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Introduction

Propagating fronts are characteristic for many physical phenomena. In case of reaction-diffusion-advection
processes, these can be combustion or strain fronts. Solutions having large gradients to problems of this
type also arise in nonlinear acoustics. Such problems include, for example, the Burgers equation, as well as
equations with modular nonlinearity(Rudenko, 2017; Nefedov & Rudenko, 2018). The stationary reaction-
diffusion-advection equations can be used for modelling of wind field distribution in the presence of plant
heterogeneity(Levashova et al., 2017; Levashova et al., 2017). The domain where the solution has a large
gradient is called the internal transition layer. The numerical implementation of solutions to problems with
internal transition layers requires a preliminary analysis of the existence conditions and stability(Quinn,
2015; Kopteva & Stynes, 2011; O’Riordan & Quinn, 2011; Lukyanenko et al., 2018; Lukyanenko et al., 2019;
Lukyanenko et al., 2019). In particular, for the numerical solution of some applied problems, the calculation
method for establishing is often used, when the solution of the boundary value problem for the elliptic
equation is found numerically as the solution of the corresponding initial-boundary value problem for the
parabolic equation over a sufficiently long period of time. To implement this method, information on the
asymptotic stability and the domain of attraction of the stationary solution is needed.

In this paper, we consider the initial-boundary-value problem for reaction-diffusion-advection equation and
the question of its moving front type solution stabilizing over an infinitely large time interval to the solution
of the corresponding stationary problem. The existence of moving front solution is investigated in(Antipov et
al., 2014). The existence conditions of an asymptotically stable solution to the stationary problem are known
from(Vasil’eva, 1995). To prove the stabilization theorem, in this paper we use the method of upper and lower
solutions, which for this class of problems is justified in(Kazdan & Kramer, 1978; Wang, 1998). The main
idea of the proof is to show that the upper and lower solutions of the initial-boundary-value problem on an
asymptotically large time interval fall into the attraction domain of the stationary solution. The upper and
lower solutions with large gradients in the region of the internal transition layer are constructed according
to the asymptotic method of differential inequalities(Nefedov, 1995; Vasil’eva et al., 2010) as modifications
of asymptotic approximations of the solutions to these problems in a small parameter. A small parameter
here is the width of the inner transition layer with respect to the width of the front propagation region.

The study conducted in this work gives an answer about non-local domain of attraction of the stationary
solution. In addition, an estimate of the time interval is obtained in which the solution of the front type falls
into the local domain of attraction of the stationary solution, that is, in fact, the criterion for the numerical
solution stationing.
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Problem statement

We consider the following initial-boundary-value problem for the reaction-diffusion-advection equation:

ε
∂2v

∂x2
− ∂v

∂t
= A(v, x)

∂v

∂x
+B(v, x), x ∈ (0; 1), t > 0

v(0, t) = u0, v(1, t) = u1, t > 0, v(x, 0) = vinit(x, ε), x ∈ [0; 1].

(1)

Here A(v, x), B(v, x) ∈ C3(Iv × [0; 1]) where Iv is valid interval of variable v, ε > 0 is a small parameter.

If there is a stationary solution uε(x) to the problem 1, it can be defined as a solution to a boundary value
problem

ε
d2u

dx2
= A(u, x)

du

dx
+B(u, x), x ∈ (0; 1), u(0) = u0, u(1) = u1

(2)

with the same functions A and B and values u0,1, that in statement1.

We assume some propositions.

Let the equation A(v, x)
dv

dx
+B(v, x) = 0 with the additional condition v(0) = u0 has a solution v = ϕ(−)(x)

on the segment [0; 1] and with additional condition v(1) = u1 has a solution v = ϕ(+)(x), and the inequalities
hold:

ϕ(−)(x) < ϕ(+)(x), A
(
ϕ(−)(x), x

)
> 0, A

(
ϕ(+)(x), x

)
< 0, x ∈ [0; 1].

The existence conditions of moving front solution to problem1 are formulated in(Antipov et al., 2014) in
assumption that the initial function vinit(x, ε) has already a front form. At each instant of time the front
is localized in a vicinity of point x̂(t) ∈ (0; 1), to the left of this vicinity the solution is close to function
ϕ(−)(x), and to the right – to function ϕ(+)(x).

In(Vasil’eva, 1995) the existence conditions of Lyapunov asymptotically stable stationary solution with in-
ternal transition layer to problem1 are obtained. We consider the transition layer to be localized in a vicinity
of point xs ∈ (0, 1).

The estimate of local domain of attraction is obtained in(Nefedov et al., 2013).

The aim of this work is to study the stationing of the solution to problem1 to the stationary stable solution.
To do this, first of all, it is necessary to require the conditions for the existence of a front-type solution to
problem1 formulated in(Antipov et al., 2014) and the conditions for the existence and stability of the stable
stationary solution to problem formulated in(Vasil’eva, 1995). In order to formulate these conditions, we
need to study the so-called associated systems for problems1 and2.

2
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Associated systems

For a detailed description of the solution behavior in the transition layer, we introduce stretched variables

ξ =
x− x̂(t)

ε
, ξs =

x− xs
ε

.

