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Abstract

Objective: To develop a prediction model to predict surgical re-intervention within two years after endometrial ablation (EA)

by using a random forest technique (RF). The performance of the developed prediction model was then compared with a

previously published multivariate logistic regression model (LR) (1). Design: Retrospective cohort study. Setting: Data

from two non-university teaching hospitals in the Netherlands were used. Population: 446 pre-menopausal women who have

had an EA for heavy menstrual bleeding between January 2004 and April 2013. Methods: The RF model was trained in

MATLAB (2018b) using the TreeBagger function in the Statistics and Machine Learning Toolbox. Main outcome measures:

The performance of the two models was compared using the area under the Receiving Operating Characteristic (ROC) curve

(AUROC). Measurements and Main Results: The LR model had an AUC of 0.71 (95% CI 0.64-0.78). The RF model had an

AUC of 0.63 (95% CI 0.54-0.71). and an AUC of 0.65 (95% CI 0.56-0.74) after hyperparameter optimization. Conclusion: The

RF model is not superior compared to the LR model in predicting the outcome of surgical re-intervention within two years after

EA. Machine learning techniques are gaining popularity in development of clinical prediction tools, but they are not necessarily

superior to traditional statistical logistic regression techniques. The performance of a model is influenced by the sample size

and the number of features, hyperparameter tuning and the linearity of associations. Both techniques should be considered

when developing a prediction model.

Prediction of unsuccessful endometrial ablation: Random Forest vs Logistic Regression

Introduction

Abnormal uterine bleeding in premenopausal women is a common complaint in five percent of the women who
experiences complaints of abnormal uterine bleeding. (2) Endometrial ablation (EA) is one of the treatment
options for this common problem. Due to the less invasive nature (lower intra-operative complication risks,
shorter recovery time, and lower post-operative morbidity), and low costs of this procedure, this form of
treatment seems to be a less-invasive surgical treatment for menorrhagia compared to hysterectomy (3–
7). However, long-term follow up shows a decrease in patient satisfaction and treatment efficacy. Due to
permanent relief, the more invasive hysterectomy remains the most effective treatment of abnormal uterine
bleeding (8–15).

According to literature, several factors prior to endometrial ablation appear to have an influence on the
success or failure-rate of this procedure. Younger age, complaints of dysmenorrhea, parity above or equal
to five, a thicker pre-procedural endometrium, a duration of menstruation above seven days, presence of
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an intramural leiomyoma on transvaginal sonography, a history of sterilization or caesarean section, and a
longer uterine depth are some of the possible negative influencing factors (1,2,8,9,11–18).

To optimize the counselling of patients with abnormal uterine bleeding, a prediction model based on the
combined influence of the above-mentioned predictors could provide a better insight into the individual
prognosis of endometrial ablation. In times of personalised medicine this can create better individual care
leading to fewer re-interventions, lower healthcare costs and more patient satisfaction. With the use of a
prediction model shared decision making can be optimized (19).

For this reason Stevens et al.(1) developed two multivariate prediction models to help counsel patients for
failure of EA and for surgical re-intervention within two years after EA. The developed prediction models
have a clinically acceptable c-index of 0.68 and 0.71 respectively. In addition, Stevens et al. is performing
an external validation of these two prediction models, using retrospective data of similar patient groups in
two non-university teaching hospitals in the Netherlands. Results of these data will follow. In the field
of gynaecology, many prediction models are developed using multivariate logistic regression as a standard
approach, these are based on a combination of various predictors that are significantly related to the outcome
of interest. However, this method cannot automatically estimate the interconnection between predictors and
in this way can overestimate the influence of an individual predictor (20,21).

We were also interested in other statistical techniques of developing a prediction model. In recent years
machine learning (ML) methods have been increasingly used in the development of clinical prediction models.
This method is a scientific discipline that focuses on models that directly and automatically learn from
data (20,22). Potential advantage of the machine learning methods compared to the traditional statistical
strategies is the possibility of capturing complex, nonlinear relationships in the data (23,24). ML computer
algorithms use training data with well-defined input and output variables. This gives the opportunity to
define a model with predictors which can be used for new and similar data. Compared to statistical logistic
regression models, this can be done without a priori assumption of relevant variables (25).

