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Abstract

The available pneumococcal conjugate vaccines provide protection against only those serotypes that are included in the vaccine,

which leads to a selective pressure and serotype replacement in the population. An alternative low-cost, safe and serotype-

independent vaccine was developed based on a non-encapsulated pneumococcus strain. This study evaluates process intensifi-

cation to improve biomass production and shows for the first time the use of perfusion-batch with cell recycling for a bacterial

vaccine production. Batch, fed-batch and perfusion-batch were performed at 10 L scale using a complex animal component-free

culture medium. Cells were harvested at the highest optical density, concentrated and washed using microfiltration or centrifu-

gation to compare cell separation methods. Higher biomass was achieved using perfusion-batch, which removes lactate while

retaining cells. The biomass produced in perfusion-batch would represent at least 4-fold greater number of doses per cultivation

than in the previously described batch process. Each strategy yielded similar vaccines in terms of quality as evaluated by

Western blot and animal immunization assays, indicating that, so far, perfusion-batch is the best strategy for the intensification

of pneumococcal whole cell vaccine production, since it can be integrated to the cell separation process keeping the same vaccine

quality.

1. Introduction

Streptococcus pneumoniae (pneumococcus) is a Gram-positive bacterium that causes human diseases as
otitis, sinusitis, pneumonia, meningitis and sepsis. Current pneumococcal vaccines confer protection by
generating antibodies to capsular polysaccharides of prevalent serotypes. In order to be effective in children,
these polysaccharides have to be covalently linked to carrier proteins, producing conjugate vaccines (Pollard
et al., 2009). Despite the availability of these vaccines, the burden of pneumococcal disease remains high
due to two main reasons: i) the high price of conjugate vaccines limiting accessibility to the majority of the
world population; ii) serotype replacement observed in all countries with universal pneumococcal vaccination
programs (Weinberger et al., 2011), as a consequence of limited number of polysaccharides included in vaccine
formulations in face of more than 95 known serotypes (Geno et al., 2015).

A promising alternative vaccine is the pneumococcal whole cell vaccine (PWCV), which is composed of a
non-encapsulated strain that was genetically modified to delete the autolysin gene and substitute the wild-
type hemolytic toxin pneumolysin with a detoxified derivative (Malley et al., 2001 and Lu et al., 2010a). Due
to the absence of any polysaccharide capsule, in theory this vaccine could provide broad coverage against
all serotypes. Moreover, PWCV induces protection against pneumococcal nasopharyngeal colonization and
invasive disease in mice (Lu et al., 2010b). For its production, a culture medium free of animal compounds has
been developed (Liberman et al., 2008), as well as the production and inactivation processes following current
good manufacturing practices (cGMP) requirements. The cost of PWCV production was estimated to be
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low, since the process established is relatively simple compared to other pneumococcal vaccines (Gonçalves
et al., 2014).

Despite the success in producing the PWCV in cGMP conditions, the high number of doses necessary to
immunize the population imposes further developments. In this context, the intensification of the production
process of PWCV is worthy to pursue. According to Babi et al. (2016), process intensification can be defined
as a process that achieves high efficiency of process equipment, reduction of cost and high yields. Many
studies evaluate process intensification for different valuable products, as proteins (Berenjian et al., 2014)
and viral vaccines (Tapia et al., 2016); here we evaluate process intensification of PWCV.

Process intensification for increasing pneumococcal cell density is particularly challenging due to the lactic
acid produced during fermentation, which inhibits cell growth (Xu et al., 2006). The pneumococci, as other
lactic acid bacteria (LAB), are strictly fermentative and nutritionally fastidious bacteria, hence carbohydrates
normally are their energy source and the main end-product is lactate, which is also responsible for growth
inhibition (Carvalho et al., 2013). Depending on the redox balance, pneumococcus can also metabolize
carbohydrates to mixed-acid fermentation, producing acetate and formate (Yesilkaya et al., 2009). In addition
to the end-product inhibition, the batch process suffers also from rather low productivity due to the long
auxiliary time (Lu et al., 2016).

In the industry, continuous cultures with membrane cell-recycle systems have proven to be efficient for
commercial production of lactic acid (Wee and Ryu, 2009, Min-tian et al., 2005, Kwon et al., 2001, Tejayadi
and Cheryan, 1995) and biomass of Lactobacillus casei(Aguirre-Ezkauriatza et al., 2010). In contrast to batch
fermentation, this operation mode allows the removal of the lactic acid produced, eliminating its inhibitory
effects and increasing cell growth, while also improving productivity of lactic acid and biomass by decreasing
the auxiliary time. Moreover, the use of bioreactor connected to the tangential flow microfiltration membrane
meets two principles of process intensification: integration of operations and integration of functions (Lutze,
2010). For these reasons, we developed a process that uses the same principle of the continuous culture with
cell-recycling, i.e., uses a microfiltration membrane to remove the inhibitors and to return the cells to the
bioreactor. Since our goal was to increase cell biomass, we did not perform the continuous process during the
steady-state, but integrated the up and downstream processing by employing the same microfiltration system
for cell-recycling and cell separation when the highest biomass was reached. Thus, this integrated process
was called here perfusion-batch, as it differs from the conventional continuous culture with cell-recycling.

