Resin distribution in axial and circumferential directions of self-wiping co-rotating parallel twin-screw extruder

Kentaro Taki¹, Shin-ichiro Tanifuji², Masatoshi Ohara³, Takemasa Sugiyama⁴, Sho Umemoto⁵, Yuya Obata¹, Jun-ichi Murata⁶, Isao Tsujimura⁶, and Shin-ichi Kihara⁴

¹Kanazawa University
²HASL co ltd
³Toshiba Machine Co Ltd
⁴Affiliation not available
⁵Kanazawa University Graduate School of Natural Science and Technology
⁶Kaneka Corporation

May 5, 2020

Abstract

A self-wiping co-rotating twin-screw extruder (TSE) is operated in a starved state where the screws are partially filled with resin. Understanding resin distribution on the screw surface is essential for the design, operation, and maintenance of the twin-screw extrusion process. In this study, the circumferential and axial distribution of pressure, temperature, and resin in a TSE are calculated using a novel method combining the mathematical formulation of Hele–Shaw flow, the finite element method, and a newly developed down-wind pressure update scheme. The experimental results were in good agreement with the measured results. This calculation method enables us to visualize, in detail, the resin distribution, pressure, and temperature for the entire axial and circumferential direction over the TSE.

Hosted file

Tanifuji6-maindocument-codeout.docx available at https://authorea.com/users/293979/articles/ 422129-resin-distribution-in-axial-and-circumferential-directions-of-self-wiping-corotating-parallel-twin-screw-extruder