Solutions of sum-type singular fractional q-integro-differential equation with $\$ \mathrm{~m} \$$-point boundary value using quantum calculus

Ali Ahmadian ${ }^{1}$, Shahram Rezapour ${ }^{2}$, Soheil Salahshour ${ }^{3}$, and Mohammad Esmael Samei ${ }^{4}$
${ }^{1}$ Mediterranean University of Reggio Calabria Department of Informatics Mathematics
Electronics and Transport
${ }^{2}$ Azarbaijan Shahid Madani University
${ }^{3}$ Bahcesehir Universitesi
${ }^{4}$ Bu Ali Sina University

May 5, 2020

Abstract

In this study, we investigate the sum-type singular nonlinear fractional q-integro-differential $\$ \mathrm{~m} \$$-point boundary value problem. The existence of positive solutions is obtained by the properties of the Green function, standard Caputo \$q\$-derivative, RiemannLiouville fractional $\$ q \$$-integral and the means of a fixed point theorem on a real Banach space $\$(\backslash$ mathcal $\{\mathrm{X}\}, \backslash|\cdot \backslash|) \$$ which has a partially order by using a cone $\$ \mathrm{P} \backslash$ subset \backslash mathcal $\{\mathrm{X}\} \$$. The proofs are based on solving the operator equation $\$ \backslash$ mathcal $\{\mathrm{O}\} _1 \mathrm{x}+\backslash$ mathcal $\{\mathrm{O}\} _2 \mathrm{x}=\mathrm{x} \$$ such that the operator $\$ \backslash$ mathcal $\{\mathrm{O}\} _1 \$, \$ \backslash$ mathcal $\{\mathrm{O}\} _2 \$$ are $\$ \mathrm{r} \$$-convex, sub-homogeneous, respectively and define on cone $\$ \mathrm{P} \$$. As applications, we provide an example illustrating the primary effects.

Hosted file

Existence of solution for a system 573-5.pdf available at https://authorea.com/users/ 294127/articles/422299-solutions-of-sum-type-singular-fractional-q-integro-differential-equation-with-m-point-boundary-value-using-quantum-calculus

