, and Alaska, Fig. 4). We evaluated
non-evolutionary and evolutionary responses for each site under three levels of competition asymmetry (as
quantified by the local competitive advantage to producers, c 0) (Fig. 4a-h). Under our baseline scenario,
EVO effects correlate strongly with mean annual temperature, even more so for low competition asymmetry
(Fig. 4i). Stronger EVO effects occur in colder sites, as found in the general analysis (Fig. 3a). In contrast,
the non-evolutionary response does not correlate with mean annual temperature (Fig. 4a). As a result, a
temperate site such as Maine exhibits a weak non-evolutionary response that can be strongly amplified by
evolution, whereas the warm Costa Rica site shows a strong non-evolutionary response that is little affected
by evolution.

These results are quantitatively attenuated but qualitatively unaffected when microbial mortality increases
moderately with temperature (Fig. 4b, f, j). With a stronger effect of temperature on microbial mortality,
all sites show the evolutionary buffering effect (Fig. 4k) found in the general analysis (Fig. 3c). The
intensity of evolutionary buffering is independent of the sites’ mean annual temperature, whereas it varies
significantly with competition asymmetry (Fig. 4k). Under the temperature-dependent MGE scenario, non-
evolutionary and evolutionary responses are reduced in magnitude compared to the baseline scenario (Fig.
4d, h), particularly in cold sites. However, in these sites, EVO effects are enhanced dramatically (Fig. 4l).
Thus, in a site as cold as Alaska, a significant evolutionary loss of soil carbon is predicted, whereas the
non-evolutionary-driven loss of soil carbon would be negligible (Fig. 4l).

DISCUSSION

Our general analysis of the ecosystem CDMZ model has shown that the non-evolutionary response of equi-
librium SOC to warming always involves soil carbon loss and may only vary in amplitude (Fig. 1). In
contrast, the evolutionary adaptive response of microbial exoenzyme allocation, which is shaped by an in-
teraction among the non-linear temperature dependences of microbial traits, can drive negative as well as
positive responses of equilibrium SOC to warming. The size of evolutionary effects is most sensitive to MGE,
microbial mortality, activation energy of uptake maximal rate, competition asymmetry, initial temperature
(Fig. 2), and to the traits’ temperature sensitivity (Fig. 3). By specifying the model for five contrasting
sites for which exoenzyme kinetics data are available (German et al.2012), we find evolutionary aggravation
of soil carbon loss to be the most likely outcome, with a strong latitudinal pattern, from small evolutionary
effects at low latitude to large evolutionary effects at high latitudes (Fig. 4). Strong temperature-dependence
of microbial mortality, however, would dramatically change the evolutionary pattern, possibly causing an
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attenuation of soil carbon loss or even carbon sequestration in response to warming.

Model predictions and empirical data

The model results are broadly consistent with empirical work showing that changes in soil C stocks are driven
by changes in microbial enzyme activity (Carreiroet al. 2000; Waldrop et al. 2004), and that these changes in
activity arise from the multiple effects of temperature on enzyme kinetics, microbial pool size, and microbial
allocation to exoenzymes (Steinweg et al. 2013; Malik et al. 2019). Empirical data suggest that natural values
of enzyme allocation fraction are low (Schimel & Weintraub 2003; Burns et al. 2013) and fall in the range for
which our model predicts large evolutionary responses of decomposition to warming. Measured mass-specific
potential enzyme activity, used as a proxy for allocation to exoenzymes, was shown to generally increase with
warming, a pattern also predicted by our evolutionary model (Steinweg et al.2013). In particular, Steinweg
et al . found that the rise in enzyme allocation was greatest for moderate warming and less pronounced for
strong warming, which matches our model predictions under the scenario of temperature-dependent MGE.