Despite the advances of lactic acid production in continuous culture with cell recycling and the advantages
of this system to increase cell density, to the best of our knowledge neither the strategy of continuous culture
with cell-recycling nor the so-called perfusion-batch has not been applied to date for S. pneumoniae culture.
The work presented here aimed at comparing the former processes developed for PWCV production in batch
(Gonçalves et al., 2014) and fed-batch (Liberman et al., 2011) with the production in the perfusion-batch
using hollow fiber membranes for cell-recycling and cell separation. We also compared microfiltration using
hollow-fibers and centrifugation to perform cell separation procedures in order to address intensification on
downstream process for batch and fed-batch as well. To evaluate whether the different fermentation and
separation procedures would affect vaccine quality, we compared the efficacy of vaccines produced via these
methods in mouse models.

2. Material and methods

2.1 Microorganism

The S. pneumoniae RM200 (Rx1 PdT ΔlytA ) strain is derivative of the spontaneous non-encapsulated
Rx1, which was genetically engineered for autolysin deficiency (ΔlytA ) to improve cell density and had
pneumolysin substituted by a non-toxic pneumolysoid derivative, PdT, with three amino acid substitutions
(W433F, D385N, and C428G) to reduce any potential toxicity (Lu et al., 2010a).

2.2 Culture media, buffers and solutions

The composition of all culture media was based on the complex animal component-free culture medium
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described by Liberman et al. (2008) and is shown on Table 1. BHI-blood agar plates, containing 5%
(v/v) sheep blood, 15 g/L agar and 37 g/L of brain heart infusion (Difco, BD), were employed for bacterial
enumeration, controlling culture purity and assessing hollow fiber membrane integrity. Automatic pH control
of cultivation in the reactor was obtained by addition of 5 M NaOH. The cell washing and harvesting buffer
was lactated Ringer’s solution with glucose composed of 5 g/L NaCl, 0.3 g/L KCl, 0.2 g/L CaCl2.2H2O, 3
g/L sodium lactate and 2 g/L glucose. All reagents were of analytical grade.

2.3 Cultivation strategies

All processes were carried out with 10 L medium, except for fed-batch fermentation (initial volume of 8 L)
in the bioreactor BioFlo410 (New Brunswick Scientific Company Inc., Edison, NJ, USA) with automatic pH
control, temperature and stirring speed. The inoculum was prepared from a cryopreserved working cell bank,
750 μL inoculated in 500 mL of the same medium used in the batch phase in glass bottle and incubated
statically at 36.5 ºC until the cell growth reached an optical density (OD) at 600 nm of approximately
2.0. This culture was then introduced into the bioreactor in order to obtain an initial OD around 0.1. The
bioreactor cultivation was performed at 36 ºC (± 1 ºC) and the pH was automatically controlled at 7.0. The
stirring speed was controlled at 150 rpm. Nitrogen was sparged throughout the fermentation at a flow rate
of 0.1 vvm. Polypropylene glycol (Fluent Cane 114, Brenntag, Germany) 30% (v/v) was used as an antifoam
agent. Fed-batch and perfusion-batch processes were operated in batch mode until 3-3.5 h and the feeding
or perfusion operation started when the OD reached approximately 4.0. Previously, the feeding medium was
sparged with N2 in order to decrease the oxygen concentration. The flow-rate was 0.5 L/h for fed-batch
process. The initial medium volume in fed-batch was 8.5 L, including the inoculum volume, and the mean
final volume was 9.05 L after 3 h of feeding or 6 h of cultivation, when the highest OD was reached in this
process. In the perfusion-batch , the working volume of the reactor was maintained at a constant value (10
L) by supplying the feeding medium with the same flow-rate as the permeate of the membrane, i.e., 7.3
L/h, which represents a D = 0.63 h-1, until the highest OD was achieved, then the cells were harvested and
washed as described below (item 2.5). A diagram for all three processes integrated with the cell separation
system is shown in Figure 1.

2.4 Cell recycling

A polysulfone hollow fiber membrane with 0.1 μm of pore size and 0.92 m² of total filtration area (CFP-
1-E-35A, GE Healthcare, Little Chalfont, Buckinghamshire, UK) was employed to remove metabolites as
organic acids and return all cells to the bioreactor in the perfusion-batch process, without bleeding. The
hollow fiber removed also medium nutrients, which were replaced by the feeding medium 1 from 3 h to 5 h
and feeding medium 2 from 5 to 9 h (Table 1). Diaphragm pressure gauges were installed at the hollow fiber
inlet and outlets and a peristaltic pump was used for continuous recirculation of fermentation broth through
the hollow fiber system (Easy-load tubing pump, EMD Millipore, Merck KGaA, Darmstadt, Germany). The
inlet pressure was kept below 10 psi during the operation. Additionally, two peristaltic pumps were used
to control permeate flow-rate and feeding flow-rate (504U and 323U, respectively, Watson-Marlow Fluid
Technology, Cornwall, UK) at the same flow rates in order to keep the reactor volume constant (Figure 1).

