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Abstract

Predictions for the future of coral reef are largely based on thermal exposure and poorly account for geographic variation

in biological sensitivity and resistance to thermal stress. Based on the ratio of thermal exposure and sensitivity, geographic

variability of coral resistance was estimated during the 2016 global-bleaching event. Exposure was estimated as historical

cumulative excess summer heat (CTA) and a multivariate index of SST, light, and water flow (CE). Site sensitivity was estimated

for 226 sites using coordinated bleaching observations. Site resistance was evaluated by 128 possible models for the influences of

geography, historical SST variation, coral cover, and number of coral genera. Most factors were statistically significant but the

strongest factor was geography - Coral Triangle having higher resistance than non-Coral Triangle sites. Consequently, future

predictions of thermal stress will need to account for strong geographic differences in acclimation/adaptation.

Introduction

The capacity of corals to adapt to climate change is among the Earth’s most pressing environmental needs
(Hughes et al. 2017). Localized studies have shown that corals acclimatize or adapt by changing protein
expressions (Palumbi et al. 2014), switching of symbionts in variable sea-surface temperature (SST) envi-
ronments (Boulette et al,. 2016; Safaie et al. 2018; Sully et al. 2019), and after experiencing warm-SST
anomalies (Guest et al. 2012; McClanahan 2017; Hughes et al. 2019a). However, the resistance (=expo-
sure/sensitivity) of scleractinian corals at large spatial scales of variability is only slowly being understood
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(Sully et al. 2019). Here, we show that resistance of corals to heat stress is geographically variable and likely
driven by the differential environmental histories.

Resistance is a measure of system change when exposed to stress, and a key component of coral reef resilience
or the ability of a reef to resist and survive a disturbance (McClanahan et al. 2012). Under the increasing
impacts of climate change, coral bleaching is an early and obvious indicator of thermal stress (Hughes et al.
2018). Bleaching is less often considered for its potential to inform resistance, whereby some reefs may bleach
less than expected based on historical and current environmental conditions or exposure to thermal stress
(Fig. 1a). Ultimately, resistance should be influenced by variation in geographical and evolutionary history
and associated genotypic diversity, adaptation to thermal stress, and taxonomic composition (Edmunds
& Gates 2008; Palumbi et al. 2014; Sully et al. 2019). These patterns remain untested across large
biogeographic scales but will be critical for calibrating future climate impact models that are currently
based on current and projected thermal exposure (Couce et al. 2013; Freeman et al. 2013; McManus et al.
2019).

Here, we combine satellite SST observations with a globally coordinated effort of coral bleaching surveys to
evaluate coral resistance to heat stress across a large geographic gradient in 2016 (Fig. 1a). We evaluated
resistance through two components: exposure to extreme heat stress and the resulting sensitivity of ecological
communities to that exposure. We define exposure as the degree, duration, and extent of perturbations
beyond background levels. As coral exposure to heat and light perturbations increases with climate change,
reef resilience is threatened but also potentially attenuated by variable coral sensitivity and subsequent
resistance (Sully et al. 2019). To evaluate coral reef exposure, we considered two models derived from
NOAA AVHRR satellite measurements that provided proxies for a number of essential ocean variables that
are used to estimate stress to corals (Eakin et al. 2010; Maina et al. 2008; 2011; Muller-Kager et al. 2018).
We used two models: (1) a single metric of temperature stress - the cumulative incremental sum of SSTs
above local summer SSTs (CTA), and (2) a multivariate metric of climate exposure (CE), which is a weighted
index combining heat, light, and water flow variables and strongly associated with field observations of coral
bleaching (Maina et al. 2008). Additionally, coral reef field biologists have developed field measurements to
estimate coral bleaching and therefore ecological sensitivity. Sensitivity can take various forms, but here we
define and document it as the percentage of corals that lost color, a proxy for the decline in light-absorbing
algal symbiont densities, which can lead to coral mortality (Fitt et al. 2001; McClanahan et al. 2001).