A large body of empirical observations and controlled experiments at various time and spatial scales highlights
a general response of soil respiration and soil C stocks to warming, involving an ephemeral increase of
respiration, no significant change in SOC, and a decrease in microbial biomass. Only the temperature-
dependent mortality scenario with evolution could match these patterns. It has been argued, however,
that most experiments remain insufficient to rule out model predictions that depart from these patterns
(Sulman et al.2018). Furthermore, the mechanism (physiological, ecological and/or evolutionary) by which
exoenzyme allocation and soil respiration vary in these experiments is unknown (see Supplementary Note 6
for further discussion of ecosystem modeling predictions of soil C responses to warming). Next we discuss the
potential interplay of evolutionary adaptation with physiological acclimation (phenotypic plasticity within
individuals) and ecological community assembly (shifts in species composition in whole communities) in
shaping soil decomposition responses to warming.

Evolutionary adaptation vs. physiological acclimation

Acclimation responses, whereby individuals’ physiological mechanisms buffer the kinetics effect of warming
and maintain homeostasis in key life-history traits such as growth and maintenance, are sometimes referred
to as ‘adaptation’ (e.g. of microbial carbon use efficiency in response to warming ) (Allisonet al. 2010;
Wieder et al. 2013; Allison 2014). However, this is phenotypic plasticity at the individual level, rather
than evolutionary adaptation at the population level. In our model, constant mortality (in the baseline and
temperature-dependent MGE scenarios) and constant MGE (in the baseline and temperature-dependent mor-
tality scenarios) can be interpreted as manifestations of microbial acclimation (Allison et al.2010; Hagerty
et al. 2014). Our results show that such plasticity, whereby individual cells buffer growth efficiency and/or
mortality against temperature variation, does not necessarily impede or overwhelm evolutionary adapta-
tion to climate warming. It is precisely under the assumptions that MGE and mortality remain constant
with respect to temperature that the strongest adaptive change in exoenzyme allocation is predicted (see
Supplementary Note 7 for further discussion of implications regarding ‘adaptation’ of microbial carbon-use
efficiency).

The exoenzyme allocation fraction itself might be plastic. Indeed, Steinweg et al. (2013) interpreted the
positive effect of temperature on allocation to enzyme production as a cell-level response to larger nutrient
needs driven by higher maintenance costs. In our model, warming causes larger rates of nutrient uptakes
(highervUmax) and this can lead to an adaptive increase of the enzyme allocation fraction (equation (8)). From
the general evolutionary theory of phenotypic plasticity (Scheiner 1993), we expect the evolutionary optimal
reaction norm of enzyme allocation fraction to follow the same pattern, i.e. φ increasing with temperature,
provided that the cost of plasticity is not too high and does not alter the selection gradient too markedly.
This warrants future investigation.

An interesting way of testing the role of evolutionary adaptationvs. plasticity would be to monitor the effect of
warming on experimentally evolving bacterial communities at different levels of medium diffusivity or poros-
ity (Rebolleda-Gómez & Travisano 2018). Our model predicts that the diffusion of resources (DOC), that is
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likely dependent on physical properties of the soil medium, has a strong influence on the adaptive evolution
of microbial exoenzyme production in response to warming, but not on the ecosystem (non-evolutionary)
response driven by enzyme kinetics and physiological plasticity. Thus, comparing population-scale decompo-
sition and respiration across treatments that factorially cross temperature and medium physical properties
may help disentangle the effects of adaptation vs. plasticity.

Evolutionary adaptation and ecological community responses

In natural soils exposed to climate change, microbial evolutionary adaptation is expected to interplay with
ecological responses such as species sorting or community shifts in species or functional group abundances
(O’Brienet al. 2013; Boon et al. 2014; Strauss 2014). Indeed, there is growing experimental evidence for
soil bacterial communities shifting, with functional consequences on decomposition, in response to climate
(Glassman et al. 2018). This raises the challenge of assessing the relative importance of evolutionary and
ecological mechanisms in the response of microbial decomposition to warming. Available empirical evidence
suggest that both could be significant. For example, recent experiments onPseudomonas bacteria showed
that local evolutionary adaptation was as important as community composition in shaping the community
response to elevated temperature over the course of a two-month experiment (Gómez et al. 2016).

