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Abstract

The newly generalized energy storage component namely memristor is a fundamental circuit element so called universal charge-

controlled mem-element is proposed for controlling the analysis and coexisting attractors. The governing differential equations of

memristor are highly non-linear for mathematical relationships. The mathematical model of memristor is established in terms of

newly defined fractal-fractional differential operators so called Atangana-Baleanu, Caputo-Fabrizio and Caputo fractal-fractional

differential operator. A novel numerical approach is developed for the governing differential equations of memristor on the basis

of Atangana-Baleanu, Caputo-Fabrizio and Caputo fractal-fractional differential operator. We discussed chaotic behavior of

memristor under three criteria as (i) varying fractal order, we fixed fractional order, (ii) varying fractional order, we fixed fractal

order and (ii) varying fractal and fractional orders simultaneously. Our investigated graphical illustrations and simulated results

via MATLAB for the chaotic behaviors of memristor suggest that newly presented Atangana-Baleanu, Caputo-Fabrizio and

Caputo fractal-fractional differential operator has generates significant results as compared with classical approach.

1. Introduction

A memristor is the fourth passive or circuit element that has the capability for remembering its state his-
tory in power-off modes due to its nonlinear nature and plasticity properties. There are four categories of
memristor (i) ionic thin film memristor, (ii) spin memristor, (iii) molecular memristor and (iv) magnetic
memristor; each types of memristor has its own significance as hysteresis under the application of charge
is detected by ionic thin film memristor, degree of freedom in electron is relied by spin memristor, anoma-
lous current-voltage is exhibited by molecular memristor and a bilayer-oxide films substrate is perceived by
magnetic memristor respectively [1-2]. The first fabricated physical memristor was found by Strukov et al.
[2] as a missing memristor so called fourth fundamental circuit element in 2008. Bao et al. [3] presented
dimensionless mathematic model based on a fifth-order chaotic circuit with two memristors. They dis-
cussed stability analysis, dynamical analysis methods and the memristor initial states. They also described
transient hyperchaos state transitions with excellent nonlinear dynamical phenomena. The two memristors
connected in antiparallel has been observed by Buscarino et al. [4] when a sinusoidal input is applied. Their
setting for two memristors was consisted of two capacitors, an inductor, one negative resistor, two memris-
tors connected in antiparallel in which characterization of the four embedded circuit parameters was also
analyzed within dynamical behaviors. Adhikari et al. [5] exhibited role of memristors on the basis of three
conditions as (i) pinched hysteresis loop when frequency tends to infinity, (ii) critical frequency decreases
monotonically when excitation frequency increases and (iii) bipolar periodic signal in the voltage-current is
assumed to be periodic. The three-dimensional chaotic system has been modified by Li et al. [6] in terms of
four-dimensional memristive system on the basis of dissipativity and symmetry. Their main focus was to in-
vestigate the complex dynamics includes as hyperchaos, limit cycles, chaos, torus and few others. Chen et al.
[7] studied classical memristive chaotic circuit with a first-order memristive diode bridge in which theoretical
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and numerical investigation has been displayed for complex nonlinear phenomena coexisting attractors and
bifurcation modes. Zhou et al. [8] perceived the effective role of hyperchaotic multi-wing attractor in a 4D
memristive circuit within complicated dynamics. Here they presented interesting controller parameters for
4D memristive circuit includes Lyapunov exponents, phase portrait, bifurcation diagram and Poincaré maps.
The dynamical illustrations can be continued on memristors, we include here few latest attempts subject to
chaos analysis [9-11].

Although fractional calculus is a burning field of mathematics that studies the generalization of classical
concepts in mathematics and engineering via differential and integral operators yet the fractal calculus is
relatively a new science of differential and integral operators based on two parameters. The fractal-fractional
differentiation consists two dimensions namely one for fractional order and other for fractal order. The main
significance of the fractal-fractional differentiation is to describe fractal kinetics effectively in which the fractal
time is replaced into the continuous time. The fractal-fractional differentiation provides the fractal dimension
through which the model can capture preferential paths for capturing the flow in fractured aquifers. It plays
an extremely effective role in the phenomena of hierarchical or porous media, for instance, fractal gradient of
temperature in a fractal medium [12-15]. Very recently an African Professor Atangana presented his concept
of fractal-fractional differentiation based on Mittage-Leffler, exponential decay and power-law memories
in which he described that fractal-fractional differentiation attracts more non-local natural problems that
display at the same time fractal behaviors [16]. Atangana and Qureshi [17] captured self-similarities in
the chaotic attractors based on the basis of three numerical schemes for systems of nonlinear differential
equations. Their investigated dynamical systems containing the general conditions for the existence and
the uniqueness have been explored. Gomez-Aguilar [18] presented the Shinriki’s oscillator model for the
prediction of chaotic behaviors related to the fractal derivative in convolution with power-law, exponential
decay law and the Mittag-Leffler function in which the Adams-Bashforth-Moulton scheme has been invoked
for the numerical simulations at symmetric and asymmetric cases. Sania et al. [19] employed the concept of
fractal-fractional operators presented in [16] for investigating the chaotic behaviors the Thomas cyclically
symmetric attractor, the King Cobra attractor, Rossler attractor, the Langford attractor, the Shilnikov
attractor. They claimed that new strange behaviors of the attractors have been which were impossible by
fractional and classical differentiations. In short, the study can be continued for the charming and effective role
of fractional calculus but we include here recent attempt therein [20-31]. Motivating by above discussion, our
aim is to propose the controlling analysis and coexisting attractors provided by memristor through highly
non-linear for mathematical relationships of governing differential equations. The mathematical model of
memristor is established in terms of newly defined fractal-fractional differential operator so called Caputo-
Fabrizio fractal-fractional differential operator. A novel numerical approach is developed for the governing
differential equations of memristor on the basis Caputo-Fabrizio fractal-fractional differential operator. We
discussed chaotic behavior of memristor under three criteria as (i) varying fractal order, we fixed fractional
order, (ii) varying fractional order, we fixed fractal order and (ii) varying fractal and fractional orders
simultaneously. Our investigated graphical illustrations and simulated results via MATLAB for the chaotic
behaviors of memristor suggest that newly presented Caputo-Fabrizio fractal-fractional differential operator
has generates significant results as compared with classical approach.