2.5 Cell separation and inactivation

Cell mass was harvested after OD 6.0 was reached, the same as for the GMP production (Gonçalves et al.,
2014), or after reaching the highest OD in each operation mode. Two methodologies were applied in order
to compare different cell separation methods: tangential microfiltration or centrifugation. The same system
described for cell recycling in the perfusion-batch was used for tangential microfiltration (Figure 1). Cells
were concentrated to OD 20-50, and then washed 6 times with the same volume of washing buffer. After
washing, cell suspensions were adjusted to approximately OD 30. To evaluate the centrifugation method,
samples of 33 mL were harvested by centrifugation at 1930 g for 20 min at 18 °C (RC5C, Sorvall, Du Pont
Company, Newtown, CT), and then cell pellets were vortex-homogenized with 33 mL of washing buffer. This
step was performed 6 times, and cell suspensions were adjusted to approximately OD 30.

After cell washing, cell inactivation was performed as previously standardized (Gonçalves et al., 2014) with
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1:4000 (v/v) β-propiolactone (BPL, Sigma-Aldrich) for 30 h at 4° C mixing at 150 rpm (TE-140, Tecnal,
Piracicaba, SP, Brazil). Then, the residual BPL was hydrolyzed by incubation at 37 ºC for 2 h mixing at
180 rpm (Series 25 Incubator Shaker, New Brunswick Scientific).

2.6 Analytical methods

Culture samples were taken during the process approximately every 30 min. Cell density was monitored
by measuring the OD using a Spectrophotometer (U-1800, Hitachi High-Technologies, Tokyo, Japan). Dry
cell weight was evaluated using previously weighed conical tubes, in which 30-45 mL culture samples were
inactivated with 2-5% (v/v) formaldehyde (Synth, Diadema, SP, Brazil), depending on the cell density, for
up to 18 h at room temperature, and then washed once with PBS by centrifuging at 3200 g for 20 min
(5810R, Eppendorf). The cell pellets were dried at 60 °C for at least 2 days until constant weight. Purity
was verified by Gram staining and plating samples on BHI-blood agar. Plates were incubated for 3 days at
36 °C into anaerobic jars to check colony morphology, purity and viability. For the analysis of residual sugar
and metabolites, 2 mL samples were centrifuged at 17,530 g for 5 min (Mikro 120, Andreas Hettich GmbH
& Co., Tuttlingen, Germany), and supernatants were stored at -20 ºC. Glucose, lactate and acetate were
analyzed by high performance liquid chromatography (HPLC, SCL-10AVP, Shimadzu Corporation, Kyoto,
Japan) using an Aminex HPX 87H column (300 x 7.8 mm, BioRad Laboratories Inc., Hercules, CA, USA),
and 5 mM H2SO4 as mobile phase at 0.6 mL/min and 60 °C. The refraction

index detection (RID) was used for glucose analysis and UV detection at 210 nm for organic acids. Chro-
matograms were analyzed by Class VP software, version 6.14 SP2 (Shimadzu). Finally, the integrity of the
hollow fiber membrane was evaluated by plating the filtrate on BHI-blood agar during the process.

2.7 Vaccine quality evaluation

After inactivation, final products were evaluated as described by Gonçalves et al., 2014. Briefly, aspect, pH,
OD, bacterial and fungal sterility, endotoxin level were determined. Total and soluble protein contents were
measured by Kjeldahl and Lowry, respectively. Also, bacterial identity was evaluated before inactivation.

The protein production profile was analyzed by Western blot to check if there was any difference between
fermentation strategies. Briefly, 20 μL of vaccines (50 μg of each sample) were loaded onto precast 4 to
12% Bis-Tris gels (NuPAGE, Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, USA) and separated by
electrophoresis. The proteins were transferred onto a nitrocellulose membrane (Biorad) and probed using
different antibodies against specific pneumococcal proteins: SP0785, SP2070, SP2145, SP1572 (known as
pneumococcal protective protein A - PppA), Pneumolysoid (PdT) and Pneumococcal surface protein A
(PspA) or anti-Pneumococcal Whole Cell Vaccine (PWCV) polyclonal serum. Bands were visualized with
the Super Signal West Pico Chemiluminescent Substrate Kit and exposed in CL-X Posure Film (both from
Thermo Fisher Scientific, Waltham, MA, USA).