Random forest is a machine learning method used for classification and regression that operates by con-
structing a large ensemble of decision trees on training data (22,23,26). Each tree in the random forest is
built using a bootstrap sample randomly drawn from the training dataset. This results in a reduction of
variance and corrects for a single decision trees ability to overfit to a training set. Each tree in the forest
gives an individual prediction on the outcome measure. For a classification problem (in this case, surgical
re-intervention or no surgical re-intervention after EA) the final random forest model averages the prediction
of all the trees in the forest (21,23,27).

The aim of the study was to develop a random forest prediction model to predict the chance of surgical
re-intervention within two years after EA. Furthermore, it was our aim to compare the performance of the
random forest model with the prediction by previously published the multivariate logistic regression model
(1). In both models the surgical re-intervention within two years after EA is used as primary outcome
measure.

Methods:

This retrospective two-centred cohort study, performed in two non-university teaching hospitals in the
Netherlands (Catharina Hospital, Eindhoven; Elkerliek Hospital Helmond), included 446 patients who have
had an EA for complaints of abnormal uterine bleeding (1). Both hospitals used similar ablation techniques
between 2004 and 2013, being Cavatherm® (Veldana Medical SA, Morges, Switzerland), Gynecare Therma-
choice® (Ethicon, Sommerville, US) and Thermablate® EAS (Idoman, Ireland). Recent publications have
shown that these ablation techniques were equally effective (15,28). Local medical ethical review boards
approved the study. All patients gave informed consent.

Patients were identified in the Electronic Patient care System by using specified search terms related to endo-
metrial ablation. Exclusion criteria were a postmenopausal status at time of EA; (suspicion of) endometrial
malignancy or uterine cavity deformations (adenomyosis; anomalies; fibroids; or a polyp). Follow-up period
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after treatment was at least two years. This time-interval was chosen because previous literature stated that
most re-interventions were done within two years. Follow-up ended on the day of hysterectomy, in case of
death or on April 15, 2015 (10,16,18,28–30).

Data were extracted from individual patient files by two researchers. Next, patients were asked to fill in
a questionnaire regarding follow-up information. In case of non-response, patients were contacted by letter
and ultimately by telephone. The questionnaire contained questions based on significant variables predicting
surgical re-intervention after EA that were previously published (2,5,8,11–16,18,31,32).

The entire dataset consists of 446 patients with different categorical and continuous variables. For the machi-
ne learning algorithms all features were extracted from the original dataset and a total of five pre-operative
variables were used to develop the machine learning model. This were the preoperative variables that were
significant predictors in the final multivariate prediction model of Stevens et al. (age, duration of menstrua-
tion, dysmenorrhea, parity and previous caesarean section) (1). The continuous data were not discretized
into categories as was done in the development of the previously published logistic regression model(1).

Development of the Logistic regression model

Statistical analysis of the data was performed using SPSS 21.0 for Windows (IBM Corp., Armonk, NY,
USA).

To determine which variables were significant, univariable logistic regression analysis was used. The variables
with a p-value <.10 were used in the multivariable analysis. This was followed by a backward stepwise manual
selection process, progressively excluding the variable with the highest p-value (1).

As described by Steyerberg et al., the p-value of 0.10 was used to prevent a potential incorrect exclusion of
a predictive factor. This would be far more detrimental for the test than missing a potential discriminating
factor (33,34).

Interaction terms were used to test possible interaction between the significant variables in the model.
Furthermore, multicollinearity was tested. Bootstrap resampling was used for internal validation (n=5000).
(34,35) To correct for over-optimism of the model, regression coefficients were multiplied by the calculated
shrinkage factor(1).

Development of the Random forest model

We first trained a RF model using the five following pre-operative predictors: age, duration of menstruation,
dysmenorrhea, parity and previous caesarean section. These factors were associated with a higher probabi-
lity of surgical re-intervention within two years after EA in the previously published multivariate logistic
regression model (1).

As described above, a RF model is an ensemble of many decision tree models. When building decision trees,
each tree in the forest uses random samples (patients) from the training set (“tree bagging”). Figure 1 shows
an example of an individual decision tree in the random forest. A decision tree is a flowchart-like binary
branch structure. At each ‘node split’ in the tree the data are divided in two, based on the value of variable
of the decision node. If no more splits are possible a prediction will be calculated for the cases in the final
leaf node (23,26,36).

At each node split a random subset of features (such as duration of menstruation and parity) is considered
(“feature bagging”), this to avoid over-selection of strong predictive features, leading to similar splits in the
trees. This finally leads to a robust model and prevents model overfitting (21,23,26,27,36,37).