Our model could be extended to integrate evolutionary adaptation and ecological shifts in response to
warming. To represent the functional diversity of a microbial community exploiting a diversity of substrates,
different SOC pools could be included (Wang et al. 2013), alongside specifying different types of enzymes
and different microbial functional groups that produce them (Allison 2012). In our model parameterization,
microbial functional groups would potentially differ in traits such as MGE (γM ), enzyme cost (γZ) and
uptake rate (vUmax) (Allison 2012), and assuming heritable variation, the evolution of these traits would
drive the adaptive response of the microbial functional community to environmental change. In an evolution
experiment using Neurospora discreta as a model system to assess adaptation of soil fungi to warming
(Romero-Olivareset al. 2015), Allison et al. (2018) did find evidence for evolutionary responses in MGE and
uptake rates. By letting multiple traits evolve, our model extended to multiple substrates could be used first
to generate an evolutionarily stable community at a given temperature (following Sauterey et al .’s (Sauterey
et al.2015) approach for including evolutionary dynamics in models of ocean planktonic communities), and
then evaluate both ecological and evolutionary responses to warming.

Scaling up

In spite of an increasing effort to document and understand the ecosystem impact of microbial physiological
and ecological responses to climate warming (Allisonet al. 2010; Treseder et al. 2012; Wieder et al.2013),
no Earth system model that seeks to represent the role of living organisms in climate feedbacks has yet
included evolutionary mechanisms of adaptation. This model is a critical first step. To predict geographic
variation in evolutionary responses and effects across large geographic scales, our results highlights the
need for more empirical data on variation in ecosystem (competition) traits, especially how the competitive
advantage to exoenzyme producers varies with soil physical properties, and in microbial physiological traits,
especially microbial mortality (see Supplementary Note 8 for further discussion of the effect of microbial
traits’ temperature dependence on ecosystem-evolutionary responses). On the modeling side, three steps
will be needed: accounting for soil carbon stabilization on a timescale longer than respiration (Tang & Riley
2014); for vegetation types, the associated diversity of organic substrates in litter, and corresponding diversity
of microbial decomposers (Allison 2012); and for the interaction of biogeochemical cycles and associated
stoichiometric constraints (Harte & Kinzig 1993; Sinsabaugh & Moorhead 1994; Schimel & Weintraub 2003;
Allison 2012; Kaiser et al. 2015). As demonstrated by successful Earth-scale modeling of phytoplankton
abundance and distribution in the global ocean (Followset al. 2007), future models that take these steps
will trade off some of their added structural complexity with the model ‘self-parameterization’ driven by
the process of adaptive trait evolution itself. As this research program unfolds, we expect projections of
future climate and carbon cycle feedbacks, and their uncertainty, to be significantly impacted by microbial
evolutionary adaptation, from local to global scales.
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Figure Captions

Figure 1. Effect of temperature and enzyme allocation fraction on SOC ecosystem equilibrium.
a , Structure of the microbial-enzyme ecosystem model (see Methods for details): SOC stock is the balance
of plant input, I , and loss by exoenzyme-mediated degradation to DOC (D ), which in turn is allocated
between (fraction φ ) production of exoenzymes (Z ) and (fraction 1-φ ) growth of microbial biomass (M ).
b , Effect of temperature and exoenzyme allocation fraction, φ , on SOC equilibrium, C , in the baseline
scenario of temperature dependence. c , Response of SOC ecosystem equilibrium, C , to a 5°C increase in
temperature (from 20 °C to 25 °C) as a function of exoenzyme allocation fraction,φ . Parameters are set to
their default values (Supplementary Table 1), except I = 5 10−3, vU0 = 105,EUv = 38, c0 = 1.17.

Figure 2. Effect of microbial evolutionary adaptation on the SOC equilibrium response to +
5 °C warming (EVO effect). Temperature influences enzyme kinetics only (baseline scenario of tempe-
rature dependence). a , Influence of microbial biomass production efficiency, γ M, and microbial mortality
rate,d M. b , Influence of microbial resource acquisition traits vU0 and EUv . c-d , Influence of competition
asymmetry, c 0, and initial temperature, T 0. In all figures, constant parameters are set to their default
values (Supplementary Table 1) andI is set to 5 10-3. Points A1 and B1 indicate the default parameter
values. Point A2 (respectively B2) exemplifies values of γ M and d M (resp.vU0 and EUv ) for which the EVO
effect is strong. Panel c (resp. d ) shows the influence ofc 0 and T 0 on the EVO effect at A2 (resp. B2).