Materials and methods

Resistance is a system-level metric used to estimate the balance between environmental exposure and biolog-
ical sensitivity. There are a number of potential variables and ways to calculate it. Exposure and sensitivity
can be measured by single or multiple variables, having different units, and often needs to be weighted,
standardized, or normalized for appropriate comparisons. Moreover, resistance can be calculated as either
the difference or ratio between exposure and sensitivity. Therefore, a number of these possibilities were
evaluated and described below.

Exposure

We considered two exposure models, one based on a single variable of excess temperature exposure (cu-
mulative degree heating weeks, the CTA model) and one based on a multivariate environmental index of
climate exposure (CE) that integrates temperature, winds and water flow into a weighted metric of ex-
posure. The CTA model is based on the concept of cumulative degree heating weeks or months, or the
amount of excess temperatures above a summer baseline, and is the most commonly used metric to assess
the probability of coral bleaching and the future state of coral reefs (Eakin et al. 2010; van Hooidonk
et al. 2013; Donner & Carilli 2019). For each site, we extracted daily SST time series from the 5-km
NOAA Coral Reef Watch version 3.1 products between 1985 and 2015, available from the NOAA web-
site (https://coralreefwatch.noaa.gov/satellite/bleaching5km/index.php). Daily temperature measurements
were used to calculate monthly hotspots, defined as positive SST anomalies referenced to the maximum of
the monthly mean SST climatology (i.e. MMM climatology of Strong et al. 2004). We then calculated the
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Degree-Heating Months (DHM) as the sum of hotspots with monthly means [?]0oC. To derive the cumulative
DHM product for each site, we summed cells with DHM > 0oC for each year over the 1985 – 2015 time
series. We did not include the 2016 SST satellite measurements in this metric to maintain independence
of the sensitivity metric established from underwater bleaching surveys during 2016. Cumulative thermal
anomalies (CTA) between 1985-2015 ranged from 7.8 to 48.0 DHM across the 226 reef sites included in this
study.

Climate Exposure (CE) is a multivariate metric that combines radiation variables to optimize predictions
for coral bleaching (Maina et al. 2008; 2011). The model was developed using variables derived from
historical SST (mean, variability, maximum, minimum), ocean current velocity in zonal and meridional
direction, wind velocity (number of doldrum days and wind speed magnitude), and average satellite derived
UV and photosynthetic active radiation measurements. These measurements were synthesized using fuzzy
logic and weighted based on bleaching observation to produce values ranging between 0 (least exposure)
and 1 (highest exposure). Overall, this multivariate metric of coral exposure has a strong relationship to
previous compilations of coral bleaching data (Maina et al. 2008). Comparing the two exposure models
showed that the distributions of CTA and CE values for the 226 sites found the CTA means were more
frequently clustered around lower values (<0.50 normalized values) of the distribution and had a right skew.
CE values were distributed more frequently towards the high ends (>0.50 normalized values) and had a left
skew (Supplementary Fig. 1).

Sensitivity

Field work to estimate coral ecological sensitivity were based on coordinated surveys of coral bleaching during
the 2016 El Niño and global thermal anomaly event. All were undertaken after the post-peak summer SSTs
when bleaching was greatest (McClanahan et al. 2001). We sampled the 226 sites in 12 countries between
during summer months between March and September 2016. We used a roving observer methodology where
an observer evaluates the frequency and severity of bleaching for individual coral colonies in a series of
haphazardly replicated quadrats (˜1.5 m2 x ˜15 replicates, across an area of ˜1000 m2). In some surveys, we
photographed quadrats and subsequently identified colonies to taxa and scored them for bleaching. Within
each quadrat, we identified hard coral colonies >5 cm to genus (Veron 2000), and scored each colony for
bleaching severity using the following categories: c 0 – normal; c 1 – pale;c 2 – 0-20% bleached; c 3 – 21-50%
bleached; c 4 – 51-80% bleached, c 5 – 81-100% bleached; c 6 – recently dead. These observations were used
to estimate the average percent of bleaching coral colonies and a weighted measure of bleaching (McClanahan
et al. 2007). We also recorded the site’s depth, habitat type, and management. We also estimated hard coral
cover in each quadrat to the nearest 5% and the summarized the number of observed colonies, coral taxa
richness, and relative abundance for each site. Three sites were missing one of more of the variables leading
to slightly lower sample sizes in some analyses.