Following this process, the classification result of a RF model is produced by computing a large ensemble
of those trees and averaging the prediction of each single decision tree on surgical re-intervention. Figure
2 shows a simplified example of the RF model. In practice, the decision trees and the resulting prediction
model contain a large number of leaf nodes(26,38).
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A RF method has its own hyperparameters: ntree, mtry, minimum leaf size and maximum node splits. Ntree
is the number of trees in the forest. It should at the one hand be as large as possible, so that each feature
(variable) can have enough opportunities to be picked, but not too large to reduce unnecessary calculation
time. A default value of ntree = 500 was used (39). Mtry is the number of features randomly selected as
candidate feature at each split (“feature bagging”). This was set as square root of the number of variables
([?]n). Minimum leaf size is the minimum number of cases that is required to produce another node split.
Maximum node splits is the maximum amount of splits. Neither a minimum leaf size nor maximum node
splits was set (23,40).

We began running the RF module with default parameter values before starting to improve the RF‘s per-
formance by hyperparameter optimization. Default parameters are pre-set values for the hyperparameters
on which the construction of the decision trees is based, for example 500 for ntree (26,27).

To predict the chance of surgical re-intervention within two years after EA, the model was initially trained
and internally validated on the 446 cases. To make a good comparison between de RF and LR the same
validation technique had to be used. Therefore, a bootstrap resampling of 5000 was used to make training
bags and test bags (Out Of Bag (OOB) samples). The cases that were not selected by the bootstrap
resampling form the test bag which was used as a validation sample to assess the performance of the trained
model on new observations. (Figure 3) The performance measure Area Under The Receiver Operating Curve
(AUROC) was calculated on the test sets (the OOB samples) and averaged for the 5000 bootstrap samples.
These two bags must not be confused with the “tree bags” and the “feature bags” used to construct the
decision trees in the random forest (21,23,26,36).

The RF was trained in MATLAB (2018b) using the TreeBagger function in the Statistics and Machine
Learning Toolbox. The curvature test was used for split-predictor selection to get an unbiased selection
between the continuous and categorical variables. The Gini-impurity index was used to evaluate the accuracy
of a split and to predict the variable importance. A perfect separation results in a Gini score of zero (all
observations belonging to one label, in this case surgical re-intervention or no surgical re-intervention),
whereas the worst case split results in 50/50 classes (23).

The parameter optimization was performed by a random grid-search of the minimum leaf size and the
maximum number of splits. The minimum leaf size can take a value between 1 and half the sample size
(N/2 =223). The maximum number of splits can take a value between 1 and the sample size minus one (N-1
= 445). A random search was chosen since it has been shown to have a similar performance to a full grid
search, but has a reduced computation time (38,41).

For each random combination of minimum leaf size and maximum number of splits, a RF was trained on the
training bag. The combination was scored using OOB prediction of the tree bags. This was repeated for 20
random combinations, the combination with the highest area under the curve (AUC) on the OOB-predictions
was used to train a RF which was tested on the validation test set (42).

Comparison of the prediction models

The performance of the models was tested and compared using the AUROC. Accuracy was not used as
performance measure, since the database is unbalanced (ratio between re-intervention and no re-intervention
1:8 (53:446)) (43). It was chosen to use the performance measures (AUC) as used in the previous study of
Stevens et al. (1). In this way a good comparison can be made.

Predictors of surgical re-intervention: Variable importance measure (VIM)

To identify important predictors of surgical re-intervention we used two methods for analysis. First, a sta-
tistical univariate logistic regression analysis was applied to assess the importance of each variable. For each
variable an odds ratio (OR) with a 95% confidence interval (CI) was calculated. Secondly, a permutation-
based variable importance was used. This VIM is based on AUC statistic of the RF model. The AUC
statistic is computed by randomly permutating the values of predictor x, and comparing the resulting AUC
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to the not permutated AUC. Leaving out an important feature will result in a lower AUC of the RF model,
while leaving out an unimportant feature will not change the AUC significantly (23,38,41).

Results

Seven hundred sixty-two patients were identified retrospectively. Thirty-three patients were excluded, thirty
did not meet the inclusion criteria and three underwent an incomplete endometrium ablation. The remaining
729 patients were contacted, resulting in a response-rate of 61% (N = 446). A total amount of 446 patients
was available for analysis (1).