(3)

The differential operators of equations1 and2 rewritten through stretched variables have the form:

ε
∂2

∂x2
− ∂

∂t
−A(·, x)

∂

∂x
=

1

ε

(
∂2

∂ξ2
−
(
A(·, x̂(t) + εξ)− dx̂

dt

)
∂

∂ξ
+O(ε)

)
,

ε
d2

dx2
−A(·, x)

d

dx
=

1

ε

(
d2

dξ2s
−A(·, xs + εξs)

d

dξs
+O(ε)

)
.

We consider the so-called ”associated equations”(Vasil’eva et al., 1995) for problems1 and2

∂2ṽ

∂ξ2
= (A(ṽ, x)− V )

∂ṽ

∂ξ
and

d2ũ

dξ2s
= A(ũ, x)

dũ

dξs
,

(4)

where x and V are parameters. Note that V = 0 in case of associated equation for problem2 so we shall
further consider the first of these equations.

From the equivalent associated system

∂ṽ

∂ξ
= Φ,

∂Φ

∂ξ
= (A(ṽ, x)− V )Φ

(5)

we come to the equation
∂Φ

∂ṽ
= A(ṽ, x)− V determining the trajectories on the phase plain (ṽ,Φ) :

Φ(∓)(ṽ, x, V ) =

ṽ∫
ϕ(∓)(x)

(A(s, x)− V )ds, ϕ(−)(x) < ṽ < ϕ(+)(x).

(6)

Each of the points
(
ϕ(∓)(x), 0

)
on the phase plane is a saddle rest point of system5. The phase trajectory

Φ(−)(ṽ, x, V ) enters the rest point
(
ϕ(−)(x), 0

)
when ξ → −∞, and Φ(+)(ṽ, x, V ) enters the rest point(

ϕ(+)(x), 0
)

when ξ → +∞.

3
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If at each instant of time there exists a pair of parameters (x0, V0) for which the equality Φ(−)(ṽ, x0, V0) =
Φ(+)(ṽ, x0, V0) holds the phase trajectories intersect and there exists the solution ṽ(ξ) to the equation4 coming
out the saddle point

(
ϕ(−)(x), 0

)
and entering the saddle point

(
ϕ(+)(x), 0

)
. Moreover the parameters x0

and V0 are related by the equality

V0(x0) =
(
ϕ(+)(x0)− ϕ(−)(x0)

)−1 ∫ ϕ(+)(x0)

ϕ(−)(x0)

A(u, x0)du.

(7)

Let the Cauchy problem
dx0
dt

=

∫ ϕ(+)(x0)

ϕ(−)(x0)
A(u, x0)du

ϕ(+)(x0)− ϕ(−)(x0)
, x0(0) = x00 has a unique solution x0(t) ∈

(0; 1), t > 0.

Let on the interval (0; 1) there exists a unique solution xs0 of the equation
∫ ϕ(+)(x)

ϕ(−)(x)
A(u, x)du = 0.

Let the inequalities hold: V0 > 0 if x < xs0 and
dV0
dx0

(xs0) < 0.

Study Algorithm

We will conduct our research using the method of the upper and lower solutions(Kazdan & Kramer, 1978;
Wang, 1998). According to(Kazdan & Kramer, 1978) if there exist the upper (β(x, ε)) and lower (α(x, ε))
solutions of problem2 then there exists the solution uε(x) to problem2 enclosed between the upper and lower
solutions: α(x, ε) ≤ uε(x) ≤ β(x, ε), x ∈ [0, 1].

According to(Wang, 1998) from the existence of the upper (β̂(x, t, ε)) and lower (α̂(x, t, ε)) solutions of

problem1 and from the inequality α̂(x, 0, ε) ≤ vinit(x, ε) ≤ β̂(x, 0, ε), x ∈ [0, 1] the existence of the solution

vε(x, t) to this problem follows for which the inequalities hold: α̂(x, t, ε) ≤ vε(x, t) ≤ β̂(x, t, ε), x ∈ [0, 1], t >
0.

The upper and lower solutions of each of the problems1 and2 we will construct according to the asymptotic
method of differential inequalities(Nefedov, 1995; Vasil’eva et al., 2010) as modifications of the second-order
asymptotic approximations in the small parameter of these solutions, therefore we will denote them by the
subscript ”2”.

According to(Nefedov et al., 2013) the domain [α2(x, ε), β2(x, ε)], x ∈ [0, 1] is of the local domain of attraction
of stable stationary solution.

In order to prove the stabilization theorem, we will show that during an asymptotically large but finite time
interval T , the upper and lower solutions of problem1 will be included in the domain of stability of the
stationary solution, as a result of which the limit equality will follow: limt→+∞ |vε(x, t)− uε(x)| = 0.

Asymptotic approximation of moving front solution

According to(Antipov et al., 2014) the n − th order asymptotic approximation Vn(x, t, ε), of problem1 is
constructed separately on each of the intervals [0; x̂] and [x̂; 1] as a sum of two terms: ū(x, ε), the regular

4
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part to that the solution is close away from x̂(t) vicinity and the transition layer function Q(ξ, t, ε), where ξ
is the stretched variable3.