Immunogenicity and potency of the vaccines were also evaluated. Groups of female mice (C57BL/6J from
Jackson Laboratories, Bar Harbor, Maine, USA) received one or two (at two-week interval) subcutaneous
doses of 100 μg of vaccine preparations adsorbed onto 200 μg of aluminum hydroxide (Alum - Al(OH)3;
Brenntag North America, Reading, PA, USA). Mice were anesthetized with isoflorane and bled after 12 days
of immunization in order to evaluate antibody and IL-17A production according to Campos et al. (2017).
One week after bleeding, animals were anesthetized and received a lethal dose of 106 CFU of serotype 3 S.
pneumoniae strain WU2 intranasally and illness monitored for 7-8 days. Any ill-appearing animal (defined
prior to the initiation of any of the studies) was immediately and humanely euthanized. All animal studies
were approved by the Institutional Animal Care and Use Committee (IACUC) of Boston Children’s Hospital.

2.8 Kinetics analysis

The mass balance and kinetic parameters were calculated according to the following equations:

D = Ffeed/Vsys (1)

Stotal = S0 + Sfeed − Sres − Ssamp − Sperm(2)

4
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acettotal = acet0 + acetres + acetsamp + acetperm(3)

lactotal = lac0 + lacres + lacsamp + lacperm(4)

Yacet = acettotal/Stotal (5)

Px = Xmax−X0

t−t0 x Vconsumed
(6)

Plac = lacmax−lac0
t−t0

(for batch and fed-batch) (7)

Plac = lacmax ×D (for perfusion-batch) (8)

Where D is the dilution rate (h-1);Ffeed is the feed flow rate (L/h);Vsys is the culture volume (L) of the
system, including bioreactor, hollow fiber and tubing;Stotal is total amount of glucose consumed (g);acettotal
and lactotal are the total amount of acetate (g) and lactate produced (g), respectively;Yacet/S is the acetate
yield on glucose (g acetate produced/g glucose consumed); Px is the biomass volumetric productivity (g dry
cell weight/L.h) andPlac is the lactate volumetric productivity (g lactate/L.h); X is the biomass (g dry cell
weight); t is the time of cultivation (h); Vconsumed is the total medium used in the process. The index 0
indicates the initial condition, res is the residual amount inside the bioreactor,samp is the amount removed
in sampling, perm is the amount present in hollow fiber permeate, max is the maximum value reached.

Linear regression fit was applied to calculate the angular coefficient, which corresponds to the yield coefficients
on glucose: YX/S is the biomass yield (g dry cell weight produced/ g glucose consumed), and Y lac/S is the
lactate yield (g lactate produced/g glucose consumed). The linear regression was also performed to calculate
the lactate yield on biomass (Ylac/X , g lactate /g dry cell weight). The maximum specific growth rate (μmax

, h-1) was calculated by the angular coefficient of linear regression fit of Ln(DO) vs. time in the first 3 h of
cultivation (batch phase of all three processes).

The total protein of the whole cell vaccine obtained in each fermentation was calculated by multiplying the
volume of concentrated bulk product by the total protein concentration measured by Kjeldahl. Then, to
estimate the number of doses, the total protein amount was divided by 0.3 mg, which represents an estimate
of the human dose of this vaccine (ClinicalTrials.gov, 2014).

2.9 Statistical analysis

Each culture was performed at least in triplicate. The mean of values and standard deviation is presented
in the figures. All parameters were analyzed by one-way ANOVA and the means were compared by Tukey’s
Multiple Comparison Test. Statistical differences between IgG antibody titers and IL-17A production were
evaluated by the Mann-Whitney U test. Animal survival after challenge was analyzed by Kaplan-Meier
method and the log-Rank test to compare the curves. For all analyses, P<0.05 was considered to represent
statistical significance.

3. Results and discussion

3.1 Batch fermentation

Batch cultivation was conducted at 10 L bioreactor as previously described for the production of cGMP lots at
60 L (Gonçalves et al., 2014). Cells were harvested at the same OD ˜ 6.0, to evaluate process reproducibility,
downscale methods and have a sample product as a standard. Furthermore, batch fermentation was conducted
to the highest OD to verify if harvesting at a higher cell density would interfere with vaccine quality. Figure
2 shows that the highest OD was 9.0-10.0; at this time-point (5 h) all glucose had been consumed. Dry
cell weight was 4.15 ± 0.33 g/L at the highest OD, higher than the 1.26 g/L yield obtained in the culture
of encapsulated strain 23F for polysaccharide production (Gonçalves et al., 2002) and the 1.13 g/L yield
of strain 14 (Leal et al., 2011). The disruption of thelytA gene (which encodes for one of the autolysins of
pneumococcus) in the strain used in this study has contributed to the ability to achieve higher biomass
production. At the highest OD, lactate production was 19.0 ± 0.7 g/L and acetate production was 10.3 ±
1.1 g/L, values that were similar to other pneumococcal strains (Gonçalves et al., 2002; Gogola-Kolling et

5
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al., 2014). At 3.5 h, when cultures reached OD 6.0, the concentration of lactate and acetate were about 10.0
g/L and 4.5 g/L, respectively, similar to cGMP conditions at 60 L (Gonçalves et al., 2014).