Fifty-three (11.9%) of these patients required a surgical re-intervention within two years after EA. Patients
mean age during their EA was 43.8 years (SD +-5.5, range 20-55, missing values 0). The mean number
of parity was 2.2 (SD +- 1.0, missing values 0). Sixty-one (13.7%) of the patients underwent a caesarean
section. The mean number of previous caesarean section was 0.2 (SD +- 0.6, missing values 0)

Hundred sixty-nine (39.4%) of the patients had a menstruation period longer than seven days, the mean
number of menstrual days was 9.4 (SD +- 6.0, missing values 17). Two hundred fifty-six (57.4%) of the
patients had complaints of dysmenorrhea and four hundred thirty-four (97.3%) of the patients had complaints
of abnormal uterine bleeding (1).

Prediction models:

Logistic regression model

Univariate analysis showed six significant predictors, multivariate analyses resulted in a logistic regression
model consisting of five significant predictors: age (OR 0.95, 95% CI 0.90 – 1.00), duration of menstruation
>7 days (OR 2.05, 95% CI 1.10 – 3.82), dysmenorrhea (OR 2.48, 95% CI 1.21 – 5.07), parity [?]5 (OR 7.63,
95% CI 1.51 – 38.46), and previous caesarean section (OR 2.21, 95% CI 1.05 – 4.64). The AUC of the final
prediction model after correcting by the shrinkage factor was 0.71 (95% CI 0.64-0.78) (Figure 4).

The final model is described in the article of Stevens et al (1).

Random forest model

The random forest method resulted in a model which predicts the chance of re-intervention within two years
after EA with an AUC of 0.63 (95% CI 0.54-0.71). An AUC of 0.65 (95% CI 0.56-0.74) was achieved after
optimization of this model (Figure 4).

Predictors of surgical re-intervention: Variable importance

The AUC was used to quantify the importance of the predictor. For each RF model, the AUC was calculated
on the test set. Then the same was done after permuting each predictive variable. By calculating the
difference between the permuted and non-permuted AUC, the importance of each individual predictor can be
quantified. The difference in AUC for the different predictors in the optimized model were in ascending order
of importance: 0.005 for parity, 0.017 for previous caesarean section, 0.019 for age, 0.026 for dysmenorrhea
and 0.051 for duration of menstruation. This means dysmenorrhea and duration of menstruation have the
highest impact on the AUC of the RF model.

Discussion

Main findings

In this study, a RF model was made to predict surgical re-intervention within two years after EA. Comparison
of the predictive value of a RF model with the existing logistic regression model of Stevens et al. was made
(1).

The existing logistic regression model has a C-index of 0.71 (95% CI 0.64-0.78) (1). The RF model, developed
in this study, shows a C-index of 0.65 (95% CI 0.56-0.74) after hyperparameter optimization. This shows
that the LR prediction model developed by Stevens et al. probably performs better in predicting surgical
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re-intervention within two years after EA than the newly developed RF model. However, this difference in
performance is not statistically significant when we look at the confidence intervals. Significant predictors
of the model are age, duration of menstruation >7 days, dysmenorrhea, parity [?]5 and previous caesarean
section(1).

In our database, high parity ([?]5) is a predictive variable for surgical re-intervention. This can be related
to the larger uterine cavity of grand multiparous women. However, when considering our RF model, parity
has no large impact on the AUC. This is in line with previously reported studies that show no significant
increased risk of treatment failure with increasing parity (2,17).

Previous caesarean section is also related to higher rates of surgical re-intervention which can be explained
by irregularity of the uterine wall caused by the uterine scar (44). This can inhibit complete contact of the
ablation device with the uterine wall, leading to residual active endometrium.

In our cohort, pre-operative dysmenorrhea is associated with a higher risk of surgical re-intervention. There
is evidence that gynaecologic pathology causing this dysmenorrhea (adenomyosis and endometriosis) reduces
the success of endometrial ablation (9,18,32,45,46). This can be explained by the fact that EA is not an
appropriate treatment for these diseases due to the superficial effect of energy to the uterine wall of ablation.
It could help to diagnose these diseases before performance of EA. However, sensitivity and specificity of the
diagnostic tools for determining these diseases in the pre-operative setting are still low (47).

In line with previous studies, we found that younger age was associated with a higher risk of surgical re-
intervention (8,10–14,31).