Data analyses

Sensitivity was estimated in two ways, using both an unweighted and a weighted percentage of bleached
corals. The unweighted method calculated the percentage of coral colonies that were pale to fully bleached
as the percentage of all corals sampled. The weighted or bleaching intensity metric placed colonies into seven
categories of bleaching ranging from normal to 100% bleached white and uses these categories to weight the
responses of bleaching (McClanahan et al. 2007). Bleaching susceptibility is a related metric used to estimate
the sensitivity of the community to bleaching, where the relative abundance of each taxa was multiplied by
the mean bleaching intensity for that taxa based on either historical or recent observations and summed.
Here, we used the 2016 bleaching intensity observations for each taxon. Bleaching susceptibility provides a
single number for each site, where higher values indicate a coral assemblage with a higher susceptibility to
bleaching and lower values indicate a coral assemblage that is less susceptible to bleaching. The two estimates
were highly correlated (r = 0.92, p < 0.0001).

The timing of the exposure (satellite temperature observations) and ecological sensitivity as percentage
of bleached corals were evaluated for their predictive strength based on AIC values of relationships with
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predictor variables possible relationships before combining into a resistance metric. First, we extracted daily
5-km SST time series for 90 days prior to field survey at each site and calculated the date of maximum
observed DHMs. We found that all of the final 226 selected sites were sampled within 21 days after peak
SSTs. Thereafter, we evaluated the two metrics of sensitivity (the unweighted percent bleaching and weighted
bleaching intensity metrics) for their distributions, outliers, and associations with seven predictor variables.
We found that 10 sites in Ningaloo reefs were outliers as per the multivariate Mahanalobis distance method.
Exploration of these outliers suggest local oceanographic effects at Ningaloo were overriding the broader-
scale satellite measurement values (Woo et al. 2006; Xu et al. 2016). Some error is expected in these analyses
due to the scale mismatch of the satellite and field surveys, where field surveys are contained with satellite
measurements dimensions but cover a smaller area. Nevertheless, we decided to retain these sites in all
analysis as they represented some of this natural and scaler variability and possible influence on the models
that we explored.

To evaluate resistance, we first normalized the exposure of the two metrics and the metric of ecological
sensitivity selection for all sites between 0 and +1, added +1 to all values and then divided exposure by
sensitivity. These transformations eliminated zeroes and negative numbers and produced resistance values
between 0.5 and 1.75 (Supplementary Fig. 1). Prior to calculating resistance, we evaluated statistical at-
tributes of the single variables, interacting variable, and the ratio versus subtraction method to calculate
resistance. Comparison of AIC values for bleaching versus the bleaching index against predictor variables
indicated lower values for the percentage (AIC = 125.7+ 97.1(+ SD) n=28 comparisons) versus bleaching
index (AIC = 141.1+ 78.1, n=28). Similarly, comparing the subtraction and the ratio method for estima-
ting resistance found the ratios produced considerably lower AIC values (AIC = 62.8+ 56.6, n=28) than
subtraction (AIC = 204.1+ 46.1, n=28).

