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Abstract

Rationale, aims and objectives: Intracerebral hemorrhage (ICH), the second most common cause of stroke, has a high fatality

rate. The establishment of mortality prediction models based on ICH patients and disease characteristics is very useful for

clinical decision-making and corresponding treatment methods. Therefore, we used five machine learning methods to establish

models for predicting in-hospital mortality in ICH patients and compared models’ performance. Methods: Model development

and performance comparisons were performed using the medical information mart for intensive care (MIMIC-III) database.

We took the maximum and minimum values of each index of 1143 ICH patients in the first, second and third days after

admission as the input variables of the model, and established five machine learning models including random forest (RF),

Gradient Boosting Decision Tree (GBDT), decision tree, Näıve Bayes and KNN. The most important feature variables were

selected by the RF model and Least Absolute Shrinkage and Selection Operator (LASSO) method. The area under the receiver

operating characteristic curve (AUROC), accuracy, precision, recall, and F1 score were used as the assessment criteria of the

model prediction effect. Results: After 5-fold cross-validation, the AUROC of RF, GBDT, Näıve Bayes, Decision Tree and KNN

models were 0.92, 0.93, 0.9, 0.89, 0.89, respectively. The performance of GBDT was better than other prediction models. The

accuracy, precision, recall, and F1 score of the GBDT model were respectively 0.87, 0.84, 0.76, and 0.79. Conclusions: There

is great potential for machine learning in mortality prediction for ICH patients in ICU. Considering the above five models, we

believe that GBDT is an appropriate tool for clinicians to predict ICH patient mortality.

1. Introduction

Intracerebral hemorrhage (ICH) is a serious disease caused by rupture of blood vessels in the brain and is
common in the intensive care unit (ICU)[1]. Unlike ischemic strokes that are often preceded by a transient
ischemic attack, ICH appears suddenly without any warning [2]. Consequently, ICH is the most fatal form of
stroke [3,4]. Two million people per year are affected by ICH, accounting for 10-15% of the world’s cerebral
stroke patients [1,5]. ICH patients’ mortality approaches 40-50%, and disability in survivors is common[3,4,6,7].
Although much progress has been made in ICU research, clinical outcomes after ICH have not improved
significantly in the last few decades [6,8,9]. Therefore, identifying potential patients to provide them early
treatment would be an effective approach to control the ICH disease.

Several prognostic tools have been proposed for mortality and functional outcome prediction in ICH. These
tools can help clinicians select the best treatment for ICH patients, facilitate communication between clini-
cians and patients, and serve as indicators for optimal allocation of medical resources in the ICU [10,11,12].
Peng et al. [13] established models such as RF, support vector machine (SVM), and logistic regression to
predict the 30-day mortality of ICH patients. Eighteen indicators including demographic information, phy-
siological characteristics, and laboratory parameters were used and the results showed that RF had the best
predictive performance. The majority of the patients included in this study are Asian, and the number of
cases (423 ICU patients) and model parameters is small, so the universality is limited.
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Considering the limitations mentioned above, most of the existing prognostic tools for ICH patients have
the problems of insufficient cases or few parameters, and less research has added the temporal information
that can observe the changes of diseases and make the model prediction more accurate to the indicators of
ICH patients, which has questioned the accuracy and applicability of the model prediction[13]. In this study,
we aim to use machine learning to develop and validate an ICH in-hospital mortality prediction model. The
publicly accessible ICU database MIMIC III[14] was used for data selection and model development. We
added temporal information to ICH patients and analyzed broader variables that might affect mortality in
ICH patients. Then we compared random forest (RF) model with Gradient Boosting Decision Tree (GBDT),
decision tree, K-Nearest Neighbor (KNN), and Näıve Bayes models. Considering the explainability, we also
used the feature importance of RF and LASSO regression to select some important features.

2. Method

2.1. Data source

In this study, we used the Medical Information Mart for Intensive Care III (MIMIC-III) 2001-2012 [14] for the
data extraction and model development. There were 53,423patients with different diseases and the database
was included in the vital signs, drugs and laboratory measurement, observation and care providers of record,
liquid balance, program code, diagnosis, imaging report, length of hospital stays, survival data, etc. MIMIC-
III included almost comprehensive clinical data of patients admitted to the Beth Israel Deaconess Medical
Center in Boston, Massachusetts.

2.2. Patient selection

Patients admitted to ICU who were diagnosed with ICH (ICD-9 = 431) were eligible for inclusion. In the
MIMIC-III database, each patient has its ID (SUBJECT ID), and each admission is reassigned with an ID
(HADM ID). We screened out the variables of each ICH patient at the time of the last admission in the
database record period (that is, each SUBJECT ID corresponds to a HADM ID). After extracting, the data
of 1143 ICH patients older than 18 years were included and divided into the dead (383 people) and the alive
group (760 people).