Vn(x, t, ε) ={
V

(−)
n (x, t, ε) = ū(−)(x, ε) +Q(−)(ξ, t, x̂, V, ε), (x, t) ∈ [0, x̂]× [0;T ],

V
(+)
n (x, t, ε) = ū(+)(x, ε) +Q(+)(ξ, t, x̂, V, ε), (x, t) ∈ [x̂, 1]× [0;T ].

(8)

The functions with superscript ”(−)” are determined for 0 ≤ x ≤ x̂(t) and ξ ≤ 0 and the functions with
superscript ”(+)” – for x̂(t) ≤ x ≤ 0 and ξ ≥ 0.

The functions V
(−)
n and V +

n are continuously matched at a point x̂(t) at each instant of time so that the

equality holds: V
(−)
n (x̂(t), t, ε) = V +

n (x̂(t), t, ε) =
1

2

(
ϕ(−)(x̂(t)) + ϕ(+)(x̂(t))

)
. For the purposes of this study,

we need a third-order asymptotic approximation; therefore, we use the following expansions of functions
ū(∓)(x, ε) and Q(∓)(ξ, t, x̂, V, ε):

V
(∓)
3 (x̂(t), t, ε) =

3∑
i=0

(
εiū

(∓)
i (x) + εiQ

(∓)
i (ξ, t, x̂, V )

)
.

(9)

The main regular terms of the asymptotic approximation are determined by the Proposition: ū
(∓)
0 (x, t) =

ϕ(∓)(x). The functions ū
(∓)
i (x) for i ≥ 1 are the solutions to initial problems

A(ϕ(∓)(x), x)
dū

(∓)
i

dx
= −W (∓)(x)ū

(∓)
i + f̄

(∓)
i (x), x ∈ (0, 1), ū

(−)
i (0) = 0, ū

(+)
i (1) = 0

with known functions f̄
(∓)
k (x) and

W (∓)(x) = Av(ϕ
(∓)(x), x)

dϕ(∓)

dx
(x) +Bv(ϕ

(∓)(x), x).

(10)

The 0-th order transition layer functions Q
(∓)
0 (ξ, t, x̂, V ) are the solutions to problems

5
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on half-line ξ ≤ 0 for Q
(−)
0 (ξ, t, x̂, V ) and ξ ≥ 0 for Q

(+)
0 (ξ, t, x̂, V ).

By use of the notation

ṽ(ξ, x̂, V ) :={
ϕ(−)(x̂(t)) +Q

(−)
0 (ξ, t, x̂, V ), ξ ≤ 0, 0 ≤ t ≤ T,

ϕ(+)(x̂(t)) +Q
(+)
0 (ξ, t, x̂, V ), ξ ≥ 0, 0 ≤ t ≤ T

(11)

equations?? take form4. According to section the there exist the functions

Φ(−)(ξ, x̂, V ) = Φ(−)(ṽ(ξ), x̂, V ) =
∂ṽ

∂ξ
(ξ, x̂, V ), ξ ≤ 0, 0 ≤ t ≤ T, (12)

Φ(+)(ξ, x̂, V ) = Φ(+)(ṽ(ξ), x̂, V ) =
∂ṽ

∂ξ
(ξ, x̂, V ), ξ ≥ 0, 0 ≤ t ≤ T.

For the transition layer the following standard estimates hold:

|Q(∓)
0 (ξ, t, x̂, V )| ≤ C0e

−κ|ξ|,

(13)

where C0 and κ are some positive constants. The analogous estimates hold for the derivatives of functions
Q(∓)(ξ, t, x̂, V ).

Next, for brevity, we introduce the notations

Ã(ξ, t)=A (ṽ(ξ, x̂(t)), x̂(t)) , B̃(ξ, t)=B (ṽ(ξ, x̂(t)), x̂(t))

(14)

and the same notations for the derivatives of functions A (ṽ(ξ, x̂(t)), x̂(t)) and B (ṽ(ξ, x̂(t)), x̂(t)).

The i− th order transition layer functions, i = 1, 2, 3 are the solutions to linear problems

6
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where f
(∓)
i (ξ, t) are known functions depending on further determined terms of asymptotic approximation

with j < i, in particular

f
(∓)
1 (ξ, t) = Φ(∓)(ξ, x̂, V )

(
∂Ã

∂u
(ξ, t)

(
ū
(∓)
1 (x̂(t)) +

dϕ(∓)

dx
(x̂(t)) · ξ

)
+
∂Ã

∂x
(ξ, t) · ξ

)
+Ã(ξ, t)

dϕ(∓)

dx
(x̂(t))+B̃(ξ, t)+

∂Q
(∓)
0

∂t
.

(15)

Problems?? can be solved explicitly:

Q
(∓)
i (ξ, t, x̂, V ) = −ū(∓)i (x̂(t))

Φ(∓)(ξ, x̂, V )

Φ(∓)(0, x̂, V )
+ Φ(∓)(ξ, x̂, V )

∫ ξ

0

ds

Φ(∓)(s, x̂, V )

∫ s

∓∞
f
(∓)
i (η, t)dη

(16)

For functions Q
(∓)
i (ξ, t, x̂, V ), i = 1, 2 the estimates similar to13 hold.