2. Fractal-Fractional Modeling of Memristor

The regulation of the flow of electrical current in a circuit and remembrance the amount of charge is rectified
electrical component so called memristor. The main significance of memristor is that it retains memory
without power. This electrical component is passive two-terminal and a nonlinear and can link magnetic flux
and electric charge on the basis of non-volatile memory. It is the significant capability of memristor that
it increases the flow of current in one direction based on resistance switching and it decreases the flow of
current in the opposite direction based on resistance switching. Motivating from the features of memristor,
we designed a new chaotic circuit is designed as shown in Fig. 1 which is based on a deformed structure of
Chua’s dual circuit as:
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y. Fig. 1. A chaotic circuit

The chaotic circuit designed in Fig. 1 includes fewer dynamic components such as four state variables are
i1, i2, vC , andq respectively and a capacitor, two inductors and emulator with a resistor and a negative
conductance. The circuit depicted in Fig. 1 is followed by volt-ampere characteristic of elements and
Kirchhoff’s laws for generating the state equations containing nonlinear terms as written below:

dq

dt
−i1 = 0, (1)

dvc
dt

+
i1
C
− i2
C

= 0, (2)

di2
dt

+
vc
L2

+
i2

GL2
= 0, (3)

di1
dt
− vc
L1

+
vm (q)

L1
+
Ri1
L1

= 0. (4)

Here, the terminal voltage is symbolized by vm (q). For replacing the terminal voltage say vm (q) by applying
the voltage across the memristor on the state equations (1-4) containing nonlinear terms; take place as

dq

dt
−i1 = 0, (5)

dvc
dt

+
i1
C
− i2
C

= 0, (6)

di2
dt

+
vc
L2

+
i2

GL2
= 0, (7)

3
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di1
dt
− vc
L1

+
Ri1
L1

+
1

L1

(
R2 R

2
0 q

10C1R3R1
−R−1

3 R2R0

)
= 0. (8)

In order to bring the dynamic equation of the system, the time scale transformation is being carried out by
keeping in mind the following transformations as

a = L2L
−1
1 , b = L2C

−1, c = R, k = G−1,m = −R−1
3 R2R0, n = R2R

2
0 (C1R3R1)

−1

u = L−1
2 q, z = i2, t = dτL2, x = i1, y = vc

, (9)

The parameters involved in equation (9) for implementing the memristor are specified asR0 = 1kΩ, R1 =
500Ω, R2 = 1kΩ, R3 = 1 kΩ, C1 = 100 nF . Invoking equation (9) among equations (5-8), we arrive at
the simplified system of evolutionary differential equations containing nonlinear terms:

dx
dt − a (nux+mx+ cx− y) = 0,

dy
dt + bx− bz = 0,
dz
dt + y − kz = 0,

du
dt − x = 0,

, (10)

subject to the initial conditions,

x (0) = y (0) = z (0) = u (0) = 0.01, (11)

The chaotic phenomena and the phase portraits can be obtained by specification of embedded parameters
in equation (10), asa = 2, b = 1, c = 0.2, k = 0.92, m = −0.002, n = 0.04. Developing the system of
evolutionary differential equation containing nonlinear terms say (10) in terms of the new idea of fractal-
fractional differential operator, we transferred governing nonlinear differential equation (10) of memristor
as:

Dα, β
t x(t)− a (nux+mx+ cx− y) = 0,

Dα, β
t y(t) + bx− bz = 0,

Dα, β
t z(t) + y − kz = 0,

Dα, β
t u(t)− x = 0,

, (12)

Here, Dα, β
t x(t),Dα, β

t y(t),Dα, β
t z(t) andDα, β

t u(t) represent the fractal-fractional differential operators.