2.3. Predictors and outcomevariables

For each ICH patient, we collected variables including, patient physiological characteristics, laboratory pa-
rameters, and CT findings. For variables with temporal information, the maximum and minimum values of
daily variables within three days after admission were extracted, and we took them as the parallel input
of the model, because we believed that these variables with time information could more directly reflect
the limiting condition of the patient’s body and had a more obvious influence on whether the patient died
or not. After consulting with experts in this area, we selected variables: Gender, marital status, ethnicity,
age, complication (high blood pressure, diabetes, ischemic heart disease, heart failure, pneumonia), and ICH
location (basal ganglia, lobe, infratentorial). In addition, variables with temporal information (the maximum
and minimum values of the first, second and third days of admission) included: systolic pressure, diastolic
pressure, mean blood pressure, heart rate, body temperature, GCS score, white blood cells, lymphocytes,
neutrophils, eosinophils, basophils, red blood cells, hemoglobin, platelet count, hematocrit, glucose, potas-
sium, sodium, creatinine, and urea nitrogen. The outcome of this study was in-hospital mortality of ICH
patients. If the variable’s missing values were more than 20% of the total, we removed it.

2.4. Preprocessing

Missing values were common in data extraction. If a patient died or was discharged on the first day (or
second day) of admission, there was no data entry on the remaining days. In that case, we assumed that
the data on the first day (or second day) could represent the data on the remaining days. Patients whose
data lacked more than 20% of the variables were removed. Other missing values were supplemented by the
median of the dead and alive group. Descriptive data are expressed as actual numbers and percentages or
mean ± standard deviations. Five-fold cross-validation is used in the model. The whole group of data was
randomly divided into five pieces. One of the subsamples was retained as the test set, and the remaining

2



P
os

te
d

on
A

u
th

or
ea

3
F

eb
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

07
4
6
61

.1
25

11
47

8
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

four subsamples were used as the training data. Then the cross-validation process was repeated five times.
The average of the five times generated was used to represent the performance of each model.

In order to better illustrate the relationship between variables, One-Hot Encoding is adopted to deal with
text-based variables. Since Näıve Bayes is not good at dealing with data sets with different dimensions, we
standardized the data before the training to make the data conform to the standard normal distribution,
that is, the mean value is 0 and the standard deviation is 1.

2.5. Modeling

In this study, five prediction models of RF, GBDT, decision tree, KNN, and Näıve Bayes models were
established and compared.

Näıve Bayes is the Bayesian theory based on probability theory and mathematical statistics It is a supervised
algorithm that directly measures the probability relationship between labels and features[15]. Näıve Bayes’
simplicity makes the model run quickly. However, the condition of its validity is that the features of samples
are independent [16]. That is difficult in practical application.

K-Nearest Neighbor (KNN) is a simple non-parametric classification method. Assuming the data setdto be
classified, k of its nearest neighbors was retrieved and calculated as the neighborhood of d . Whether or not
weight based on distance is considered, the category of d is usually determined by most data records in the
neighborhood[17].

Gradient Boosting Decision Tree (GBDT) was first proposed by Jerome H.friedman [18]. The trees in GBDT
are regression trees, which can be used for regression prediction and classification. The core of GBDT is that
each tree learns the residual (negative gradient) of the sum of all previous tree conclusions, which is the sum
of the true value after adding the predicted value.

The essence of the decision tree algorithm is the graph structure, which, like KNN, is a non-parametric
supervised learning algorithm. It can summarize decision rules from a series of data with features and labels
and present them in a tree structure. A decision tree contains root nodes, intermediate nodes, and leaf
nodes. The decision tree follows the principle of top-down segmentation[19], which means from the root node,
the division is carried out according to the principle of minimum impurity, and the growth stops when the
number of records in the node falls below the preset threshold. The commonly used measurement methods
of impurities are Gini index and information entropy[20]:

Gini (t) = 1−
∑c−1

i=0 p(i|t)2 (1)

Entropy (t) = −
∑c−1

i=0 p(i|t) log2 p(i|t) (2)

Where t represents a given node, i represents any classification of labels, and p(i|t) represents the proportion
of label classification i in node t . Since the effect of information entropy and Gini coefficient is the same in
practical application, information entropy is selected to calculate impurities in the decision tree constructed
in this study.

Random forest (RF) is a very representative bagged ensemble algorithm. All its basic evaluators are decision
trees, and the forest composed of classification trees is the random forest classifier. Each decision tree
provides a different solution to the problem. The solutions of all the decision trees are eventually combined
(usually by voting or averaging) into a single final model output [21], which is usually a more stable and
accurate prediction. In this study, the model predicted whether a patient would die in hospital by providing
the probability of death for each patient. The probability is determined by the ratio of the decision tree with
positive results to the total number of decision trees.