3.2 Fed-batch fermentation

Different concentrations of medium components have been previously tested, and the optimal condition was
used in this study for the fed-batch process (Liberman et al., 2011). Figure 2 shows that the highest OD was
between 14-15, thus 1.5 fold higher than in the batch process. However, dry cell weight was not statistically
different, 4.43 ± 0.17 g/L, perhaps because the medium was more concentrated for Soytone in the batch
process (20 g/L) than in fed-batch (5 g/L), which could have affected the physiology of the microorganism.
Since the OD of the culture is a measurement of light scattering, which can vary according to size, density,
opacity and complexity of cells, changes in the medium composition could alter the relation between OD
and dry cell weight.

Compared to the batch process, which had no glucose at the end of cultivation, there was some glucose
remaining (6.9 ± 1.5 g/L) at the beginning of the stationary phase (5 h of cultivation) in the fed-batch
process. Since a higher OD was reached, we hypothesize that the bacteria stopped growing because of
high concentrations of inhibitor products, of which lactate would be a reasonable possibility, as observed by
Callewaert and De Vuyst (2000), during fed-batch cultivation of another Gram-positive bacteria, Lactobacillus
amylovorus . Lactate production in the fed-batch process was 28.4 g/L, which was 1.2 to 1.4 fold higher
than in the batch process. The same increase in lactate production was observed when Ding and Tan (2006)
compared batch and fed-batch processes for cultivation of Lactobacillus casei. On the other hand, acetate
production was 1.4 to 2.3 fold lower in fed-batch than in batch process.

3.3 Perfusion-batch with cell-recycling integrated to cell separation

To evaluate our hypothesis that high lactate production was responsible for the interruption of bacterial
growth in the fed-batch process, perfusion-batch with cell recycling was performed in order to remove lactate,
supply depleted nutrients and keep the cells inside the vessel. Moreover, the aim was to intensify the process
and obtain the highest viable biomass; thus, this process was interrupted when the highest OD was reached
(approximately after 9 h of cultivation), cells were then washed with the washing buffer and harvested to
prepare the vaccine. For this reason, the perfusion was not operated as a continuous cultivation and the
culture did not reach the steady-state, and the main advantage of this process over the others was the
integration of up and downstream processing.

As presented in Figure 2, the batch phase was performed until 3 h, when the OD reached 4.0. Then, the
feeding and removal of medium were initiated at the same flow-rate 7.3 L/h (D = 0.63 h-1). At OD 12, after
5 h of cultivation, a concentrated medium for glucose, soytone and yeast extract, was supplied at the same
flow-rate (Medium 2, Table 1), until 9 h of cultivation, when the highest OD was reached 29.8 ± 4.1. This
OD was 3 times higher than in the batch process performed in this study and 2 times higher than fed-batch.
Moreover, it was 5 times higher than the OD reached in the cGMP lots (Gonçalves et al., 2014). When
perfusion-batch was compared to continuous processes with cell-recycling of other Gram-positive lactate-
producing bacteria, this OD was 6 times lower thanLactobacillus paracasei , using a similar D (0.6 h-1)
(Xu et al., 2006). Dry cell weight (11.3 ± 1.4 g/L) was 2.5 fold higher than batch (4.15 ± 0.33 g/L) and
fed-batch (4.43 ± 0.17 g/L). However, it was lower than other LAB cultivated in continuous process with
cell-recycling, such as Lactobaccillus delbrueckii (118 g/L) and Lactococcus cremoris (88 g/L) (Chang et
al., 1994), or Streptococcus cremoris (81.5 g/L) (Taniguchi et al., 1987). These differences can be explained
by the fact that they are different bacteria, or because other media, dilution rates, and cell separation
systems were applied. Moreover, S. pneumoniae RM200 might not have reached the maximum OD due to
the accumulation of inhibitory metabolites in the vessel or in the absence of some nutrient.

Lactate production rose progressively during the cultivation until 21.9 ± 0.9 g/L at 8 h, when glucose
concentration increased in the vessel. Acetate production increased until the end of the batch phase, then
remained constant until 4 h, when the concentration started to raise again, reaching 5.52 ± 0.42 g/L at 7
h. After 7.5 h, acetate concentration decreased again, coincidently with the decline in lactate production.

6
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Around 8 h of cultivation, the decreased consumption of glucose and production of lactate and acetate
indicated that the microorganism stopped growing, and we proceeded with cell washing and inactivation at
9 h cultivation.