3. Fractal-Fractional Integrals and Differential Operators

Caputo Fractal-Fractional differential and integral operators[16]

Dα, β
t } (t) = (n− α)

−1 d

dtβ

∫ t

0

(t− s)n−α−1 } (s) ds, n− 1 < α, β≤n ∈ N, (13)

Iαt } (t) =
β

Γ(α)

∫ t

0

(t− s)α−1
sβ−1} (s) ds. (14)

4
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Caputo-Fabrizio Fractal-Fractional differential and integral operators [16]

Dα, β
t } (t) = M (α) (1− α)

−1 d

dtβ

∫ t

0

exp

{
−α (t− s)

1− α

}
} (s) ds. (15)

Iα,βt } (t) = αβM (α)

∫ t

0

sα−1} (s) ds+
} (t) sβ−1 (1− α)α

M (α)
. (16)

Atangana-Baleanu Fractal-Fractional differential and integral operators [16]

Dα, β
t } (t) = AB (α) (1− α)

−1 d

dtβ

∫ t

0

Eα

{
−α (t− s)α

1− α

}
} (s) ds. (17)

Iα,βt } (t) =
AB (α)

∫ t

0

sβ−1 (t− s)α−1 } (s) ds+
} (t) tβ−1(1− α)α

AB(α)
. (18)

3. Development of Numerical Scheme for Fractal-Fractional Models

3.1 Numerical Scheme for Caputo Fractal-Fractional Model

The Adams-Bashforth-Moulton method is a linear multi-step integration method. Though this numerical
approach so called the Adams-Bashforth-Moulton method, one can solve the system of evolutionary differ-
ential equations containing nonlinear terms say (12) based on the new idea of fractal-fractional differential
operator. In order to bring the fractal-fractionalized the system of evolutionary differential equations (12),
we converted the system of evolutionary differential equations (12) of memristor in terms of Caputo fractal-
fractional differential operator as defined

Dξ1, η1
t x(t)− a (nux+mx+ cx− y) = 0,

Dξ1, η1
t y(t) + bx− bz = 0,

Dξ1, η1
t z(t) + y − kz = 0,

Dξ1, η1
t u(t)− x = 0,

, (19)

we set the structure of equation (19) for the numerical method, equation (19) takes the following expression
as

Dξ1, η1
t x (t) = ξ1t

ξ1−1}1 (x, y, z, u, t) ,

Dξ1, η1
t y (t) = ξ1t

ξ1−1g2 (x, y, z, u, t) ,

Dξ1, η1
t z (t) = ξ1t

ξ1−1g3 (x, y, z, u, t) ,

Dξ1, η1
t u (t) = ξ1t

ξ1−1g4 (x, y, z, u, t) ,

(20)

5
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Implementing equation (14) (Caputo- integral in terms of fractal-fractional sense) on equation (20), we arrive
at

x (t) = x (0) + ξ1
Γ(η1)

∫ t
0

Λξ1−1 (t− Λ)
η1−1 }1 (x, y, z, u,Λ) dΛ,

y (t) = y (0) + ξ1
Γ(η1)

∫ t
0

Λξ1−1 (t− Λ)
η1−1 }2 (x, y, z, u,Λ) dΛ,

z (t) = z (0) + ξ1
Γ(η1)

∫ t
0

Λξ1−1 (t− Λ)
η1−1 }3 (x, y, z, u,Λ) dΛ,

u (t) = u (0) + ξ1
Γ(η1)

∫ t
0

Λξ1−1 (t− Λ)
η1−1 }4 (x, y, z, u,Λ) dΛ,

(21)

By the setting equation (21) at tn+1, we obtained the numerical scheme as

xn+1 (t) = x0 + η1
Γ(ξ1)

∫ tn+1

0
Λη1−1 (tn+1 − Λ)

ξ1−1 }1 (x, y, z, u,Λ) dΛ,

yn+1 (t) = y0 + η1
Γ(ξ1)

∫ tn+1

0
Λη1−1 (tn+1 − Λ)

ξ1−1 }2 (x, y, z, u,Λ) dΛ,

zn+1 (t) = z0 + η1
Γ(ξ1)

∫ tn+1

0
Λη1−1 (tn+1 − Λ)

ξ1−1 }3 (x, y, z, u,Λ) dΛ,

un+1 (t) = u0 + η1
Γ(ξ1)

∫ tn+1

0
Λη1−1 (tn+1 − Λ)

ξ1−1 }4 (x, y, z, u,Λ) dΛ,

(22)

The simplified form of equation (22) can be expressed for approximation within the interval [tj , tj+1] in the
compact form as

xn+1 (t) = x0 + η1
Γ(ξ1)

∑n
j=0

∫ tj+1

tj
Λη1−1 (tn+1 − Λ)

ξ1−1 }1 (x, y, z, u,Λ) dΛ,

yn+1 (t) = y0 + η1
Γ(ξ1)

∑n
j=0

∫ tj+1

tj
Λη1−1 (tn+1 − Λ)

ξ1−1 }2 (x, y, z, u,Λ) dΛ,

zn+1 (t) = z0 + η1
Γ(ξ1)

∑n
j=0

∫ tj+1

tj
Λη1−1 (tn+1 − Λ)

ξ1−1 }3 (x, y, z, u,Λ) dΛ,

un+1 (t) = u0 + η1
Γ(ξ1)

∑n
j=0

∫ tj+1

tj
Λη1−1 (tn+1 − Λ)

ξ1−1 }4 (x, y, z, u,Λ) dΛ,

(23)

Applying the elementary procedure of integration and the Lagrange polynomial piece-wise interpolation on
the expressions sayΛη1−1}1 (x, y, z, u,Λ) ,Λη1−1}2 (x, y, z, u,Λ) ,Λη1−1}3 (x, y, z, u,Λ)andλη1−1}4 (x, y, z, u,Λ)involved
in equation (23), as defined below

