Electric Field Energy Harvesting from Variable Frequency Voltage Sources for Battery-less Internet of Things

Oswaldo Menendez¹, Loreto Romero¹, and Fernando A. Auat Cheein¹

¹Universidad Tecnica Federico Santa Maria

May 5, 2020

Abstract

Internet of Things (IoT) aims to bring connectivity and integration of power system assets, focusing on active management. To ensure the reliability standards of smart cities, IoT requires a wide range of distributed network of wireless sensor nodes. However, energizing these vast networks is highly complex. This work presents a low-power system for electric field energy harvesting, focusing on smart-city applications (Urban IoTs). In particular, we examined design aspects that maximize energy harvesting efficiency according to mains frequency. Experimental findings disclose that a harvester that works at 5 MHz can deliver up to 11 mJ, in approximately 5 minutes. Since the leakage current of diodes is higher than harvester's current, we introduce a new management circuit, called serial switch-only rectifier (SSOR). The proposed approach is simulated and experimentally evaluated. Empirical results show that a harvester based on SSOR circuit out-performs a harvester based on a full-bridge rectifier and voltage doubler by collecting more charge, approximately 40%.

Hosted file

main.pdf available at https://authorea.com/users/293366/articles/421318-electric-field-energy-harvesting-from-variable-frequency-voltage-sources-for-battery-less-internet-of-things