Functions V3 is continuous due to the boundary conditions at ξ = 0 of problems?? and ??.

We also represent the functions x̂(t) and V (t) = dx̂/dt as expansions

x̂(t) = x0(t) + εx1(t) + ε2x2(t) + . . . , V (t) =
dx0
dt

+ ε
dx1
dt

+ ε2
dx2
dt

+ . . . .

(17)

The coefficients xi(t) and Vi(t) will be determined from the following conditions for the derivatives:

Taking expansions17 into account we obtain that x0(t) is the function from Proposition (see notations11 and
12) and the functions xi(t), i = 1, 2 are the solutions to linear problems

7
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where Gi(t) are known functions, in particular

G1(t) = (ϕ(−)(x0(t))−ϕ(+)(x0(t)))−1

(
dϕ(−)

dx
(x0(t))− dϕ(+)

dx
(x0(t)) +

∂Q
(−)
1

∂ξ
(0, t, x0, V0(x0))− ∂Q

(+)
1

∂ξ
(0, t, x0, V0(x0))

)
.

(18)

The moving front upper and lower solutions.

In(Antipov et al., 2014) the following upper and lower solutions of problem1 are constructed:

β̂2(x, t, x̄, V , ε) =

{
β̂
(−)
2 (x, t, x̄, V , ε), 0 ≤ x ≤ x̄(t), t > 0,

β̂
(+)
2 (x, t, x̄, V , ε), x̄(t) ≤ x ≤ 1, t > 0;

2(x, t, x, V , ε) =

{
α̂
(−)
2 (x, t, x, V , ε), 0 ≤ x ≤ x(t), t > 0,

α̂
(+)
2 (x, t, x, V , ε), x(t) ≤ x ≤ 1, t > 0,

where

β̂
(∓)
2 (x, t, x̄, V , ε) = V

(∓)
3 (x, t, ε) + ε2

(
µ(∓)(x) + q

(∓)
0 (ξ̄, x̄, V̄ ) + εq

(∓)
1 (ξ̄, x̄, V̄ )

)
, (19)

α̂
(∓)
2 (x, t, x, V , ε) = V

(∓)
3 (x, t, ε)− ε2

(
µ(∓)(x) + q

(∓)
0 (ξ, x, V ) + εq

(∓)
1 (ξ, x, V )

)
,

x̄ = X2(t, ε) − ε2δ(t), x = X2(t, ε) + ε2δ(t), X2(t, ε) := x0(t) + εx1(t) + ε2x2(t) V = dx̄/dt, ξ̄ = (x − x̄)/ε,
V = dx/dt, ξ = (x− x)/ε.

The functions µ(∓)(x) are the solutions to problems

dµ(∓)

dx
+W (∓)(x)µ(∓)(x) = R ·

(
A
(
ϕ(∓)(x), x

))−1
, µ(−)(0) = R(−), µ(+)(1) = R(+),

(20)

where R, R(−), R(+) are positive constants, and W (∓)(x) is notation10.

The explicit expressions for µ(∓)(x) are the following:

8
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In consequence of Proposition the functions µ(∓)(x) take positive values when x ∈ [0; 1].

The functions q
(∓)
i (ξ̄, x̄, V̄ ), i = 0, 1 included in the upper solution are determined as the solutions to problems

We set the problems for functions with superset ”(−)” on half-line ξ̄ ≤ 0, and with superset ”(+)” on half-line
ξ̄ ≥ 0. The functions qiF (ξ, µ(∓)(x̄(t))) are known and have exponential estimates like13.

We set the same problems to determine the low solution terms q
(∓)
i (ξ, x, V )), i = 0, 1, changing ξ̄ by ξ and

x̄ by x.

The functions q
(∓)
i (ξ̄, x̄, V̄ ) and q

(∓)
i (ξ, x, V i = 0, 1 decrease exponentially and have estimates like13.

The function δ(t) in the expressions for x̄ and x is determined as a solution to initial problem

dδ

dt
=
dV0
dx0

(x0(t)) · δ + F (t), t ∈ (0;T ], δ(0) = δ0,

(21)

where F (t) is a known function that is bounded and strictly positive (see(Antipov et al., 2014)) and δ0 > 0.
The solution δ(t) is also bounded and strictly positive for t ≥ 0.

Stationary solution asymptotic approximation

The asymptotic approximation U3(x, ε), of promlem2 solution is constructed in(Vasil’eva, 1995) in a form

U3(x, ε) ={
U

(−)
3 = ū(−)(x, ε) +Q

(−)
s (ξs, xs, ε), x ∈ [0, xs],

U
(+)
3 = ū(+)(x, ε) +Q

(+)
s (ξs, xs, ε), x ∈ [xs, 1],

where ū(∓)(x, ε) is regular part similar to one in expression8 and Q
(∓)
s (ξs, xs, ε) are transition layer functions

depending on variable ξs (see3).