3
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For the selection of feature variables, we adopted the feature importance attribute of RF and LASSO
regression. The feature importance of RF indicates the contribution of each predictor to the model, so the
most relevant predictor can be selected to represent most of the performance of the model. Least Absolute
Shrinkage and Selection Operator (LASSO) imposes a constraint on the sum of the absolute values of the
model parameters, applying a regularization process in which it penalizes the coefficients of the regression
variables and sets some of them precisely to zero [22]. Variables with non-zero results were selected as
important variables.

2.6. Data analysis

We used MySQL and Tableau (version 2019.1.0) to extract data from MIMIC-III v1.4, and Python3.7 to
build models and process data. The working environment was PyCharm 2018.3.2.

Each of machine learning models involves a parameter-tuning process, so we used the learning curve and
grid search to select the parameters to get the best model (Table A.1 in Appendices). In this study, accuracy
rate, precision rate (P), recall rate (R), F1 score, and area under ROC curve (AUROC) were used to measure
the model performance.

Results:

A total of 1143 ICH patients were obtained from the MIMIC-III database, including 760 survivors and 383
died. Table 1 shows the clinical characteristics of patients who survived and died during hospitalization.
Table A.2 in Appendices shows the changes of physiological characteristics and laboratory parameters of
dead and alive patients over time.

First, we used all 122 variables to construct five models, and used the learning curve and grid search to
determine the optimal parameters. Prediction performance comparison results after 5-fold cross validation
are shown in Table 2.

We can find that the GBDT model have the best accuracy (0.87) and the best F1 score (0.80). In terms
of accuracy and AUROC, GBDT model had better values than other models, 0.87 and 0.93, respectively.
Näıve Bayes had the best recall rate (0.85), but its accuracy and precision were the lowest. KNN model
had the lowest recall rate (0.60), F1 score (0.70) and AUROC (0.87). Then we used the feature importance
of RF and LASSO regression to select the most important feature variables. The first 39 most important
variables were selected by two methods respectively (Table A.3 in Appendices), and the intersection of the
two methods was taken as the screened variables, a total of 18. The importance order of the intersection
variables is shown in Fig. 1. The importance score is normalized value, distributed between 0 and 1, and the
closer to 1, the more important the variable is.

We reconstructed and trained five models with 18 variables obtained, and observed the changes of each
indicator as shown in Table 3. The ROC curves of these predictive models are presented in Fig. 2.

Compared with the model constructed with all variables, it was found that although GBDT model has a
small decline in precision, recall and F1 value, it can be seen from the AUROC index that GBDT model was
the best among the five models. From the results, we found that the prediction effect of all the five models
had not decreased significantly. Therefore, the input variables of our models were reduced from 122 to 18
successfully, greatly improving the practicability.

4. Discussion

This study established a prediction model based on RF, GBDT, decision tree, Näıve Bayes, and KNN
algorithms to predict the in-patient mortality of ICH patients, and compared the effects of the five models.
The results showed that the AUROC and precision of the RF model were better than other models. RF
feature importance and LASSO method were used to screen out fewer variables, so that the model was
simplified and the performance is not affected. This had important implications for practical applications of
the model, because researchers can predict mortality rates from just 18 data sets of patients without using
more than 100 variables.

4
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This study adds temporal information into the prediction of mortality model of ICH patients. We took the
maximum and minimum values of each indicator in the first, second and third days after admission of ICH
patients as the model input variables, which can make the model learn more information automatically and
make the prediction effect better. Compared with previous studies[23-26], the AUROC obtained by the GBDT
model in this study reached 0.93, which was higher than the previous results, although the data sources and
methods used were different.

From the results, the indicators of the first, second and third days all had an important impact on the death
of ICH patients. This has not been considered in previous studies. The most important influencing factor is
GCS score, which is consistent with literature reports[27]. The lower the GCS score, the higher the mortality
rate (Fig. 3). Another important factor affecting ICH mortality was hematoma volume [27], but this index
was not included in this study, because only 405 patients (35.43% of the total number) had a record of this
index, which was seriously missing. It has been reported that the larger the size of hematoma, the higher
the mortality rate of patients with ICH.

This study is also the first time to use the MIMIC-III database as the data source to establish ICH patient’s
mortality prediction model. The dataset spanned more than a decade and details of patient care. The
integrity and normality of the data were assured, and it was the basis for our models to incorporate temporal
information. Therefore, there was no problem in our data that the population age was relatively small [13]
or the number of participants was small [23,26,28]. But the MIMIC-III data was based on a single medical
center, which meant the generality of our results deserves consideration.

Machine learning has great potential in the field of health and even in the field of critical care [29]. Specifically,
the ICH mortality prediction model constructed by using machine learning methods (such as RF, GBDT,
etc.) is far better than the traditional scoring system ICH score [30]. Since ICH score involved hematoma size,
ICH score was not compared with other machine learning models in this paper. However, from the existing
research results, there is no doubt that the machine learning model is better than the ICH score.

5. Conclusions

The model used MIMIC-III database to extract variables with temporal information, which greatly improved
the prediction effect of the model. Compared with the other four machine learning models, the GBDT model
had a better recognition rate, regardless of whether multiple variables were used or fewer variables were
obtained after screening.