It is worth to note that perfusion process could be further investigated in order to develop a continuous culture
with cell-recycling. To this aim, longer fermentation runs, genetic stability, different dilution and bleeding
rates should be evaluated. However, the most challenging for continuous whole-cell vaccine production would
be to perform the downstream process for harvesting and washing the biomass at the same time as operating
the cell-recycling during the continuous culture. In this case, there should be two different microfiltration
systems: one for cell-recycling and another for cell separation, because the fermented broth with inhibitory
metabolites has to be removed and cells have to be washed with lactate Ringer’s solution immediately after
harvesting, before inactivation. This immediate downstream processing is very important to reach the vaccine
quality for soluble protein content (Gonçalves et al. 2014). Moreover, a cost-effectiveness analysis should be
done in order to verify the viability of a process with two microfiltration or other cell separation systems
operating at the same time.

3.4 Comparison of production processes

When all processes were compared, we observed that the exponential growth phase occurred during the first
3 h in each case. Until this point, all processes were in the batch phase, and for this reason, they presented
the same μmax , 1.17 ± 0.06 h-1, which was similar to other pneumococcus strains (Gogola-Kolling et al.,
2014; Liberman et al., 2008).

As expected, glucose consumption was almost 4 times higher in the perfusion-batch, since the cultivation
time is longer than in batch (Figure 3). Moreover, the production of lactate was almost 5 times higher and
biomass was 3 times greater, measured by OD and dry cell weight. Furthermore, the production of lactate
was almost 1:1 of glucose consumption. Dry cell weight was greater in batch process until 4 h, then, it became
higher in the perfusion-batch due to growth arrest in the batch process. Table 2 compares our results from
the batch, fed-batch and perfusion-batch.

All processes presented an equivalent average of biomass yield on glucose, with statistically similar Y X/S .
The mean Y X/S was 0.15 g dry cell weight / g glucose, similar to other LAB as Lactobacillus delbrueckii
in continuous process with cell recycling (Ohleyer et al., 1985),Lactobacillus casei in batch, fed-batch and
continuous process without recycling (Aguirre-Ezkauriatza et al., 2010), and similar to other pneumococcus
(Liberman et al., 2008).

Total acetate production was higher in the perfusion-batch process, butY acet/S was statistically higher for
the batch process (0.41 g acetate/g glucose), which indicates the nutritional limitation of the batch culture,
since acetate production occurs mainly in low glucose concentration (Carvalho et al., 2013).

Y lac/S and Y lac/X were significantly higher in the perfusion-batch process. Ylac/S obtained here in the
perfusion-batch (0.97 g lactate/g glucose) was as high as reported for LAB used in lactate manufacture,
such as L. delbrueckii subsp. delbrueckii ,L. paracasei and L. lactis subsp. lactis , which presented Y lac/S

= 0.91 g/g (John et al., 2007), or Lactobacilllus sp. strain RKY2, which presented Ylac/S = 0.93-0.97 g/g in
continuous process with cell recycling with D = 0.04-0.36 h-1 (Wee and Ryu, 2009). Although the conversion
of glucose into lactate was high, Ylac/X was lower than other LAB as Lactococcus lactis (Parente et al.,
1994), indicating the conditions employed here favored cell growth rather than lactate production, which is
in accordance with our goal.

The perfusion-batch exhibited productivity 2 fold lower for biomass (PX ) due to the higher culture medium
volume used in this process, and 3.5 fold higher for lactate (Plac ) in comparison to batch and fed-batch
protocols. The PX of perfusion-batch was also lower when compared to other pneumococcus strain (Gogola-
Kolling et al., 2014), and other Streptococcus (Taniguchi et al., 1987). WhereasPlac observed in all processes
here was similar to other studies using LAB, such as in the batch process ofEnterococcus faecalis (Wee et al.,
2004) or continuous process of serotype 14 pneumococcus strain (Gogola-Kolling et al., 2014), it was lower
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than other LAB cultivated using continuous process with cell-recycling, as Lactobacillus paracasei (Xu et
al., 2006),Lactobacillus helveticus (John et al., 2007) orLactobacillus rhamnosus (Kwon et al., 2001), which
is in accordance with our goal of optimizing cell growth, but not the lactate production.

Here, we also estimated the total protein production and number of vaccine doses (Table 2). The perfusion-
batch integrated to the cell separation had almost threefold more protein in the concentrated product, as
observed for biomass production, which could generate 3 times more human vaccine doses per lot than the
simple batch process harvested at OD 10. Despite the fact that batch processes consume less glucose and
other reagents, and spend less time to produce one lot (considering cultivation and downstream process), as
observed in Table 3, it would be necessary to perform 3 batch processes to obtain the same biomass as in 1
perfusion-batch (Figure 4). As consequence, the number of doses produced by lot in the perfusion-batch will
be also about 3 times higher. Therefore, the batch protocol would be more expensive due to the cost with
medium, reagents, cleaning process, employees, infrastructure, etc. Consequently, the perfusion-batch would
minimize downtime, which is also costly. In addition, the perfusion-batch would produce 4 times more doses
than the previously developed simple batch process, in which the cells were harvested at lower concentration,
when OD reached 6.0 (Gonçalves et al., 2014).