Distributions of these chosen exposure, sensitivity, and the two metrics of resistance showed continuous distri-
butions with weak centralization that should increase the probabilities of detecting patterns (Supplementary
Fig. 1). Visualization of the scatterplot matrix of the 7 variables indicated that mean SST and kurtosis were
strongly correlated (r=0.83) while all other variables correlations were <0.56. Therefore, we specified the
model to not simultaneously include kurtosis and mean SST. Variance inflation scores – another indicator of
multicollinearity – are presented for each top model and are all <3 (Table 1), indicating collinearity is not a
serious concern. Sites were pooled into a general location for the analysis until the fit of a Generalized Linear
Mixed Model (GLMM) with location as a random effect revealed nonuniformity and under-dispersion of the
residuals. Consequently, location was removed from the final Generalized Linear Model (GLM) approach,
and no spatial auto-correlation was found. Thereafter, we used a multi-model inference framework and fit
the GLMs with the resistance ratio calculated from each of the two exposure models (CTA vs CE) against
the 7 predictor variables with a Gaussian log-link error structure. All possible sub-models were computed
using the dredge function from the MuMIn package in R. We present all the results of the top set models
where delta AICc values < 2 and where mean SST was excluded. This multi-model approach of evaluating all
possible models reduces the changes of subjectively selecting significant but the not best models (Burnham
and Anderson 1998).

We tested for difference in resistance, thermal environments, coral communities, and bleaching by major
taxon for sites with all comparable variables within (n=27) and outside the Coral Triangle (n=199). Most
data failed to pass tests of normality (using Kolmogorov-Smirnov-Lilliefors, KSL, tests) and therefore non-
parametric Wilcoxon tests were undertaken for comparisons of all variables. Temperature data were pooled to
visualize their distributions in the two regions. Coral communities were evaluated by multivariate Community
Correspondence Analysis using the vegan package in R. The first and second values for each site were
extracted and tested for differences between the two regions.

Both exposure and sensitivity metrics show good spread across the geographic coverage of this study (Supple-
mentary Fig. 1). We then estimated resistance as exposure divided by sensitivity, and tested the hypotheses
that resistance differed locally and geographically as influenced by biogeographical location, recent environ-
mental forces over the past two decades, and attributes of the coral taxa and communities. We specifically
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evaluated whether the marine biodiversity center, known as the Coral Triangle (Spalding et al. 2007), had
the same resistance and future prognosis as lower diversity peripheral reefs outside the Coral Triangle.

Previous studies have suggested that background SST mean and distribution (i.e. skewness and kurtosis)
and its timing can influence bleaching and mortality by influencing coral acclimation and adaptation mecha-
nisms (Ateweberhan and McClanahan 2010; Grottoli et al. 2014; Ainsworth et al. 2016; Langlais et al. 2017;
Safaie et al. 2018). Temperature mean, skewness, and kurtosis describe the average and extreme tempera-
ture conditions, and can covary to inflate covariance in multivariate models. For example, kurtosis increases
strongly and exponentially with increasing SSTs while skewness declines but is highly variable at high SSTs
depending on the local geography. To avoid selectivity of model selection based on significance alone, we
used a multi-model framework where all possible models were evaluated and compared (Burnham and An-
derson 1998). Multicollinearity was evaluated and temperature metrics with high correlations were included
separately when exploring the strength of 128 model combinations. To account for non-random sampling, we
included the geographic variables of longitude and latitude in addition to SST variables of mean, kurtosis,
and skewness, and coral community variables comprising hard coral cover and genera richness. Sampling of
longitude and latitude was not random and therefore evaluated as fixed covariates in models.