We represent function U3 as expansion on ε exponents similar to expansion9.

The functions Q
(∓)
s0 (ξs, xs) are the solutions to problems

9
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d2Q
(∓)
s0

dξ2s
−A

(
ϕ(∓)(xs) +Q

(∓)
s0 , xs

) dQ(∓)
s0

dξs
= 0; Q

(∓)
s0 (0, xs)+ϕ

(∓)(xs) =
1

2

(
ϕ(−)(xs) + ϕ(−)(xs)

)
, Q

(∓)
0 (∓∞, xs) = 0

on half-line ξs ≤ 0 for Q
(−)
s0 (ξs, xs) and on half-line ξs ≥ 0 for Q

(+)
0 (ξs, xs) and the exponential estimates of

the same form as13 where ξ is changed by ξs hold.

Let’s introduce the notations

ũ(ξs, xs) :={
ϕ(−)(xs) +Q

(−)
s0 (ξs, xs), ξs ≤ 0,

ϕ(+)(xs) +Q
(+)
s0 (ξs, xs), ξs ≥ 0.

Φ(−)(ξs, xs, 0) := Φ(−)(ũ(ξs, xs), xs, 0) =
dũ

dξs
(ξs, xs), ξs ≤ 0,

Φ(+)(ξs, xs, 0) := Φ(+)(ũ(ξs, xs), xs, 0) =
dũ

dξs
(ξs, xs), ξs ≥ 0.

(22)

The existence of functions Φ(∓)(ξs, xs, 0) follows from conclusions of section.

For brief we will further use notations Ã(ξs) =A(ũ(ξs, xs), xs), B̃(ξs) =B(ũ(ξs, xs), xs). and the same for
derivatives of functions A(ũ(ξs, xs), xs and B(ũ(ξs, xs), xs.

The i-th order transition layer functions (i ≥ 1) we determine as solutions to linear problems

∗d
2Q

(∓)
si

dξ2s
−Ã(ξs)

dQ
(∓)
si

dξs
−∂Ã
∂u

(ξs)Φ
(∓)(ξs, xs, 0)Q

(∓)
si = f

(∓)
si (ξs), Q

(∓)
si (0, xs) = −ū(∓)i (xs), Q

(∓)
i (∓∞, xs) = 0

with known functions f
(∓)
sk (ξs), in particular

f
(∓)
s1 (ξs) = Φ(∓)(ξs, xs, 0)

(
∂Ã

∂u
(ξs)

(
ū
(∓)
1 (xs) +

dϕ(∓)

dx
(xs) · ξs

)
+
∂Ã

∂x
(ξs) · ξs

)
+ Ã(ξs)

dϕ(∓)

dx
(xs) + B̃(ξs).

(23)

The explicit solutions to these problems are

Q
(∓)
si (ξs, xs) = −ū(∓)i (xs)

Φ(∓)(ξs, xs, 0)

Φ(∓)(0, xs, 0)
+ Φ(∓)(ξs, xs, 0)

∫ ξs

0

ds

Φ(∓)(s, xs, 0)

∫ s

∓∞
f
(∓)
i (η, t)dη.

10
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(24)

For the functions Q
(∓)
si (ξs, xs) the exponential estimates are also valid.

We represent the value xs as an expansion in ε exponents xs = xs0 + εxs1 + ε2xs2 + . . . , where coefficients
xsi, i = 0, 1, 2 we determine from the condition for derivatives similar to??

The coefficient xs0, is determined by Proposition and the xsi, i = 1, 2 are the solutions of equations

−dV0
dx

(xs0, 0)xsi = Gsi,

(25)

where Gsi are known values, in particular

Gs1 = (ϕ(−)(x0s)− ϕ(+)(x0s))
−1

(
dϕ(−)

dx
(xs0)− dϕ(+)

dx
(xs0) +

∂Q
(−)
s1

∂ξs
(0, xs0)− ∂Q

(+)
s1

∂ξs
(0, xs0)

)
.

(26)

Equations25 are solvable due to Proposition.

The upper and lower solutions of the stationary problem

The upper and lower solutions of problem2 have the form(Nefedov et al., 2013):

β2(x, x̄s, ε) ={
β
(−)
2 (x, x̄s, ε), 0 ≤ x ≤ x̄s,
β
(+)
2 (x, x̄s, ε), x̄s ≤ x ≤ 1;

α2(x, xs, ε) =

{
α
(−)
2 (x, xs, ε), 0 ≤ x ≤ xs,
α
(+)
2 (x, xs, ε), xs ≤ x ≤ 1,

where

β
(∓)
2 (x, x̄s, ε) = U

(∓)
3 (x, ε) + ε2

(
µ
(∓)
s (x) + q

(∓)
s0 (ξ̄s, x̄s) + εq

(∓)
s1 (ξ̄s, x̄s)

)
,

α
(∓)
2 (x, xs, ε) = U

(∓)
3 (x, ε)− ε2

(
µ
(∓)
s (x) + q

(∓)
s0 (ξ

s
, xs) + εq

(∓)
s1 (ξ

s
, xs)

)
.