Figure 3. Ecosystem (ECOS) and ecosystem-evolutionary (EVOL) responses of SOC equilibri-
um to warming (up to + 5 °C) for three scenarios of temperature dependence. Ecosystem and
ecosystem-evolutionary changes in SOC equilibrium C given by equation (10) (without evolution, dashed
curves) and equation (9) (with evolution, plain curves) are plotted as a function of the increase in tempera-
ture. Blue curves , initial temperatureT 0 = 5°C. Black curves ,T 0 = T ref = 20°C.Red curves , T 0 = 30°C.
Insets , Direction and magnitude of EVO effect (%), from - 150 % to + 150 %, color code indicates T 0 as
before. a , Baseline scenario of temperature dependence (enzyme kinetics only).b , Temperature-dependent
microbial mortality, withE dM = 25 < EUv . c , Temperature- dependent microbial mortality withE dM = 55
> EUv .d , Temperature-dependent MGE, with m = 0.014. Parameters values correspond to point B2 in Fig. 2
(I = 5 10−3,vU0 = 105, EUv = 38, c0 = 1.17); other parameters are set to their default values (Supplementary
Table 1).

Figure 4. Ecosystem (ECOS) and ecosystem-evolutionary (EVOL) responses of SOC equilibri-
um to + 5 °C warming predicted for five sites. a-d , ECOS response. e-h , EVOL response. i-l, EVO
effect given by equation (11). AK: Alaska, boreal forest,T 0 = 0.1°C. ME: Maine, temperate forest,T 0 =
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5°C. WV: West Virginia, temperate forest,T 0 = 9°C. CA: California, temperate grassland,T 0 = 17°C. CR:
Costa Rica, tropical rain forest,T 0 = 26°C. First row (a, e, i ): baseline kinetics-only scenario of temperature
dependence. Second row (b, f, j ): temperature-dependent microbial mortality scenario withE dM = 25 <
EUv . Third row (c , g , k ): temperature- dependent microbial mortality scenario with E dM = 55 >EUv .
Fourth row (d, h, l ): temperature-dependent MGE scenario (m = - 0.014). The influence of competition
asymmetry,c 0, is shown (low: c 0 = 1.17, intermediate: c 0 = 1.34, high:c 0 = 1.5). For clarity, vertical axis
for ECOS and EVOL responses are truncated at - 65 mg C cm-3. Actual values for AK with c 0 = 1.17 are
ECOS response = - 170 mg C cm-3 and EVOL response = - 556 mg C cm-3; actual value for WV withc 0 =
1.17 is EVOL response = - 92.8 mg C cm-3. Parameter values correspond to point B2 in Fig. 2 (I = 5 10−3,
vU0 = 105, EUv = 38,c0 = 1.17); other parameters are set to their default values (Supplementary Table 1).
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Box 1: Ecosystem CDMZ model and temperature dependencies.

Based on (Allison et al. 2010) (Fig. 1a, Supplementary Fig. 1), the ecosystem model has four state variables
measured in unit mass of carbon: soil (non decomposed) organic carbon (SOC), C ; soil decomposed soluble
organic carbon (DOC), D ; microbial biomass, M ; and exoenzyme concentration, Z . Exoenzyme production
drives the decomposition process of C into D , which is the only source of carbon for microbes. The model
accounts for microbial production and death, exoenzyme decay, recycling of dead microbes and degraded
exoenzymes, C input from plant litter, and leaching ofC and D .