Results

We found that resistance varied unevenly across our study sites with lowest resistance in the northern and
western Indian Ocean (Fig. 1b,c). The highest resistance was observed in the equatorial Coral Triangle and
intermediate resistance south of the equator and some sites, such as Ningaloo reef. For resistance estimated
by CTA, there were two best models that contained 5 and 6 of the 7 variables. The first top model excluded
coral cover and kurtosis while the second top model excluded only kurtosis (Table 1). The 9th ranked model,
where mean SST was excluded,. included the three variables of longitude, number of genera, and skewness.
The multivariate exposure model (CE) had only one top model and only kurtosis was excluded. Excluding
mean SST produced the 3rd ranked model, which included all variables including kurtosis. The CTA model
had somewhat higher strengths than the resistance models estimated from the CE (CTA R2=0.82 versus CE
R2 = 0.72). Both models displayed separation in responses between Coral Triangle and non-Coral Triangle
sites but differences were more evident in the CTA model. The CTA method estimated 62% and CE 38%
higher resistance in Coral Triangle than non-Triangle sites (Table 2, Fig. 2). Consequently, the higher fits
to the CTA and CE model was likely due to the greater separation and influences of CTAs on resistance
in Coral Triangle versus non-Triangle sites. While most variables were included in top models, there were
marked differences in the strengths of the variables and their order among different model combinations.
Longitude, number of genera, mean SST, and kurtosis were positively while SST skewness and latitude
negatively associated with resistance. Hard coral was, however, weak and complex in that the direction of
the association with resistance differed for the exposure models, positive for CTA and negative for CE.

Geography played a significant role in affecting resistance in nearly all models, but it also interacted with
SST and number of coral taxa patterns. Comparisons of the Coral Triangle and non-Coral Triangle sites
illuminated some associations in the two distinct patterns of SST, coral communities, and resistance (Table
2, Fig. 3). Pooling and evaluating the SST time series indicated considerable differences between regions
in exposure. The higher CTA in the Coral Triangle was one of the most pronounced difference with 2.5
times more 1985-2015 CTAs than non-Triangle sites. Moreover, Coral Triangle sites had warmer SSTs, more
neutral kurtosis, and negative or cold-water skewness compared to non-Triangle sites (Fig. 3). In fact, distinct
differences in the skewness-kurtosis associations was one of the main geographic distinctions. Coral Triangle
sites had only neutral to high SST kurtosis and, as kurtosis increased, skewness declined and was negative.
Kurtosis was highly variable in non- Triangle sites but warm-water skewness increased when kurtosis was
high.

Differences in resistance between Coral Triangle and non-Triangle sites cannot be attributable to differences
in the coral communities. We found that coral cover, the relative taxonomic composition and the community’s
susceptibility to bleaching did not differ between geographies (Table 2, Fig. 4). What did consistently differ
was the percentage of bleached corals, the weighted and unweighted bleaching responses and the percentage
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of the dominant taxa that were bleached in 2016. All metrics showed higher bleaching outside the Coral
Triangle despite lower mean historical SSTs and CTAs.

Discussion

Mean SSTs, rates of temperature rise, and CTAs are the key metrics used to model current and future impacts
and refuge from climate change (Hoegh-Guldberg 1990; van Hooidonk et al., 2013, 2016; Beyer et al. 2018).
Use of these and related thermal metrics produce dire predictions for corals, especially in warm equatorial
regions such as the Coral Triangle (Couce et al. 2013; McManus et al. 2019). Yet, the large-scale differences
observed here were largely attributable to the variable responses of coals to exposure and their differential
spatial acclimation/adaptation at the taxa level. There were enough similarities in communities among the
studied sites that observed differences were most likely due to similar taxa having different resistance levels
(Fig 4). Thus, resistance appears to have a strong component of regionalism that is not clearly related to
differences in coral species composition.

The Coral Triangle appears to have a unique temperature environment and harbor corals with greater
resistance to exposure. Historically, the Coral Triangle has been influenced by oceanographic processes, such
as El Niño Southern Oscillation (ENSO). The strengths of the ENSO have long fluctuated longitudinally
across the Pacific for millennium and most be part of the adaptive environment experience by Coral Triangle
corals (Cobb et al. 2003). Our findings suggest that ENSO variation and inter-annual warm thermal anomalies
in the western Pacific were primary drivers of coral resistance along the east-west gradient from East Africa
to Fiji. Moreover, resistance is higher but unequally distributed closer to the equator, which indicates that
exposures to thermal radiation alone cannot explain variability. Variation in resistance close to the equator
may explain the overall higher bleaching reported in mid-tropical latitudes (15 - 20o) despite equal or higher
CTA near the equator (Sully et al. 2019). Some variation in bleaching variation was attributable to average
background SST variation but we found that shape parameters of kurtosis and particularly skewness were
more likely to distinguish sites along this equatorial belt.