11
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Here x̄s = Xs2(ε)− ε2δs, x = Xs2(ε) + ε2δs, Xs2(ε) := xs0 + εxs1 + ε2xs2, ξ̄s = (x− x̄s)/ε, ξs = (x− xs)/ε,
functions µ

(∓)
s (x) are given by expressions ?? the terms q

(∓)
si i = 0, 1 have the similar sense as analogous

terms in19 and are determined from the same problems as?? with V = 0 and x̄s instead of x̄(t) (for the
upper solution) and xs instead of x(t) for the lower.

The value δs in expressions x̄s and xs is determined from equation

−dV0
dx

(xs0) · δs = Fs,

(27)

where Fs is known positive value. Due to Proposition the value δs is positive.

Large time estimates

We denote

∆(t) := x̄s − x̄(t) = ∆0(t) + ε∆1(t) + ε2∆2(t) + ε2(δ(t)− δs), where ∆i(t) := xsi − xi(t).

(28)

Here the function δ(t) is determined from Cauchy problem21 and the value δs from equation27.

The parameter V̄ has the following representation:

V̄ = V0(x0) + εV̄1(x0) + ε2V̄2(x0)− ε2 dδ
dt

(t),

where V0 is determined by expression7, Vi(x0) =
dxi
dt
, and for xi(t), i = 1, 2 we have set problems??.

The estimate for the function ∆0(t).

The functions Vi(x0), i = 0, 1 are of the same smoothness as A(u, x), B(u, x), and ϕ(∓)(x). Besides V0(xs0) =
0 in consequence of Propositions and and the equality V1(xs0) = 0 follows from equations ??, 25. From that
we get the following expression for V̄ :

V̄ =

(
dV0
dx0

(xs0) + ε
dV1
dx0

(xs0)

)
∆0(t) +O(∆2

0(t) +O(ε2)).

(29)

12
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Let’s rewrite Cauchy problem mentioned in Proposition taking into account expression 7 and definition (28)
in a form

d∆0

dt
= −V0(xs0 −∆0(t)), ∆0(0) = xs0 − x00.

By virtue of Proposition and the inequality dV0/d∆0 < 0 consequent from Proposition the point ∆0 = 0 is
asymptotically stable rest point of this equation thus the estimate is valid:

0 ≤ ∆0(t) ≤ P0 exp

{
dV0
dx0

(xs0)t

}
,

(30)

where P0 is a positive constant.

The estimates for function Q
(+)
i (ξ̄, t, x̄, V̄ ) i = 0, 1

The function Q
(+)
0 (ξ̄, t, x̄, V̄ ) is the solution to Cauchy problem

∂Q
(+)
0

∂ξ̄
= Φ(+)(ξ̄, x̄(t), V̄ ), Q

(+)
0 (0, t, x̄, V̄ ) =

1

2

(
ϕ(−)(x̄(t))− ϕ(+)(x̄(t))

)
,

with the functions Φ(ξ̄, x̄(t), V̄ ) determined by expressions 6 where ξ is replaced by ξ̄, x̂ by x̄, V by V̄ .(see5,
notations 11,12) and the boundary condition at ξ = 0 of problem ??)

The functions Q
(+)
s0 (ξ̄s, x̄s) are the solutions to Cauchy problems (see22):

∂Q
(+)
s0

∂ξ̄s
= Φ(+)(ξ̄s, x̄s, 0), Q

(+)
s0 (0, x̄s) =

1

2

(
ϕ(−)(x̄s)− ϕ(+)(x̄s)

)
.

From the known theorem on the dependence of the Cauchy problem solution on a parameter, taking into
account expressions29 and ∆0(t) = ∆(t) +O(ε) (see28) we come to the equality

Q
(+)
0 (ξ̄, t, x̄, V̄ ) = Q

(+)
s0 (ξ̄, x̄s) +

∂Q
(+)
0

∂V
(ξ̄, t, x∗, V ∗)V̄ +

∂Q
(+)
0

∂x̄
(ξ̄, t, x∗, V ∗)∆(t),

where x∗ = x̄s − θ1∆(t), V ∗ = θ2V̄ , 0 < θ1,2 < 1.

13
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Based on the form of equations ?? we come to the conclusion that for derivatives
∂Q

(+)
0

∂V
(ξ̄, t, x∗, V ∗) and

∂Q
(+)
0

∂x̄
(ξ̄, t, x∗, V ∗) the exponential estimates similar to 13 hold. From that and the expressions 29, and

∆0(t) = ∆(t) +O(ε) for small ∆0(t) (sufficiently large t) we obtain the estimate

Q
(+)
0 (ξ̄, t, x̄, V̄ ) = Q

(+)
s0 (ξ̄, x̄s) + χ0(ξ̄)

(
∆(t) +O

(
ε∆(t) + ∆2(t) + ε2

))
,

(31)

where the function χ0(ξ̄) has the estimate like13,

From the explicit expressions 16 and24 for functions Q
(∓)
1 (ξ̄, t, x̄, V̄ ) and Q

(∓)
s1 (ξ̄, x̄s) taking into account

expressions 15, 23 and 6 and also the estimates 29 and 31 we obtain the expression