Authors’ contributions

Jialin Liu, Ke Li, and Siru Liu conceived the study. Dongfeng, Liu, Jialin Liu, Ke Li, Siru Liu, and Qinwen
Shi performed the analysis, interpreted the results and drafted the manuscript. All authors revised the
manuscript. All authors read and approved the final manuscript.

Statement on conflicts of interest

The authors have no conflicts of interest to declare.

Data accessibility

The MIMIC-III database (https://mimic.physionet.org/) is derived from the de-private medical record of
the ICU of the Boston Medical Center in the United States. All patient data were anonymized prior to
extraction and data analysis. The creation, maintenance, and use of the MIMIC-III database was approved
by the institutional review boards of the Massachusetts Institute of Technology and Beth Israel Deaconess
Medical Center. The database contains detailed information on patient vital signs, laboratory tests and
disease diagnosis codes for research by global scholars.

Acknowledgements

5



P
os

te
d

on
A

u
th

or
ea

3
F

eb
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

07
4
6
61

.1
25

11
47

8
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

This project was funded by Sichuan Science and Technology Program Grant No. 18PTDJ0117 &
18ZDYF3402.

Reference

1. J.M. Mackenzie. Intracerebral hemorrhage. Lancet . 1992; 373(9675): 1632-1644.
2. M.J. Ariesen, S. P. Claus, G.J.E. Rinkel, et al.. Risk Factors for Intracerebral Hemorrhage in the

General Population: A Systematic Review. Stroke . 2003; 34(8): 2060-2065.
3. I.C. Hostettler, D.J. Seiffge, D.J. Werring. Intracerebral hemorrhage: an update on diagnosis and

treatment. Expert Review of Neurotherapeutics . 2019; 19(7): 679-694..
4. W.M.T. Jolink, C.J.M. Klijn, P.J.A.M. Brouwers, et al.. Time trends in incidence, case fatality, and

mortality of intracerebral hemorrhage.Neurology . 2015; 85(15): 1318-24.
5. A.M. Thabet, M. Kottapally, J.C. Hemphill. Management of intracerebral hemorrhage. Critical Care

Neurology Part I . 2017; 140(3): 177-193.
6. Z.T. Brodrick, R. Freeze-Ramsey, R.A. Seupaul. Among Patients With Intracerebral Hemorrhage,

Is Intensive Blood Pressure Decreasing Associated With Improved Outcome? Annals of Emergency
Medicine . 2018; 72(5): 611-612.

7. N.I.W. Participants. Priorities for clinical research in intracerebral hemorrhage: report from a National
Institute of Neurological Disorders and Stroke workshop. Stroke; a journal of cerebral circulation .
2005; 36(3): 23-41.

8. J. Emelia, S. Salim, W. Clifton, et al.. Heart Disease and Stroke Statistics—2018 Update: A Report
From the American Heart Association. Circulation . 2018; 137: e67–e492.

9. A.R. Parry-Jones, L. Paley, B.D. Bray, et al.. Care-limiting decisions in acute stroke and association
with survival: analyses of UK national quality register data. International Journal of Stroke . 2016;
11(3): 321-331.

10. L.B. Morgenstern, J.C. Hemphill Rd, C. Anderson, et al.. Guidelines for the management of spon-
taneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart
Association/American Stroke Association. Stroke; a journal of cerebral circulation . 2015; 46(7): 2032.

11. S. Thorsten, A.S. Rustam, B. Ronnie, et al.. European Stroke Organisation (ESO) guidelines for the
management of spontaneous intracerebral hemorrhage. International Journal of Stroke . 2014; 9(7):
840-855.

12. G.S. Power, D.A. Harrison. Why try to predict ICU outcomes?Current Opinion in Critical Care . 2014;
20(5): 544-549.

13. S.Y. Peng, Y.C. Chuang, T.W. Kang, K.H. Tseng. Random forest can predict 30-day mortality of
spontaneous intracerebral hemorrhage with remarkable discrimination. European Journal of Neurology
. 2010; 17(7): 945-950.

14. A.E.W. Johnson, T.J. Pollard, L. Shen, et al.. MIMIC-III, a freely accessible critical care database.
Scientific Data . 2016; 3: 160035.

15. E. Mendes. Introduction to Bayesian Networks. Springer Berlin Heidelberg . 2014: 61-71.
16. S.B. Kim, K.S. Han, H.C. Rim, et al.. Some Effective Techniques for Naive Bayes Text Classification.