Pj (Λ) =
Λ−tj−1

tj−tj−1
tη1−1
j }1 (xj , yj , zj , uj ,Λj)− Λ−tj

tj−tj−1
tη1−1
j−1 }1 (xj−1, yj−1, zj−1, uj−1,Λj−1) ,

Qj (Λ) =
Λ−tj−1

tj−tj−1
tη1−1
j }2 (xj , yj , zj , uj ,Λj)− Λ−tj

tj−tj−1
tη1−1
j−1 }2 (xj−1, yj−1, zj−1, uj−1,Λj−1) ,

Rj (Λ) =
Λ−tj−1

tj−tj−1
tη1−1
j }3 (xj , yj , zj , uj ,Λj)− Λ−tj

tj−tj−1
tη1−1
j−1 }3 (xj−1, yj−1, zj−1, uj−1,Λj−1) ,

Sj (Λ) =
Λ−tj−1

tj−tj−1
tη1−1
j }4 (xj , yj , zj , uj ,Λj)− Λ−tj

tj−tj−1
tη1−1
j−1 }4 (xj−1, yj−1, zj−1, uj−1,Λj−1) ,

(24)

Invoking equation (24) in to (23), we arrive at

xn+1 (t) = x0 + η1
Γ(ξ1)

∑n
j=0

∫ tj+1

tj
Λη1−1 (tn+1 − Λ)

ξ1−1
Pj (Λ) dΛ,

yn+1 (t) = y0 + η1
Γ(ξ1)

∑n
j=0

∫ tj+1

tj
Λη1−1 (tn+1 − Λ)

ξ1−1
Qj (Λ) dΛ,

zn+1 (t) = z0 + η1
Γ(ξ1)

∑n
j=0

∫ tj+1

tj
Λη1−1 (tn+1 − Λ)

ξ1−1
Rj (Λ) dΛ,

un+1 (t) = u0 + η1
Γ(ξ1)

∑n
j=0

∫ tj+1

tj
Λη1−1 (tn+1 − Λ)

ξ1−1
Sj (Λ) dΛ,

(25)

6
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we investigated the numerical scheme for Caputo fractal-fractional operator as

xn+1 = x0 + η1(η1t)
ξ1

Γ(ξ1+2)

∑n
j=0

[
tη1−1
j }1 (xj , yj , zj , uj , tj)

{
(n+ 1− j)ξ1 (n− j + 2 + ξ1)− (n− j)ξ1

× (n− j + 2 + 2ξ1)} − tη1−1
j−1 }1 (xj−1, yj−1, zj−1, uj−1, tj−1) (n+ 1− j)ξ1+1 − (n− j)ξ1 (n− j + 1 + ξ1)] ,

yn+1 = y0 + η1(η1t)
ξ1

Γ(ξ1+2)

∑n
j=0

[
tη1−1
j }2 (xj , yj , zj , uj , tj)

{
(n+ 1− j)ξ1 (n− j + 2 + ξ1)− (n− j)ξ1

× (n− j + 2 + 2ξ1)} − tη1−1
j−1 }2 (xj−1, yj−1, zj−1, uj−1, tj−1) (n+ 1− j)ξ1+1 − (n− j)ξ1 (n− j + 1 + ξ1)] ,

zn+1 = z0 + η1(η1t)
ξ1

Γ(ξ1+2)

∑n
j=0

[
tη1−1
j }3 (xj , yj , zj , uj , tj)

{
(n+ 1− j)ξ1 (n− j + 2 + ξ1)− (n− j)ξ1

× (n− j + 2 + 2ξ1)} − tη1−1
j−1 }3 (xj−1, yj−1, zj−1, uj−1, tj−1) (n+ 1− j)ξ1+1 − (n− j)ξ1 (n− j + 1 + ξ1)] ,

un+1 = u0 + η1(η1t)
ξ1

Γ(ξ1+2)

∑n
j=0

[
tη1−1
j }4 (xj , yj , zj , uj , tj)

{
(n+ 1− j)ξ1 (n− j + 2 + ξ1)− (n− j)ξ1

× (n− j + 2 + 2ξ1)} − tη1−1
j−1 }4 (xj−1, yj−1, zj−1, uj−1, tj−1) (n+ 1− j)ξ1+1 − (n− j)ξ1 (n− j + 1 + ξ1)] .

(26)

3.2 Numerical Scheme for Caputo-Fabrizio Fractal-Fractional Model

In order to bring the fractal-fractionalized the system of evolutionary differential equations (12), we converted
the system of evolutionary differential equations (12) of memristor in terms of Caputo-Fabrizio fractal-
fractional differential operator as defined

Dξ2, η2
t x (t) = ξ2t

ξ2−1}1 (x, y, z, u, t) ,

Dξ2, η2
t y (t) = ξ2t

ξ2−1g2 (x, y, z, u, t) ,

Dξ2, η2
t z (t) = ξ2t

ξ2−1g3 (x, y, z, u, t) ,

Dξ2, η2
t u (t) = ξ2t

ξ2−1g4 (x, y, z, u, t) ,

(27)

Implementing equation (16) (Caputo-Fabrizio integral in terms of fractal-fractional sense) on equation (27),
we arrive at

x (t) = x(0) + η2t
η2−1(1−ξ2)
M(ξ2) }1 (x, y, z, u, t) + ξ2η2

M(ξ2)

∫ t
0

Λη2−1}1 (x, y, z, u,Λ) dΛ,

y (t) = y(0) + η2t
η2−1(1−ξ2)
M(ξ2) }2 (x, y, z, u, t) + ξ2η2

M(ξ2)