Model equations. State variables C , D , M ,Z obey equations (1a-d):

(1a)dC
dt = I − vDmaxC

KD
m+C

Z − eCC

(1b)dD
dt =

vDmaxC
KD
m+C

Z + dMM + dZZ − vUmaxD
KU
m+D

M − eDD

(1c)dM
dt = (1− ϕ) γM

vUmaxD
KU
m+D

M − dMM

(1d)dZ
dt = ϕγZ

vUmaxD
KU
m+D

M + dZZ

In equation (1a), decomposition follows from Michaelis-Menten kinetics of Z binding substrate C ; there
is a constant input,I , of soil organic (non decomposed) carbon from aboveground litter, and a loss due
to leaching at constant ratee C. In equation (1b), D is produced by decomposition and the recycling of
dead microbial biomass and inactive enzymes; D is consumed by microbial uptake, and lost by leaching at
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constant rate e D. In equation (1c), growth of microbial biomass M is driven by the rate of D uptake (a
Monod function of D ) times the fraction of uptaken Dturned into biomass, (1 – φ ) γ M, minus microbial
mortality at constant rate d M. In equation (1d), enzyme variation is driven by the rate of D uptake times
the fraction allocated to enzyme production, φ , and production efficiency, γ Z, minus enzyme deactivation
at constant rate, d Z.

Ecosystem equilibria. The ecosystem model (equations (1a-d)) possesses either one globally stable equilib-
rium, or three equilibria (one of which is always unstable) (Supplementary Note 1, Supplementary Fig. 2).
There are thresholds φ min andφ max such that the single globally stable equilibrium exists for φ < φ minor
φ > φ max and is given byC = I /eC , D = 0, M = 0, Z = 0. Thus, at this equilibrium, the microbial
population is extinct and no decomposition occurs. For φ min< φ < φ max, the microbial population can
either go extinct (then the system stabilizes at the same equilibrium as before) or persists at or around a
non-trivial equilibrium, which can be solved for analytically (Supplementary equation (1)). Note that φ min

andφ max depend on all microbial and model parameters (Supplementary Note 1, Supplementary Fig. 3).

Effect of temperature on model parameters. Decomposition is predicted to respond to warming (Davidson
& Janssens 2006) due to the temperature sensitivity of enzymatic activity (Wallensteinet al. 2009; German
et al. 2012; Stone et al.2012). Microbial assimilation may also vary with temperature if the microbial
membrane proteins involved in nutrient uptake are sensitive to warming. Following (Allisonet al. 2010), we
assume that exoenzyme kinetics parameters (maximum decomposition rate vDmax and half-saturation constant
KD
m) and microbial uptake parameters (maximum uptake rate vUmax and half-saturation constant KU

m) follow
Arrhenius relations with temperature. This defines our baseline ‘kinetics-only’ scenario of temperature-
dependent decomposition:

(2a)vDmax = vD0 e
− EDv
R(T+273)

(2b)KD
m = KD

0 e
− EDK
R(T+273)

(2c)vUmax = vU0 e
− EUv
R(T+273)

(2d)KU
m = KU

0 e
− EUK
R(T+273)

where T is temperature in Celsius, R is the ideal gas constant, and the E parameters denote the corresponding
activation energies.

We consider two additional scenarios for the influence of temperature on decomposition. In the temperature-
dependent microbial mortality scenario (Hagerty et al.2014), the microbial death rate d M depends on
temperature according to

(3)dM (T ) = dM0e
− EdM
R(T+273)

as in (Hagerty et al.2014).

In the temperature-dependent microbial growth efficiency (MGE) scenario, the MGE decreases with temper-
ature (Allisonet al. 2010; Wieder et al. 2013; Hagerty et al.2014), which is modeled by making the microbial
growth efficiencyγ M vary linearly with temperature (Allisonet al. 2010; German et al. 2012; Wang et al.
2013; Li et al. 2014):

(4)γM (T ) = γM,ref −m (T − Tref)

with T ref = 20 °C.

Box 2: Adaptive dynamics analysis.