IEEE Transactions on Knowledge and Data Engineering . 2006; 18(11):1457-1466.
17. G. Guo, H. Wang, D. A. Bell, et al. KNN Model-Based Approach in Classification. Springer-Verlag

Berlin Heidelberg . 2003: 986-996.
18. Friedman J H . Greedy Function Approximation: A Gradient Boosting Machine[J]. The Annals of

Statistics . 2001; 29(5):1189-1232.
19. J.R. Quinlan. Induction of decision trees. Machine Learning . 1986; 1: 81-106.
20. L. Rokach, O, Maimon. Top-Down Induction of Decision Trees Classifiers-A Survey. IEEE TRANSAC-

TIONS ON SYSTEMS MAN AND CYBERNETICS PART C APPLICATIONS AND REVIEWS .
2005; 35(4): 476-487.

21. L. Breiman. Random Forests. Machine Learning . 2001; 45(1): 5-32.
22. R. Tibshirani. Regression Shrinkage and Selection Via the Lasso.Journal of the Royal Statistical Society

Series B (Methodological) . 1996; 58(1): 267-288.

6



P
os

te
d

on
A

u
th

or
ea

3
F

eb
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

07
4
6
61

.1
25

11
47

8
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

23. D.F. Edwards, H. Hollingsworth, A.R. Zazulia, et al.. Artificial neural networks improve the prediction
of mortality in intracerebral hemorrhage. Neurology . 1999; 53(2): 351.

24. S. Lukic, Zarko Cojbasic, Z. Peric, et al.. Artificial neural networks based early clinical prediction of
mortality after spontaneous intracerebral hemorrhage. Acta Neurologica Belgica . 2012; 112(4): 375-382.

25. G. Celik, O.K. Baykan, Y. Kara, et al. Predicting 10-day Mortality in Patients with Strokes Using
Neural Networks and Multivariate Statistical Methods. Journal of Stroke and Cerebrovascular Diseases
. 2014; 23(6): 1506-1512.

26. D.M.S. Boon, H.H.D.M.V. Vliet, R. Zietse, et al.. To Explore Intracerebral Hematoma with a Hybrid
Approach and Combination of Discriminative Factors. Methods of Information in Medicine . 2016;
55(05): 450-454.

27. R.A. Hanel, A.R. Xavier, Y. Mohammad, et al.. Outcome following intracerebral hemorrhage and
subarachnoid hemorrhage.Neurological Research . 2002; 24(Supplement-1): 58-62.

28. C. Weimar, M. Roth, V. Willig, et al.. Development and validation of a prognostic model to predict
recovery following intracerebral hemorrhage. Journal of Neurology . 2006; 253(6): 788-793.

29. A. Awad, M. Bader-El-Den, J. Mcnicholas, et al.. Early Hospital Mortality Prediction of Intensive Care
Unit Patients Using an Ensemble Learning Approach. International Journal of Medical Informatics .
2017; 108: 185-195.

30. J. C. Hemphill, D.C. Bonovich, L. Besmertis, et al.. The ICH Score.Stroke . 2001; 32(4): 891.

Table:

Table 1. The clinical characteristics of ICH patients

Variables Survival (n=760) Death (n=383) p-value

Age 67.4±15.81 72.12±13.93 <0.01
Male 417 (54.89%) 196 (51.17%) 0.237
Ethnicity
White 580 (76.32%) 295 (77.02%) 0.790
Black 55 (7.24%) 21 (5.48%) 0.261
Asian 29 (3.42%) 12 (3.13%) 0.558
Other 30 (3.95%) 13 (3.39%) 0.643
Unknown 66 (8.68%) 42 (10.97%) 0.213
Marital Status
Married 383 (50.39%) 187 (48.83%) 0.616
Single 163 (21.45%) 54 (14.10%) <0.01
Widowed 121 (15.92%) 63 (16.45%) 0.819
Divorced 36 (4.74%) 16 (4.18%) 0.668
Separated 4 (0.53%) 7 (1.83%) 0.033
Unknown 53 (6.97%) 56 (14.62%) <0.01
Complication
Hypertension 562 (56.31%) 286 (53.76%) 0.339
Diabetes 156 (15.63%) 90 (16.92%) 0.514
Ischemic Heart Disease 121 (12.12%) 75 (14.10%) 0.271
Heart failure 69 (6.91%) 48 (9.02%) 0.139
Pneumonia 90 (9.02%) 33 (6.20%) 0.054
Location of ICH Location of ICH
Basal ganglia 193 (25.39%) 81 (21.15%) 0.112
Uncharted 108 (14.21%) 58 (15.14%)
Thalamus 67 (8.82%) 23 (6.01%)
Caudate 6 (0.79%) 0 (0%)
Putamen 12 (1.58%) 0 (0%)
Lobe 345 (45.39%) 159 (41.51%) 0.212
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Variables Survival (n=760) Death (n=383) p-value

Infratentorial 78 (10.26%) 25 (6.53%) 0.037
Unknown 144 (18.95%) 118 (30.81) <0.01

Table 2. Performance comparison of the five models with all variables for mortality prediction of ICH

Accuracy Precision Recall F1 score AUROC p-value

RF 0.87 0.84 0.75 0.79 0.92 0.276 vs.
GBDT 0.112
vs. Näıve
Bayes <0.05
vs. Decision
Tree 0.082 vs.
KNN