Q
(+)
1 (ξ̄, t, x̄, V̄ ) = Q

(+)
s1 (ξ̄, x̄s) + χ1(ξ̄)

(
∆(t) +O(ε∆(t) + ∆2(t) + ε2)

)
,

(32)

where function χ1(ξ̄) has the estimate like13,

0.1 The estimate for ∆1(t).

Let’s obtain the estimate for function ∆1(t) (see 28). Based on equations?? and25 with i = 1, taking into
account explicit expressions 18 and26 and also expression29, we come to the following problem for function
∆1(t):

d∆1

dt
=
dV0
dx0

(xs0)∆1 + F1(t)∆0(t), ∆1(0) = xs1, where F1(t) = −d
2V0
dx20

(x∗1)x1(t)− ∂G1

∂x0
(x∗2),

x∗1,2 = x0(t) + θ1,2(t)∆0(t), 0 < θ1,2(t) < 1.

By using estimate30 we get

|∆1(t)| ≤ P1 exp

{
dV0
dx0

(xs0)t

}
,

(33)

where P1 > 0.

14
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the estimates for functions of the 2-nd and 3-d order.

From the estimates 31, 32, 30 and 33 for the functions Q
(∓)
0 , Q

(∓)
1 , ∆0, ∆1, that are included in the

right-hand side of equation (??) for i = 2, we obtain the estimates for the functions Q
(∓)
2 (ξ̄, t, x̄, V̄ ) and

q
(∓)
0 (ξ̄, x̄, V̄ ) analogous to (32), and for the function ∆2(t) the estimate analogous to33. Using estimates of

second-order functions, we obtain an estimate for the function δ(t) similar to 33 and then by induction the

estimates for the 3-d order functions Q
(∓)
3 (ξ̄, t, x̄, V̄ ) and q

(∓)
1 (ξ̄, x̄, V̄ ).

The main result

For every Holder continuous function vinit(x, ε), in settlement 1, that is enclosed between the upper

β̂2(x, t, x̄(0), (dx̄/dt)(0), ε) solution of problem1 and lower α2(x, xs, ε) solution of stationary problem2, the
limiting equality holds:

lim
t→∞

|vε(x, t)− uε(x)| = 0, x ∈ [0, 1].

The proof of the theorem consists of the two stages:

Stage 1 ). We prove that the functions β̂2(x, t, x̄, V , ε) and α2(x, xs, ε) are the ordered upper and lower solutions
of problem 1. Then according to the theorem proved in(Wang, 1998) mentioning the analogous theorem
from(Pao, 1992) the solution of the problem1 at any time will be enclosed between these upper and
lower solutions.

Stage 2 ). We prove that for sufficiently large t > T the inequality holds

β̂2(x, t, x̄, V , ε) < β2(x, x̄s, ε).

(34)

This will mean that the solution of the problem1 for sufficiently large t will fall inside the local stability
domain of the stationary problem2 solution.

The proof of stage 1). As the function α2(x, xs, ε) is the lower solution of problem 2 and doesn’t depend
on time then it is also the lower solution to problem1 (see. (Kazdan & Kramer, 1978; Wang, 1998)). The
ordering of the upper and lower solutions of parabolic problem follows from the theorem proved in(Pao,
1992).

The proof of stage 2). From the estimates30 and33 it follows that at the moment of time T =

2

∣∣∣∣dV0dx0
(xs0)

∣∣∣∣−1 | ln ε|, it holds ∆0 = O
(
ε2
)
, δ(t) = O

(
ε2
)
, then

x̄(t)− x̄s = ε2(δs −∆0) + o
(
ε2
)
,

(35)

where δs > 0 is determined from equation 27 and it can be chosen sufficiently large that δs −∆0 > 0.

15
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We will prove that relation34 holds separately for each of the segments: 0 < x < x̄s, x̄s ≤ x ≤ x̂(t),
x̂(t) < x < 1.

Proof on the segment x̄s ≤ x ≤ x̄(t).

On this segment the equality holds ξ̄s− ξ̄ = ε(δs−∆0) +o(ε). For the difference between the upper solutions
of problems2 and1 on this segment by use of expression31, and 35 we can write

β
(+)
2 (x, x̄s, ε)− β̂(−)

2 (x, t, x̄, V , ε) = ϕ(+)(x) +Q
(+)
s0 (ξ̄s, x̄s)− ϕ(−)(x)−Q(−)

0 (ξ̄, t, x̄, V̄ ) +O
(
ε2
)

=

= ϕ(+)(x̄s) +Q
(+)
s0 (ξ̄s, x̄s)− ϕ(−)(x̄s)−Q(−)

s0 (ξ̄, x̄s) +O
(
ε2
)

= Φ(0, x̄s, 0)(ξ̄s − ξ̄) +O
(
ε2
)

= εΦ(0, x̄s, 0)(δs −∆0) +O
(
ε2
)
,

where the term Φ(0, x̄s, 0) := Φ(−)(0, x̄s, 0) = Φ(+)(0, x̄s, 0)) is positive as the function ũ increases (see22
and Proposition) and so the right -hand side is positive via the choice of δs

Proof on the segment x̄(t) ≤ x ≤ 1.