∫ t
0

Λη2−1}2 (x, y, z, u,Λ) dΛ,

z (t) = z(0) + η2t
η2−1(1−ξ2)
M(ξ2) }3 (x, y, z, u, t) + ξ2η2

M(ξ2)

∫ t
0

Λη2−1}3 (x, y, z, u,Λ) dΛ,

u (t) = u(0) + η2t
η2−1(1−ξ2)
M(ξ2) }4 (x, y, z, u, t) + ξ2η2

M(ξ2)

∫ t
0

Λη2−1}4 (x, y, z, u,Λ) dΛ,

(28)

By the setting at tn+1 in equation (28), we obtained the numerical scheme as

xn+1 (t) = x0 +
η2t

η2−1
n (1−ξ2)
M(ξ2) }1 (xn, yn, zn, un, tn) + ξ2η2

M(ξ2)

∫ tn+1

0
Λη2−1}1 (x, y, z, u,Λ) dΛ,

yn+1 (t) = y0 +
η2t

η2−1
n (1−ξ2)
M(ξ2) }2 (xn, yn, zn, un, tn) + ξ2η2

M(ξ2)

∫ tn+1

0
Λη2−1}2 (x, y, z, u,Λ) dΛ,

zn+1 (t) = z0 +
η2t

η2−1
n (1−ξ2)
M(ξ2) }3 (xn, yn, zn, un, tn) + ξ2η2

M(ξ2)

∫ tn+1

0
Λη2−1}3 (x, y, z, u,Λ) dΛ,

un+1 (t) = u0 +
η2t

η2−1
n (1−ξ2)
M(ξ2) }4 (xn, yn, zn, un, tn) + ξ2η2

M(ξ2)

∫ tn+1

0
Λη2−1}4 (x, y, z, u,Λ) dΛ,

(29)

The simplified form of equation (29) can be expressed by taking the difference between the consecutive terms

7
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as

xn+1 (t) = xn + η2t
η2−1(1−ξ2)
M(ξ2) }1 (xn, yn, zn, un, tn)− η2t

η2−1
n−1 (1−ξ2)

M(ξ2)

×}1
(
xn−1, yn−1, zn−1, un−1, tn−1

)
+ ξ2η2

M(ξ2)

∫ tn+1

tn
λη2−1}1 (x, y, z, u,Λ) dΛ,

yn+1 (t) = yn + η2t
η2−1(1−ξ2)
M(ξ2) }2 (xn, yn, zn, un, tn)− η2t

η2−1
n−1 (1−ξ2)

M(ξ2)

×}2
(
xn−1, yn−1, zn−1, un−1, tn−1

)
+ ξ2η2

M(ξ2)

∫ tn+1

tn
λη2−1}2 (x, y, z, u,Λ) dΛ,

zn+1 (t) = zn + η2t
η2−1(1−ξ2)
M(ξ2) }3 (xn, yn, zn, un, tn)− η2t

η2−1
n−1 (1−ξ2)

M(ξ2)

×}3
(
xn−1, yn−1, zn−1, un−1, tn−1

)
+ ξ2η2

M(ξ2)

∫ tn+1

tn
λη2−1}3 (x, y, z, u,Λ) dΛ,

un+1 (t) = un + η2t
η2−1(1−ξ2)
M(ξ2) }4 (xn, yn, zn, un, tn)− η2t

η2−1
n−1 (1−ξ2)

M(ξ2)

×}4
(
xn−1, yn−1, zn−1, un−1, tn−1

)
+ ξ2η2

M(ξ2)

∫ tn+1

tn
λη2−1}4 (x, y, z, u,Λ) dΛ,

(30)

Applying the elementary procedure of integration and the Lagrange polynomial piece-wise interpolation on
equation (30), we investigated the suitable expressions as

xn+1 (t) = xn + η2t
η2−1(1−ξ2)
M(ξ2) }1 (xn, yn, zn, un, tn)− η2t

η2−1
n−1 (1−ξ2)

M(ξ2) }1
(
xn−1, yn−1, zn−1, un−1, tn−1

)
+ ξ2η2
M(ξ2)

{
3h
2 t

η2−1
n }1 (xn, yn, zn, un, tn)− h

2 t
η2−1
n−1 }1

(
xn−1, yn−1, zn−1, un−1, tn−1

)}
,

yn+1 (t) = yn + η2t
η2−1(1−ξ2)
M(ξ2) }2 (xn, yn, zn, un, tn)− η2t

η2−1
n−1 (1−ξ2)

M(ξ2) }2
(
xn−1, yn−1, zn−1, un−1, tn−1

)
+ ξ2η2
M(ξ2)

{
3h
2 t

η2−1
n }2 (xn, yn, zn, un, tn)− h

2 t
η2−1
n−1 }2

(
xn−1, yn−1, zn−1, un−1, tn−1

)}
,

zn+1 (t) = zn + η2t
η2−1(1−ξ2)
M(ξ2) }3 (xn, yn, zn, un, tn)− η2t

η2−1
n−1 (1−ξ2)

M(ξ2) }3
(
xn−1, yn−1, zn−1, un−1, tn−1

)
+ ξ2η2
M(ξ2)

{
3h
2 t

η2−1
n }3 (xn, yn, zn, un, tn)− h

2 t
η2−1
n−1 }3

(
xn−1, yn−1, zn−1, un−1, tn−1

)}
,

un+1 (t) = un + η2t
η2−1(1−ξ2)
M(ξ2) }4 (xn, yn, zn, un, tn)− η2t

η2−1
n−1 (1−ξ2)