GBDT 0.87 0.84 0.76 0.79 0.93 <0.01 vs.
Näıve Bayes
<0.05 vs.
Decision Tree
<0.05 vs KNN

Näıve Bayes 0.82 0.68 0.87 0.77 0.9 0.116 vs.
Decision Tree
0.356 vs. KNN

Decision
Tree

0.85 0.8 0.72 0.76 0.89 0.716 vs.
KNN

KNN 0.84 0.82 0.69 0.75 0.89

Table 3. Performance comparison of the 5 models with 18 variables for mortality prediction of ICH

Accuracy Precision Recall F1 score AUROC p-value

RF 0.87 0.84 0.75 0.79 0.92 0.276 vs.
GBDT 0.112
vs. Näıve
Bayes <0.05
vs. Decision
Tree 0.082 vs.
KNN

GBDT 0.87 0.84 0.76 0.79 0.93 <0.01 vs.
Näıve Bayes
<0.05 vs.
Decision Tree
<0.05 vs KNN

Näıve Bayes 0.82 0.68 0.87 0.77 0.9 0.116 vs.
Decision Tree
0.356 vs. KNN

Decision
Tree

0.85 0.8 0.72 0.76 0.89 0.716 vs.
KNN

KNN 0.84 0.82 0.69 0.75 0.89
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Appendix:

Table A.1. Parameter setting of 5 ICH mortality prediction models

Models Parameters Explanation Values

RF criterion measurement methods of impurities gini
n estimators number of trees in the forest 110
max depth the maximum depth of the tree 5
max features maximum number of retained features when branching 10

GBDT n estimators number of trees in the forest 45
max depth the maximum depth of the tree 2
min samples split the number of training samples at least included in the sub-node 2
learning rate Learning rate 0.1

Decision Tree criterion measurement methods of impurities entropy
random state parameters of random patterns in branches 13
splitter way of the tree branches random
max depth the maximum depth of the tree 5

KNN n neighbors number of nearest neighbor samples with voting rights 5
weights voting proportion method uniform

Näıve Bayes alpha Laplacian smoothing coefficient 20

Table A.2. Variables with temporal information

Variables Variables Survival (n=760) Death (n=383) p-value

SBP (1 Max) 166.64±22.95 166.64±22.95 171.38±27.76 <0.01
SBP (1 Min) 100.59±26.54 100.59±26.54 88.31±35.66 <0.01
SBP (2 Max) 161.77±21.03 161.77±21.03 162.28±27.28 0.727
SBP (2 Min) 108.21±21.68 108.21±21.68 91.82±37.84 <0.01
SBP (3 Max) 161.46±21.49 161.46±21.49 160.78±30.24 0.662
SBP (3 Min) 110.5±23.03 110.5±23.03 87.04±41.39 <0.01
DBP (1 Max) 91.61±18.68 91.61±18.68 88.8±20.9 0.021
DBP (1 Min) 46.68±14.52 46.68±14.52 41.24±16.95 <0.01
DBP (2 Max) 89.92±31.01 89.92±31.01 82.01±20.58 <0.01
DBP (2 Min) 50.49±12.47 50.49±12.47 42.98±17.57 <0.01
DBP (3 Max) 88.68±21.93 88.68±21.93 81.59±22.91 <0.01
DBP (3 Min) 51.52±12.77 51.52±12.77 41.16±19.12 <0.01
MBP (1 Max) 115.69±32.3 115.69±32.3 115.67±32.82 0.990
MBP (1 Min) 63±19.11 63±19.11 58.39±20.17 <0.01
MBP (2 Max) 111.14±26.18 111.14±26.18 107.25±30.97 0.026
MBP (2 Min) 70.21±13.1 70.21±13.1 60.22±21.4 <0.01
MBP (3 Max) 110.51±29.44 110.51±29.44 105.58±29.68 <0.01
MBP (3 Min) 70.28±15.07 70.28±15.07 58.18±22.93 <0.01
HR (1 Max) 95.26±17.29 95.26±17.29 104.28±23.29 <0.01
HR (1 Min) 65.14±12.08 65.14±12.08 59.86±24.81 <0.01
HR (2 Max) 95.15±17.87 95.15±17.87 105.36±23.99 <0.01
HR (2 Min) 67.15±11.9 67.15±11.9 57.23±31.05 <0.01
HR (3 Max) 94.4±18.18 94.4±18.18 104.09±24.41 <0.01
HR (3 Min) 67.96±12.21 67.96±12.21 53.08±33.71 <0.01
T (1 Max) 37.47±0.66 37.47±0.66 37.8±1.04 <0.01
T (1 Min) 36.18±2.02 36.18±2.02 36.28±0.97 0.365
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Variables Variables Survival (n=760) Death (n=383) p-value