For the difference between the upper solutions of problems2 and1 on this segment we have the expression

β
(+)
2 (x, x̄s, ε)− β̂(+)

2 (x, t, x̄, V , ε) =

Q
(+)
s0 (ξ̄s, x̄s)−Q(+)

0 (ξ̄, t, x̄, V̄ ) + ε
(
Q

(+)
s1 (ξ̄s, x̄s)−Q(+)

1 (ξ̄, t, x̄, V̄ )
)

+ ε2
(
Q

(+)
s2 (ξ̄s, x̄s)−Q(+)

2 (ξ̄, t, x̄, V̄ )
)

+

+ε2
(
µs(x)− µ(x) + q

(+)
s0 (ξ̄s, x̄s)− q(+)

0 (ξ̄, x̄, V̄ )
)

+ ε3
(
Q

(+)
s3 (ξ̄s, x̄s −Q(+)

3 (ξ̄, t, x̄, V̄ ))
)

+ ε3
(
q
(+)
s1 (ξ̄s, x̄s)− q(+)

1 (ξ̄, x̄, V̄ )
)
.

We choose the values R
(∓)
0 and R in problem statements20 for functions µ(∓)(x) and µ

(∓)
s (x) in a way that

for x ∈ [0, 1] the inequalities hold µ
(∓)
s (x) = 2µ(∓)(x).

For the mentioned value T , taking into account expressions31,32 and the choice of functions µ(∓)(x) and

µ
(∓)
s (x) the proof of the inequality

β(x, x̄s, ε)− β̂2(x, t, x̄, V , ε) ≥ 0, , 0 ≤ x ≤ 1, t ≥ T

is analogous to the proof of the upper and lower solutions ordering from(Nefedov, 1995).

Conclusion

In the paper we had examined a simple but well analyzed example. It shows that the asymptotical method
of differential inequalities can be used not only to prove the existence and stability of solutions to boundary
value problems with internal transition layers, but also to establish non-local domains of attractions of
stable stationary solutions. This information can be quite useful for numerical researches especially for
multidimensional problems for which the current study must be extended in the future.

16



P
os

te
d

on
A

u
th

or
ea

3
F

eb
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

07
4
2
01

.1
58

57
23

1
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

References

Inhomogeneous burgers equation with modular nonlinearity: Excitation and evolution of high-intensity
waves. (2017). Doklady Mathematics, 95 (3), 291–294.

On front motion in a burgers-type equation with quadratic and modular nonlinearity and nonlinear ampli-
fication. (2018). Doklady Mathematics, 97 (1), 99–103.

Two approaches to describing the turbulent exchange within the atmospheric surface layer. (2017). Mathe-
matical Models and Computer Simulations, 9 (6), 697–707.

The use of contrast structures theory for the mathematical modelling of the wind field in spatially heteroge-
neous vegetation cover. (2017). Lecture Notes in Computer Science, 10187, 464–473.

A numerical method for a nonlinear singularly perturbed interior layer problem using an approximate layer
location. (2015). Computational and Applied Mathematics, 290 (15), 500–515.

Stabilised approximation of interior-layer solutions of a singularly perturbed semilinear reaction-diffusion
problem. (2011). Numerische Mathematik, 119 (2), 787–810.

Numerical method for a nonlinear singularly perturbed interior layer problem. (2011). Lectures Notes in
Computational Science and Engeneering, 81, 187–195.

Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection
equation with the final time data. (2018). Communications in Nonlinear Science and Numerical Simulation,
54, 233–247.

Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-
periodic reaction-diffusion-advection equation. (2019). Journal of Inverse and Ill-Posed Problems., 27 (5),
745–758.

Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction-
diffusion equation with the location of moving front data. (2019). Computers and Mathematics with Appli-
cations, 77 (5), 1245–1254.

Asymptotics of the front motion in the reaction-diffusion-advection problem. (2014). Computational Math-
ematics and Mathematical Physics, 54 (10), 1536–1549.

Step-like contrasting structures for a singularly perturbed quasilinear second-order differential equation.
(1995). Comput. Math. Math. Phys., 35 (4), 411–419.

Invariant criteria for existence of solutions to second-order quasilinear elliptic equations. (1978). Comm.
Pure Appl. Math., 31 (5), 619–645.

Monotone method for diffusion equations with nonlinear diffusion coefficients. (1998). Nonlinear Analysis,
34, 113–142.

The method of differential inequalities for some classes of nonlinear singularly perturbed problems with
internal layers. (1995). Differential Equations, 31 (7), 1077–1085.

Singularly perturbed problems with boundary and internal layers. (2010). Proc. Steklov Inst. Math., 268 (1),
258–273.

Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion
equations. (2013). J. Math. Anal. Appl., 409, 90–103.

The Boundary Function Method for Singular Perturbation Problems. (1995). SIAM.

Nonlinear Parabolic and Elliptic Equations. (1992). Plenum Press.

17


	The estimate for 1(t).

