Continuous formation of microbubbles during partial coalescence of bubbles from a submerged capillary nozzle

Jiguo Tang ${ }^{1}$, Shengzhi Yu ${ }^{2}$, Licheng Sun ${ }^{1}$, Guo Xie ${ }^{1}$, and Xiao Li 1
${ }^{1}$ Sichuan University
${ }^{2}$ Wuhan Second Ship Design and Research Institute

May 5, 2020

Abstract

Bubble formation from a downward-pointing capillary nozzle was investigated in this study. The experiments were conducted at gas flow rate of $40-5400 \mathrm{~mL} / \mathrm{h}$ and inner nozzle radius of $0.030-0.255 \mathrm{~mm}$. Experimental results show that microbubbles were formed continuously at moderate Weber number, which was not reported in pervious investigations with injecting gas through an upward-pointing capillary nozzle. High-speed visualization indicates that the formation of microbubbles arises from the convergence of the capillary waves induced by the partial coalescence of larger bubbles. A bubbling regime map is given to identify the critical conditions for the formation of microbubbles. In the present air-water experiments, the generated microbubbles are 20-170 $\mu \mathrm{m}$ in diameter. From experimental data, a scaling law for microbubble size is proposed as a function of Weber and Bond numbers.

Hosted file

Manuscript.docx available at https://authorea.com/users/294054/articles/422202-continuous-formation-of-microbubbles-during-partial-coalescence-of-bubbles-from-a-submerged-capillary-nozzle