M(ξ2) }4
(
xn−1, yn−1, zn−1, un−1, tn−1

)
+ ξ2η2
M(ξ2)

{
3h
2 t

η2−1
n }4 (xn, yn, zn, un, tn)− h

2 t
η2−1
n−1 }4

(
xn−1, yn−1, zn−1, un−1, tn−1

)}
, (31)

Calculating the simplification of equation (31), we investigated the numerical scheme for Caputo-Fabrizio
fractal-fractional operator as

xn+1 (t) = xn + η2t
η2−1
n

(
1−ξ2
M(ξ2) + 3ξ2h

2M(ξ2)

)
}1 (xn, yn, zn, un, tn)− η2t

η2−1
n−1

(
1−ξ2
M(ξ2) + ξ2h

2M(ξ2)

)
×}1

(
xn−1, yn−1, zn−1, un−1, tn−1

)
,

yn+1 (t) = yn + η2t
η2−1
n

(
1−ξ2
M(ξ2) + 3ξ2h

2M(ξ2)

)
}2 (xn, yn, zn, un, tn)− η2t

η2−1
n−1

(
1−ξ2
M(ξ2) + ξ2h

2M(ξ2)

)
×}2

(
xn−1, yn−1, zn−1, un−1, tn−1

)
,

zn+1 (t) = zn + η2t
η2−1
n

(
1−ξ2
M(ξ2) + 3ξ2h

2M(ξ2)

)
}3 (xn, yn, zn, un, tn)− η2t

η2−1
n−1

(
1−ξ2
M(ξ2) + ξ2h

2M(ξ2)

)
×}3

(
xn−1, yn−1, zn−1, un−1, tn−1

)
,

un+1 (t) = un + η2t
η2−1
n

(
1−ξ2
M(ξ2) + 3ξ2h

2M(ξ2)

)
}4 (xn, yn, zn, un, tn)− η2t

η2−1
n−1

(
1−ξ2
M(ξ2) + ξ2h

2M(ξ2)

)
×}4

(
xn−1, yn−1, zn−1, un−1, tn−1

)
.

(32)

3.3 Numerical Scheme for Atangana-Baleanu Fractal-Fractional Model

8
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In order to bring the fractal-fractionalized the system of evolutionary differential equations (12), we converted
the system of evolutionary differential equations (12) of memristor in terms of Atangana-Baleanu fractal-
fractional differential operator as defined

Dξ3, η3
t x (t) = ξ3t

ξ3−1}1 (x, y, z, u, t) ,

Dξ3, η3
t y (t) = ξ3t

ξ3−1g2 (x, y, z, u, t) ,

Dξ3, η3
t z (t) = ξ3t

ξ3−1g3 (x, y, z, u, t) ,

Dξ3, η3
t u (t) = ξ3t

ξ3−1g4 (x, y, z, u, t) ,

(33)

Implementing equation (18) (Atangana-Baleanu integral in terms of fractal-fractional sense) on equation
(33), we arrive at

x (t) = x(0) + η3t
η3−1 (1−ξ3)
AB(ξ3) }1 (x, y, z, u, t) + ξ3η3

AB(ξ3)Γ(ξ3)

∫ t
0

Λη3−1(t− Λ)
ξ3−1}1 (x, y, z, u,Λ) dΛ,

y (t) = y(0) + η3t
η3−1 (1−ξ3)
AB(ξ3) }2 (x, y, z, u, t) + ξ3η3

AB(ξ3)Γ(ξ3)

∫ t
0

Λη3−1(t− Λ)
ξ3−1}2 (x, y, z, u,Λ) dΛ,

z (t) = z(0) + η3t
η3−1 (1−ξ3)
AB(ξ3) }3 (x, y, z, u, t) + ξ3η3

AB(ξ3)Γ(ξ3)

∫ t
0

Λη3−1(t− Λ)
ξ3−1}3 (x, y, z, u,Λ) dΛ,

u (t) = u(0) + η3t
η3−1 (1−ξ3)
AB(ξ3) }4 (x, y, z, u, t) + ξ3η3

AB(ξ3)Γ(ξ3)

∫ t
0

Λη3−1(t− Λ)
ξ3−1}4 (x, y, z, u,Λ) dΛ,

(34)

By the setting at tn+1 in equation (34), we obtained the numerical scheme as

xn+1 = x0 +
η3t

η3−1
n (1−ξ3)
AB(ξ3) }1 (xn, yn, zn, un, tn) + ξ3η3

AB(ξ3)Γ(ξ3)

∫ tn+1

0
Λη3−1 (tn+1 − Λ)

ξ3−1

×}1 (x, y, z, u,Λ) dΛ,

yn+1 = y0 +
η3t

η3−1
n (1−ξ3)
AB(ξ3) }2 (xn, yn, zn, un, tn) + ξ3η3

AB(ξ3)Γ(ξ3)

∫ tn+1

0
Λη3−1 (tn+1 − Λ)

ξ3−1

×}2 (x, y, z, u,Λ) dΛ,

zn+1 = z +
η3t

η3−1
n (1−ξ3)
AB(ξ3) }3 (xn, yn, zn, un, tn) + ξ3η3

AB(ξ3)Γ(ξ3)

∫ tn+1

0
Λη3−1 (tn+1 − Λ)