T (2 Max) 37.43±0.69 37.43±0.69 37.89±3.3 <0.01
T (2 Min) 36.42±1.45 36.42±1.45 36.34±2.7 0.531
T (3 Max) 37.43±0.7 37.43±0.7 37.9±3.31 <0.01
T (3 Min) 36.39±2.38 36.39±2.38 36.43±2.72 0.816
GCS (1 Max) 12.96±3.04 12.96±3.04 7.57±3.63 <0.01
GCS (1 Min) 10±4.16 10±4.16 5.11±2.93 <0.01
GCS (2 Max) 13.21±2.75 13.21±2.75 7.27±3.62 <0.01
GCS (2 Min) 11.09±3.62 11.09±3.62 5.31±2.89 <0.01
GCS (3 Max) 13.25±2.63 13.25±2.63 6.96±3.52 <0.01
GCS (3 Min) 11.41±3.61 11.41±3.61 5.27±2.88 <0.01
WBC (1 Max) 10.93±6.95 10.93±6.95 14.6±13.15 <0.01
WBC (1 Min) 10.1±5.57 10.1±5.57 12.73±6.22 <0.01
WBC (2 Max) 11.16±5.65 11.16±5.65 14.51±8.57 <0.01
WBC (2 Min) 10.82±5.53 10.82±5.53 13.63±6.65 <0.01
WBC (3 Max) 10.96±6.31 10.96±6.31 14.27±8.34 <0.01
WBC (3 Min) 10.74±6.27 10.74±6.27 13.4±6.24 <0.01
RBC (1 Max) 4.38±0.64 4.38±0.64 4.16±0.72 <0.01
RBC (1 Min) 3.98±0.64 3.98±0.64 3.75±0.72 <0.01
RBC (2 Max) 4±0.63 4±0.63 3.88±0.71 <0.01
RBC (2 Min) 3.94±0.64 3.94±0.64 3.72±0.69 <0.01
RBC (3 Max) 3.97±0.65 3.97±0.65 3.84±0.7 <0.01
RBC (3 Min) 3.93±0.67 3.93±0.67 3.7±0.68 <0.01
HB (1 Max) 13.22±1.82 13.22±1.82 12.77±2.04 <0.01
HB (1 Min) 12.02±1.85 12.02±1.85 11.5±2.11 <0.01
HB (2 Max) 12.08±1.83 12.08±1.83 11.89±2.02 0.111
HB (2 Min) 11.9±1.85 11.9±1.85 11.42±2.01 <0.01
HB (3 Max) 12±1.88 12±1.88 11.81±2.05 0.120
HB (3 Min) 11.86±1.93 11.86±1.93 11.37±2.02 0.000
PLT (1 Max) 251.76±92.43 251.76±92.43 240.43±99.57 0.057
PLT (1 Min) 221.43±81.01 221.43±81.01 205.7±90.79 <0.01
PLT (2 Max) 224.2±81.97 224.2±81.97 215.09±91.3 0.088
PLT (2 Min) 218.75±80.25 218.75±80.25 201.17±86.28 <0.01
PLT (3 Max) 225.06±83.76 225.06±83.76 211.35±90.07 0.011
PLT (3 Min) 220.57±83.52 220.57±83.52 197.82±84.24 <0.01
HCT (1 Max) 38.69±5.12 38.69±5.12 37.63±5.71 <0.01
HCT (1 Min) 35.02±5.25 35.02±5.25 33.7±6.14 <0.01
HCT (2 Max) 35.46±5.14 35.46±5.14 35.17±5.77 0.397
HCT (2 Min) 34.86±5.32 34.86±5.32 33.6±5.83 <0.01
HCT (3 Max) 35.28±5.28 35.28±5.28 34.89±5.79 0.255
HCT (3 Min) 34.78±5.53 34.78±5.53 33.43±5.84 <0.01
GLU (1 Max) 160.1±74.32 160.1±74.32 191.78±65.09 <0.01
GLU (1 Min) 124.05±37.63 124.05±37.63 144.23±49.8 <0.01
GLU (2 Max) 133.85±41.99 133.85±41.99 172.69±68.97 <0.01
GLU (2 Min) 124.77±35.83 124.77±35.83 146.29±49.94 <0.01
GLU (3 Max) 131.93±45.2 131.93±45.2 173.05±63.65 <0.01
GLU (3 Min) 124.75±38.07 124.75±38.07 148.61±52.47 <0.01
Na (1 Max) 140.48±3.73 140.48±3.73 142.3±6.21 <0.01
Na (1 Min) 137.95±4.03 137.95±4.03 138.28±4.94 0.215
Na (2 Max) 140.16±3.9 140.16±3.9 142.83±6.37 <0.01
Na (2 Min) 139.22±4.17 139.22±4.17 140.59±5.55 <0.01
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Variables Variables Survival (n=760) Death (n=383) p-value