3.5 Quality of vaccines

After cultivation, bacteria were harvested as previously described and samples were analyzed according to
standardized parameters (Gonçalves et al., 2014). They all met the established Specification Criteria for
Acceptance (data not shown), including the parameter of the percentage of soluble protein, which should
be less than 15% (Lu et al., 2010a), indicating that bacterial death was mediated by BPL rather than by
starvation. We also analyzed the protein profile of each lot produced using different fermentation strategies
by Western blot (Figure 5). A panel of antibodies induced against potential vaccine candidates such as
PspA, PdT and PppA, or IL-17-inducing proteins, such as SP0785, SP2070, SP2145 and SP1572, or even
anti-PWCV sera were used. We observed that all lots presented similar amounts of specific proteins, with
the expected size, independently of which process was used, and all were comparable to our standard, the
original vaccine lot produced in 60 L in a batch process (Gonçalves et al., 2014).

In order to verify if different fermentation/downstream strategies would produce effective vaccines, different
preparations were evaluated for the induction of IgG antibodies and IL-17A production in immunized ani-
mals. Mice immunized with PWCV from lots prepared by any of the fermentation strategies were equally
immunogenic, producing high titers of IgG and IL-17A (Figure 6A and B). In fact, PWCV obtained from
the perfusion-batch integrated to cell separation induced statistically higher antibodies and IL-17A titers
than the standard vaccine, the cGMP lot produced at 60 L (Gonçalves et al., 2014) (Figure 6A and B, 2 and
6). This may be somehow due to a higher quality of the vaccine produced in the integrated process, as 100
μg of total protein was given as vaccine dose to all animals. One hypothesis is that the constant removal
of inhibitory metabolites throughout the integrated process led to lower acetate and lactate concentration
at the end of the culture, which would be beneficial not only for the cell growth, but also for the produc-
tion of important antigens. On the other hand, metabolites accumulated in batch and fed-batch processes,
probably affecting antigen synthesis besides inhibiting cell growth. Potency of these vaccines was evaluated
by challenge in the fatal aspiration model. All lots independently of the fermentation strategy protected
mice against challenge (Figure 6C), indicating that the process intensification did not impact the quality of
vaccine.

The results of different downstream processes and storage temperatures evaluation were also presented in
Figure 6. Again, all lots were equally immunogenic and induced high IgG and IL-17A titers (Figure 6D
and E). The lot obtained from the fed-batch process was the only one that induced higher IL-17A titers
than the positive control (cGMP lot produced at 60 L) (Figure 6E, 2 and 7). Vaccine produced in batch
process with bacteria harvested by microfiltration induced statistically higher IL-17A titers than the lot
using the same fermentation strategy and bacteria harvested by centrifugation (Figure 6E, 10 and 11). It is
worth noting that, after heating for BPL degradation, the final product obtained using centrifugation for cell
separation was not as homogenous as before heating, whereas the same product obtained by microfiltration
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was homogenous before and after heating for BPL degradation. When centrifugation was applied, small
particles or clumps were observed after heating for BPL degradation. These clumps were not present during
the washing steps and after cell inactivation period, 30 h at 4 °C. We conclude that this phenomenon was
only observed when bacteria were harvested by centrifugation, thus this methodology may compromise the
quality of the final product. Nevertheless, all lots protected > 90% of immunized mice (Figure 6F).

4. Conclusion

In our studies, perfusion-batch with cell recycling integrated to the cell separation process was the best
promising strategy for the production of PWCV, producing 3-fold higher biomass than batch and fed-batch
processes and 4-fold greater number of doses than the previously described batch process, in which cells
were harvested at OD 6.0. The perfusion-batch strategy supported the growth of S. pneumoniae RM200
by removing inhibitory metabolites from the culture and supplying nutrients. The integration of the per-
fusion with cell separation system could be a cost-effective alternative to produce high amounts of PWCV
doses, using the same space and equipment as batch or fed-batch cultures, also diminishing the auxiliary
time. Therefore, the process intensification achieved in this study has high potential for scale up and bulk
production of PWCV, as well as of other whole-cell vaccines, which could be especially important to attend
an epidemiological emergency, when a high number of vaccine doses are needed in a very short period of
time. Moreover, the potential impact of process intensification was carefully evaluated with respect to the
quality of the final product and no quality differences among the vaccines were observed. Therefore, the
perfusion-batch cultivation with cell recycling integrated to the cell separation process should be explored
for large-scale production of PWCV for human immunization.
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Figure Legends

Figure 1 – Scheme for all three processes, batch, fed-batch and perfusion-batch with cell-recycling of S.
pneumoniae RM200 in a 10 L bioreactor, including the microfiltration system used in downstream process
for cell separation, washing and concentration. The feeding flask (number 3) was not used for batch. The
microfiltration system (numbers 6 and 7) was applied only for downstream processing (cell separation,
washing and concentration) in batch and fed-batch processes. For perfusion-batch, microfiltration system
(numbers 6 and 7) was used during cultivation for cell-recycling and for downstream processing. Feeding
flow-rates: 0.5 L/h, measured in flask 3 for fed-batch, and 7.3 L/h, measured in flasks 3 and 7, for perfusion-
batch.