ξ3−1

×}3 (x, y, z, u,Λ) dΛ,

un+1 = u0 +
η3t

η3−1
n (1−ξ3)
AB(ξ3) }4 (xn, yn, zn, un, tn) + ξ3η3

AB(ξ3)Γ(ξ3)

∫ tn+1

0
Λη3−1 (tn+1 − Λ)

ξ3−1

×}4 (x, y, z, u,Λ) dΛ,

(35)

The simplified form of equation (35) can be expressed for approximation within the interval [tj , tj+1] in the
compact form as

xn+1 = x0 +
η3t

η3−1
n (1−ξ3)}1(xn,yn,zn,un,tn)

AB(ξ3) + ξ3η3
AB(ξ3)Γ(ξ3)

∑n
j=0

∫ tj+1

tj
Λη3−1 (tn+1 − Λ)

ξ3−1

×}1 (x, y, z, u,Λ) dΛ,

yn+1 = y0 +
η3t

η3−1
n (1−ξ3)}2(xn,yn,zn,un,tn)

AB(ξ3) + ξ3η3
AB(ξ3)Γ(ξ3)

∑n
j=0

∫ tj+1

tj
Λη3−1 (tn+1 − Λ)

ξ3−1

×}2 (x, y, z, u,Λ) dΛ,

zn+1 = z0 +
η3t

η3−1
n (1−ξ3)}3(xn,yn,zn,un,tn)

AB(ξ3) + ξ3η3
AB(ξ3)Γ(ξ3)

∑n
j=0

∫ tj+1

tj
Λη3−1 (tn+1 − Λ)

ξ3−1

×}3 (x, y, z, u,Λ) dΛ,

un+1 = u0 +
η3t

η3−1
n (1−ξ3)}4(xn,yn,zn,un,tn)

AB(ξ3) + ξ3η3
AB(ξ3)Γ(ξ3)

∑n
j=0

∫ tj+1

tj
Λη3−1 (tn+1 − Λ)

ξ3−1

×}4 (x, y, z, u,Λ) dΛ,

(36)

9
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Calculating the simplification of equation (36), we investigated the numerical scheme for Atangana-Baleanu
fractal-fractional operator as

xn+1 = x0 +
η3t

η3−1
n (1−ξ3)}1(xn,yn,zn,un,tn)

AB(ξ3) + (η3t)
ξ3η3

AB(ξ3)Γ(ξ3+2)

∑n
j=0

[
tη3−1
j }1 (xj , yj , zj , uj , tj)

×
{

(n+ 1− j)ξ3 (n− j + 2 + ξ3)− (n− j)ξ3 (n− j + 2 + 2ξ3)
}
− tη3−1

j−1 }1 (xj−1, yj−1, zj−1, uj−1, tj−1)

× (n+ 1− j)ξ3+1 − (n− j)ξ3 (n− j + 1 + ξ3)
]
,

yn+1 = y0 +
η3t

η3−1
n (1−ξ3)}2(xn,yn,zn,un,tn)

AB(ξ3) + (η3t)
ξ3η3

AB(ξ3)Γ(ξ3+2)

∑n
j=0

[
tη3−1
j }2 (xj , yj , zj , uj , tj)

×
{

(n+ 1− j)ξ3 (n− j + 2 + ξ3)− (n− j)ξ3 (n− j + 2 + 2ξ3)
}
− tη3−1

j−1 }2 (xj−1, yj−1, zj−1, uj−1, tj−1)

× (n+ 1− j)ξ3+1 − (n− j)ξ3 (n− j + 1 + ξ3)
]
,

zn+1 = z0 +
η3t

η3−1
n (1−ξ3)}3(xn,yn,zn,un,tn)

AB(ξ3) + (η3t)
ξ3η3

AB(ξ3)Γ(ξ3+2)

∑n
j=0

[
tη3−1
j }3 (xj , yj , zj , uj , tj)

×
{

(n+ 1− j)ξ3 (n− j + 2 + ξ3)− (n− j)ξ3 (n− j + 2 + 2ξ3)
}
− tη3−1

j−1 }3 (xj−1, yj−1, zj−1, uj−1, tj−1)

× (n+ 1− j)ξ3+1 − (n− j)ξ3 (n− j + 1 + ξ3)
]
,

un+1 = u0 +
η3t

η3−1
n (1−ξ3)}4(xn,yn,zn,un,tn)

AB(ξ3) + (η3t)
ξ3η3

AB(ξ3)Γ(ξ3+2)

∑n
j=0

[
tη3−1
j }4 (xj , yj , zj , uj , tj)

×
{

(n+ 1− j)ξ3 (n− j + 2 + ξ3)− (n− j)ξ3 (n− j + 2 + 2ξ3)
}
− tη3−1

j−1 }4 (xj−1, yj−1, zj−1, uj−1, tj−1)

× (n+ 1− j)ξ3+1 − (n− j)ξ3 (n− j + 1 + ξ3)
]
. (37)