Na (3 Max) 140.04±4.16 140.04±4.16 142.88±6.49 <0.01
Na (3 Min) 139.37±4 139.37±4 140.81±5.8 <0.01
K (1 Max) 4.26±0.81 4.26±0.81 4.34±0.85 0.145
K (1 Min) 3.71±0.47 3.71±0.47 3.68±0.61 0.422
K (2 Max) 3.96±0.52 3.96±0.52 4.1±0.79 <0.01
K (2 Min) 3.79±0.43 3.79±0.43 3.71±0.56 <0.01
K (3 Max) 3.94±0.53 3.94±0.53 4.07±0.83 <0.01
K (3 Min) 3.8±0.41 3.8±0.41 3.72±0.56 <0.01
CR (1 Max) 1.16±1.74 1.16±1.74 1.38±1.3 0.027
CR (1 Min) 1±1.09 1±1.09 1.18±1.11 <0.01
CR (2 Max) 1.04±1.2 1.04±1.2 1.33±1.26 <0.01
CR (2 Min) 0.99±0.99 0.99±0.99 1.21±1.09 <0.01
CR (3 Max) 1.01±1.05 1.01±1.05 1.33±1.26 <0.01
CR (3 Min) 0.98±1.02 0.98±1.02 1.24±1.18 <0.01
BUN (1 Max) 21.09±14.63 21.09±14.63 25.5±18.57 <0.01
BUN (1 Min) 17.54±11.86 17.54±11.86 21.68±16.67 <0.01
BUN (2 Max) 18.51±12.65 18.51±12.65 24.07±16.68 <0.01
BUN (2 Min) 17.56±11.52 17.56±11.52 22.2±14.96 <0.01
BUN (3 Max) 18.94±11.66 18.94±11.66 24.87±16.56 <0.01
BUN (3 Min) 18.44±11.43 18.44±11.43 23.36±15.76 <0.01

SBP : Systolic Blood Pressure. DBP : Diastolic Blood Pressure. MBP : Mean Blood Pressure. HR :
Heart Rate.T : Temperature. GCS : GCS score. WBC : White Blood Cell. RBC : Red Blood Cell. HB
: Hemoglobin.PLT : Platelet. HCT : Haematocrit. GLU : Glucose. Na : Serum sodium. K : Serum
potassium.CR : Creatinine. BUN : Blood Urea Nitrogen.

* 1(or 2, or 3) max (or min) : the maximum (or minimum) value of * on the first (or second, or third)
day of admission

Table A.3. RF model and LASSO selected 39 most important variables

RF model selected variables: LASSO selected variables:

GCS 2 max GCS 3 max
GCS 3 max HR 3 min
GCS 1 max GCS 3 min
GCS 3 min Pne
GCS 2 min BUN 3 max
GCS 1 min AGE
HR 3 min WBC 1 min
GLU 3 max GLU 3 max
HR 2 min RBC 1 max
WBC 1 max HR 1 max
SBP 3 max DBP 3 min
SBP 2 min GCS 2 min
WBC 3 max HB 3 max
GLU 2 max GCS 1 max
DBP 3 min SBP 1 min
MBP 3 min x3 no
MBP 2 min Na 2 min
WBC 2 max x3 putamen
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RF model selected variables: LASSO selected variables:

WBC 1 min MBP 2 max
T 1 max MBP 2 min
DBP 3 max GLU 1 max
T 2 min WBC 2 min
AGE x2 ASIAN
PLT 3 min PLT 1 min
WBC 3 min HR 2 max
GLU 1 max T 2 min
T 2 max IHD
BUN 2 min x1 SINGLE
HR 1 min MBP 1 max
GLU 3 min x1 SEPARATED
HB 3 max K 3 min
BUN 2 max WBC 2 max
T 1 min HF
PLT 2 max SBP 3 max
PLT 1 min GCS 2 max
BUN 3 max x3 caudate
DBP 2 min K 1 max
PLT 3 max CR 3 max
RBC 1 min Dia

GCS : GCS score. HR : Heart Rate. GLU : Glucose.WBC : White Blood Cell. SBP : Systolic Blood
Pressure.DBP : Diastolic Blood Pressure. MBP : Mean Blood Pressure. T : Temperature. PLT : Platelet.
BUN : Blood Urea Nitrogen. HB : Hemoglobin. RBC : Red Blood Cell. Pne : Patient with pneumonia.
x3 no : The location of the patient’s cerebral hemorrhage is unknown. Na : Serum sodium. x3 putamen
: The location of the patient’s cerebral hemorrhage is putamen. x2 ASIAN : The patient’s ethnicity is
Asian. IHD : Patient with ischemic heart disease.x1 SINGLE : Marital status of the patient is single.x1 -
SEPARATED : Marital status of the patient is separated. HF : Patient with ischemic heart failure.
x3 caudate : The location of the patient’s cerebral hemorrhage is caudate. K : Serum potassium.CR :
Creatinine. Dia : Patient with diabetes.

* 1(or 2, or 3) max (or min) : the maximum (or minimum) value of * on the first (or second, or third)
day of admission
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