Interaction between resident and mutant strains. To model the competition effect of a resident phenotype,
φ res, on the population growth of a mutant phenotype,φ mut, we extend the ecosystem model written for a
single type (equation (1c) in Box 1). To account for the local nature of the interaction between rare mutant
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and common resident cells, we introduce a function (hereafter denoted by c ) of the difference between φ res

and φ mut to measure how local decomposition by mutant and resident cells differ from ‘mean field’ (average)
decomposition by resident cells. Thus, for givenC , D , Z , the growth of the mutant population is governed
by

(5)dMmut

dt = (1− ϕ) γM
vUmax(1+c(ϕmut−ϕres))Dres

KU
m+(1+c(ϕmut−ϕres))Dres

Mmut − dMMmut

where D res is the equilibrium D predicted by the ecosystem model for the resident phenotypeφ res. Here
function c satisfiesc (0) = 0, c (z ) > 0 if z> 0 and c (z ) < 0 if z< 0.

The underlying assumption is that each microbe has access to DOC partly as a public good and partly as
a private good (Driscoll & Pepper 2010). The public good part results from the diffusion of exoenzymes.
The private good part results from local decomposition at the microscopic scale of cells and exoenzymes
that they produce themselves. A mutant cell that invests more (resp. less) in exoenzyme has access to more
(less) DOC than the average resident cell because the cell’s private good is greater (smaller) whereas all
cells share the same public good. In a spatially implicit model like ours, diffusion is not directly modeled,
but its effect on the accessibility of DOC to a mutant strain can be phenomenologically accounted for by
a parameterization that puts mutant cells at a competitive advantage for DOC if the mutant phenotype
invests more in exoenzyme production than the resident phenotype, or at a competitive disadvantage if the
mutant phenotype invests less. This parameterization is achieved with the function c in equation (5), where
c < 1 when φ mut< φ res and c > 1 when φ mut >φ res. This phenomenological approach is consistent with
the mathematical construction and numerical analysis of a spatially explicit model of resident-mutant local
interaction that accounts for soil diffusion, which will be reported elsewhere.

Invasion fitness and selection gradient. Mutant fitnesss (ϕmut, ϕres) is given by the mutant population growth
rate per unit biomass:

(6)s (ϕmut, ϕres) = (1− ϕ) γM
vUmax(1+c(ϕmut−ϕres))Dres

KU
m+(1+c(ϕmut−ϕres))Dres

− dM

The selection gradient then obtains by taking the first order derivative of the invasion fitness with respect
to the mutant trait:

(7)∇s (ϕ) = dM
1−ϕ

((
1− ϕ− dM

vUmaxγM

)
c0 − 1

)
where c0 = c′(0) measures the local competitive advantage to stronger exoenzyme producers, which we call
‘competition asymmetry’. Note that by definition of function c , we always havec0 > 0. Variation in c0 may
be caused by different soil diffusion properties, due to e.g. physical texture or moisture.

Evolutionary singularity. Trait values that nullify the selection gradient are called ‘evolutionary singularities’.
An evolutionary singularity can be attractive or repelling, and invadable or non-invadable. Evolutionary
singularities that are attractive and non-invadable represent potential end-points of evolutionary adaptation.
Evolutionary singularities that are attractive and invadable can lead to evolutionary branching (Geritz et
al.1998).

In a given environment (fixed parameters, constant temperature) there is at most one evolutionary singularity
given by defining ϕ* as the value of ϕthat makes∇s (ϕ)= 0 in equation (7):

(8)ϕ∗ = 1− dM
vUmaxγM

− 1
c0

.

Existence of φ * > 0 requires dM
vUmaxγM

< 1 andc0 >
1(

1− dM
vUmaxγM

) . Thus, the (cooperative) trait φ can evolve

above zero only if the local competition advantage to stronger enzyme producers is large enough. The
condition for φ * to be evolutionarily stable isc′′ (0) < 2 c20 and no other condition than existence is required
for φ * to be always convergent. Here we assume that function c is such that φ * is evolutionarily stable and
attractive.
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Equation (8) shows that more cooperation (larger φ *) should evolve in microbial populations with lower
mortality, greater nutrient uptake, and/or higher MGE. When comparing microbial populations with similar
life-history traits γ M, vUmaxand d M, stronger competitive advantage to exoenzyme producers (i.e. higher c

0) selects for larger φ *.
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