4. Numerical Results

In this section, we present complex dynamics generated by fractal-fractional-order system of memristor with
interesting characteristics based on the graphical illustration so called chaotic behavior say figures (2-10).The
various chaotic attractors have been demonstrated by fractal-fractional-order system of memristor by the
numerical simulations based on the three types of fractal-fractional operators namely Atangana-Baleanu,
Caputo-Fabrizio and Caputo. From comparison point of view, the fractal-fractional mathematical operators
have played their important roles in capturing some hidden chaotic behaviors that could not be revealed by
non-fractional operators. It is observed from Figs. (2-10) that the differences and similarities within the
behavior of the solution of the attractors have generated rich dynamics for fractal-fractional-order system
of memristor. Figures from (2-10) are prepared by invoking the control parameters asR0 = 1kΩ, R1 =
500Ω, R2 = 1kΩ, R3 = 1 kΩ, C1 = 100 nFand a = 2, b = 1, c = 0.2, k = 0.92, m = −0.002, n =
0.04subject to initial conditions sayx (0) = y (0) = z (0) = u (0) = 0.01.Fig. 2 is depicted for chaotic
behaviors of memristor given by numerical scheme of Caputo fractal-fractional operator keeping (fractional
parameter) ξ1 = 1 and (fractal parameter) η1 = 0.98at t = 400. Fig. 3 illustrates the chaotic behaviors of
memristor given by numerical scheme of Caputo fractal-fractional operator keeping (fractional parameter)
ξ1 = 0.99 and (fractal parameter)η1 = 1 at t = 900. In order to disclose the hidden phenomenon, we
presented Fig. 4 for three dimensional chaotic behaviors of memristor given by numerical scheme of Caputo
fractal-fractional operator keeping (fractional parameter) ξ1 = 0.99 and (fractal parameter) η1 = 0.98 at
t = 300. Fig. 5-7 elucidates the chaotic behaviors of memristor given by numerical scheme of Caputo-
Fabrizio fractal-fractional operator; in which we varied fractional parameter (ξ1 = 0.99) and kept fractal
parameter equal to one (η1 = 1) while reciprocally, we kept fractional parameter equal to one (ξ1 = 1) and
varied fractal parameter. Such chaotic behaviors can be seen in in Fig. 5 and 6. Meanwhile, we varied
fractional parameter as well as fractal parameter(ξ1 = 0.99, , η1 = 0.98) in Fig. 7. The similar trend is
employed in Figs. (8-10)

Which present chaotic behaviors of memristor given by numerical scheme of Atangana-Baleanu fractal-
fractional operator.

5. Conclusion

10



P
os

te
d

on
A

u
th

or
ea

28
J
an

20
20

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

02
2
30

7.
73

91
70

44
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

This manuscript is investigated to present the fractal-fractional model based on highly non-linear for math-
ematical model of memristor in terms of fractal-fractional differential operator so called Atangana-Baleanu,
Caputo-Fabrizio and Caputo fractal-fractional differential operator. The numerical solutions for mathemat-
ical model of memristor have extensively been discussed by means of Adams-Bashforth-Moulton method.
With the help of numerical schemes of fractal-fractional differential operators, chaotic behavior of memristor
under three criteria is discussed as (i) varying fractal order, we fixed fractional order, (ii) varying fractional
order, we fixed fractal order and (ii) varying fractal and fractional orders simultaneously. Such analysis of
attractors is simulated via MATLAB. At the end, chaotic behaviors of memristor suggest that newly pre-
sented Atangana-Baleanu, Caputo-Fabrizio and Caputo fractal-fractional differential operator has generates
significant results as compared with classical approach.

Fig.2. Chaotic Behaviors of memristor given by numerical scheme of Caputo fractal-fractional operator
keeping (fractional parameter)ξ1 = 1 and (fractal parameter) η1 = 0.98 att = 400.
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Fig.3. Chaotic Behaviors of memristor given by numerical scheme of Caputo fractal-fractional operator
keeping (fractional parameter)ξ1 = 0.99 and (fractal parameter) η1 = 1 att = 900.

Fig.4. Chaotic Behaviors of memristor given by numerical scheme of Caputo fractal-fractional operator
keeping (fractional parameter)ξ1 = 0.99 and (fractal parameter) η1 = 0.98 att = 300.
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Fig.5. Chaotic Behaviors of memristor given by numerical scheme of Caputo-Fabrizio fractal-fractional
operator keeping (fractional parameter) ξ1 = 1 and (fractal parameter) η1 = 0.98at t = 1800.
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Fig.6. Chaotic Behaviors of memristor given by numerical scheme of Caputo-Fabrizio fractal-fractional
operator keeping (fractional parameter) ξ1 = 0.99 and (fractal parameter) η1 = 1at t = 1800.

Fig.7. Chaotic Behaviors of memristor given by numerical scheme of Caputo-Fabrizio fractal-fractional
operator keeping (fractional parameter) ξ1 = 0.99 and (fractal parameter)η1 = 0.98 at t = 1800.

14



P
os

te
d

on
A

u
th

or
ea

28
J
an

20
20

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

02
2
30

7.
73

91
70

44
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Fig.8. Chaotic Behaviors of memristor given by numerical scheme of Atangana-Baleanu fractal-fractional
operator keeping (fractional parameter) ξ1 = 1 and (fractal parameter) η1 = 0.99at t = 300.
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Fig.9. Chaotic Behaviors of memristor given by numerical scheme of Atangana-Baleanu fractal-fractional
operator keeping (fractional parameter) ξ1 = 0.99 and (fractal parameter) η1 = 1at t = 1800.

Fig.10. Chaotic Behaviors of memristor given by numerical scheme of Atangana-Baleanu fractal-fractional
operator keeping (fractional parameter) ξ1 = 0.99 and (fractal parameter)η1 = 0.99 at t = 1800.
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