Figure 2 – Time profile for batch (n = 6 runs, top), fed-batch (n = 7 runs, middle) and perfusion-batch (n
= 3 runs, bottom) fermentation of S. pneumoniae RM200 in a 10 L bioreactor: residual glucose (), residual
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lactate () and residual acetate () measured by HPLC; biomass measured by optical density at 600 nm ()
and dry cell weight (). Each point represents mean of values and bars represent standard deviation. Dot line
indicates the start of the fed-batch mode (middle) or the perfusion mode with feeding medium 1 (bottom).
Dash line indicates the start of the perfusion with feeding medium 2 (bottom).

Figure 3 – Comparison of 3 fermentation protocols to total glucose consumption, lactate production,
biomass production measured by dry cell weight and optical density at 600 nm: batch (), fed-batch () and
perfusion-batch (). Each point represents mean of values and bars represent standard deviation.

Figure 4 – The total cell biomass (dry cell weight) produced per run (each point represents a run of batch
(), fed-batch () and perfusion-batch ()) versus the time for running each lot, which was calculated according
to Table 3. The horizontal dot line shows when batch and fed-batch produce the same amount of biomass
obtained in perfusion-batch.

Figure 5 – Western blot analysis of different PWCV preparations probed with specific antibodies indicated
in the left corner of the figure. Antibodies were produced against purified pneumococcal proteins or anti-
PWCV polyclonal serum was used. Lane 1: Engineering lot 007/09 produced at 60 L bioreactor was used
as positive control (Gonçalves et al., 2014); Lane 2: Batch fermentation performed at 10 L bioreactor as
Engineering lot and cells harvested at similar OD (6.5); Lane 3: Batch fermentation with cells harvested
at the highest OD (10); Lane 4: Fed-batch fermentation with cells harvested at OD 6; Lane 5: Fed-batch
fermentation with cells harvested at the highest OD (14); Lane 6: Perfusion-batch fermentation with cells
harvested at the highest OD (30). Numbers at right indicate the molecular weight in kDa.

Figure 6 – Immunogenicity and potency evaluation of PWCV. A-C) Comparison of different fermentation
strategies by the administration of two subcutaneous doses of PWCV in two weeks interval. D-F) Comparison
of different downstream processes and storage temperatures by the administration of one subcutaneous dose
of PWCV. One PWCV dose is composed of 100 μg protein + 200 μg Alum. Mouse blood was collected twelve
days after the last immunization. A and D) IgG antibody inductionin vivo ; B and E) IL-17A production
in vitro ; C and F) Survival after challenge. Numbers represent different PWCV lots used in immunization
assay: 1- adjuvant Alum alone (negative control ); 2- Engineering lot 007/09 produced at 60 L bioreactor
(positive control , prepared as described by Gonçalves et al., 2014); 3- Batch fermentation () with cells
harvested at the highest OD (10); 4- Batch fermentation () with cells harvested at OD 6.5; 5- Fed-batch
fermentation () with cells harvested at the highest OD (14); 6- Perfusion-batch fermentation () with cells
harvested at the highest OD (30); 7- Fed-batch fermentation () with cells harvested at the highest OD (14)
using hollow fiber system and preserved at -80°C; 8- Same fed-batch lot () preserved at 4°C; 9- Fed-batch
fermentation () with cells harvested at the highest OD (14) by centrifugation; 10- Batch fermentation () with
cells harvested at OD 6.5 by hollow fiber system and preserved at -80°C; 11- Batch fermentation () with cells
harvested at OD 6.5 by centrifugation and preserved at -80°C. Bars represent median. Significant difference
is presented between adjuvant group and PWCV or between vaccines obtained from different fermentation
strategies when indicated. Statistics was calculated by the Mann-Whitney U test and shown by asterisks: *
P< 0.05, ** P < 0.01, and *** P< 0.001. Survival was analyzed by Kaplan-Meier method and the log-Rank
test to compare the curves.
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Hosted file

Fig2 new.TIF available at https://authorea.com/users/290827/articles/417772-process-

intensification-for-production-of-streptococcus-pneumoniae-whole-cell-vaccine
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Fig 4 runs.TIF available at https://authorea.com/users/290827/articles/417772-process-

intensification-for-production-of-streptococcus-pneumoniae-whole-cell-vaccine
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