The duration of menstruation > 7 days is also a negative predictive factor for surgical re-intervention after
EA. This may be caused by a thicker endometrium which is more difficult to completely remove by the
device (8,11).

Interpretation in light of other evidence

There are several possible reasons to understand why the LR model probably performs better compared to
the ML model.

Firstly, ML tends to work better for variables with strong predictive power (20,48). We observed that most
of the candidate predictors in this model have low predictive power. The variables parity, age and previous
c-section show low predictive power. The difference in area under the curve for these predictors that was
produced using the permutation based variable importance was <0.02. There are different reasons to explain
that this specific dataset, and its separate and combined predictors appeared to have a low predictive power.
On one hand, the outcome can be unpredictable, meaning these candidate predictors have little influence on
the outcome measure. On the other hand, the dataset can be too small to identify the predictive power of
a candidate predictor. A larger dataset could possibly identify more predictors(20,48).

Secondly, some studies demonstrate that ML is performing better when only a small set of pre-specified
predictors are used in the prediction model. There seems to be an influence of the number of predictors (p)
and the ratio of p:n (sample size). RF tends to perform better for increasing p and p:n. (20,24,49,50) In
our study, to limit potential bias, the five identical predictors as published before (1) were considered for
the LR and RF algorithms. We did this to allow a fair comparison between the two models, probably in
disadvantage of the RF model (20,24,49,50).

Another possible reason for a lower AUC of the RF model is the necessity of big datasets to reach an optimal
performance. A dataset with 446 participants might be too small for robust conclusions. For LR however,
this number of patients can be enough to develop a prediction model.

Finally, we can also consider that for this clinical problem a logistic approach is better than a RF model
for modelling the relationship between surgical re-intervention and the explanatory variables. Probably
the previously mentioned complex, nonlinear relationships that a ML approach can better capture are not
present in this dataset.
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Strengths and limitations

The predictors obtained by univariate and multivariate logistic regression are in accordance with the existing
literature (51). However, when we compare the variable importance between the OR (LR) and the difference
in AUC (ML) of each variable, we identify a different ranking in variable importance.

The difference in ranking of variable importance is a limitation of the study because there is no proper way
to compare the importance of each predictor on surgical re-intervention between the RF and LR model. For
the LR model the OR is defined for each predictor X as the odds of a surgical re-intervention in participants
having predictor X over participants not having predictor X (Beta). While for the RF model the variable
importance is defined as the difference in AUC when predictor X is not permuted.

Dysmenorrhea (OR 2.48) and a parity>5 (OR 7.63) have the highest odds ratio in the multivariate analysis,
while for the difference in area under the curve the duration of menstruation and dysmenorrhea are the
most important variables. We consider two possible reason for the difference in importance. The first reason
is that for the LR model all continuous variables (except age) were discretized, while for the RF model
continuous variables were handled. A second reason is that in the LR the predictors have different units,
and these were not standardized. This means that a subjective assessment of variable importance cannot
easily be made by simply comparing the raw sizes of the OR (2,8,13–18,31,32,44). This can be seen as a
strength of our study since the difference in AUC for each predictor (permuted vs. not permuted) reflects
the variable importance in a standardized way.

We used bootstrap resampling for internal validation (n=5000) in the LR and RF model. Using the same
validation method limits potential bias. Furthermore, the same predictors were considered for the LR and
ML algorithms. This limits potential bias, but will limit the potential power of a RF technique as well.
Another important strength of this study is the use of all participants in evaluating the performance of the
RF model. By using the test sets, there is no need for an independent validation dataset.

It could be seen as a limitation of this study that we did not perform an external validation in another
cohort. However, we did not expect it to be significantly better in performance, since the internal validation
of the RF did not perform better than the logistic regression model. In addition, an external validation for
the logistic regression model is being performed at the time of this study (52).

Finally, we can state that ML models are in our experience not easily implemented in the clinical practice;
since these are often not available in commonly used software packages in clinical practice. However, future
structured data-registration is increasing, which makes it easier to create big datasets available for ML-
programs.

Conclusion:

In conclusion we can state that for the prediction of surgical re-intervention within two years after EA, the LR
gives a better prediction compared to the ML model. However, machine learning algorithms should always
be considered as candidate prediction tool for classification or regression problems because of the possible
advantages. So far there is no evidence for one single algorithm that outperforms the other in general use.
Further research is needed for the evaluation of ML based predictive modelling.
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