The Coral Triangle differs in having negative skewness and neutral to high kurtosis, which are associated
with increased resistance. The causes of the negative skewness require more investigation but it likely that
the island nature of the Coral Triangle creates localized variability in water clarity, ocean currents and
up- and downwelling that may provide some localized variation in radiation, temperatures, productivity,
and resistance (McClanahan et al. 2005; Gove et al. 2016). Statistical outlier sites at Ningaloo retained
in our analysis may provide some insight by being an exception to the Coral-non-Coral Tringle and mid-
latitude patterns. We suggest that the higher than expected resistance found in Ningaloo arose from localized
upwelling, onshore geostrophic transport, and stirring by offshore eddies that produced lower than expected
bleaching (Xu et al. 2016). Satellite measurements even at 5 km2 may not capture these local processes well
(Woo et al. 2006; Wilson, S. personal communication). It should be appreciated that there is a scale mismatch
between exposure and bleaching observations, a problem that troubles most ground-truthing studies, and
can results in errors and some anomalous observations that can weaken predictions.

Differences in SST distributions have produced similar patterns in other studies. For example, change in coral
cover over the 1998 bleaching event was influenced by SST variation and distribution shapes – heavy-tailed
distributions associated with higher coral mortality (Ateweberhan & McClanahan 2010). Further, in a large-
scale study of coral cover and community composition in western Australian, SST kurtosis and skewness were
frequently among the top variables for predicting coral abundance (Zinke et al. 2018). Skewed right SST
distributions were, for example, associated with lower cover of stress-resistant corals. Additionally, positive
kurtosis, or heavy-tailed distributions, was associated with lower cover of all corals. Both of these distribution
shape variables would be expected to influence coral acclimation processes. On the basin scale of the Indian
Ocean, coral taxonomic richness was found to be positively influenced by mean and negatively by heavy-
tailed SST distributions (Ateweberhan et al. 2018). Consequently, background SSTs have repeatedly been
shown to influence sensitivity and resistance and differ most clearly in the complex relationships between
mean variance, kurtosis, and skewness. Thus, the mean SSTs-bleaching association (Claar et al. 2018; Sully
et al. 2019) has the potential to be modified by other background SST distribution factors and not just mean
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variance (Langlais et al. 2017; Safaie et al. 2018). For example, we found that the potentially negative effects
of positive kurtosis, which is expected to reduce predictable SST variation and acclimation in corals, may
not be detrimental when temperatures profiles lack positive skewness. Thus, their interaction in space and
time may prove useful in exposing some of the complexities of stress and coral responses.

Coral community variables had statistically significant influence on resistance, particularly when mean SST
was eliminated from the predictive variables. Coral cover-resistance relationships were complex due to the
change in direction of this variable for the two exposure models. Number of genera was, however, consistently
positively related to resistance and particularly in the absence of mean SSTs. Consequently, mean SST may
influence coral richness as found in other geographic studies but it is not clear which of these variables is
driving the response to exposures. Given that mean SST and geography could be proxies rather than physical
or ecological driver of resistance, number of taxa could be a modest driver of resistance given the expected
diversity-portfolio responses (Cardinale et al. 2012; Schindler et al. 2015). Distinguishing cause and effect
between these variables and associations with resistance is a priority area for future research.

Measuring future resistance in corals will depend on the effectiveness of exposure and sensitivity to reflect
stresses and responses that will vary over time. Changes and increasing ocean heat forced by climate change
means that exposure and sensitivity could change and potentially decouple in the future. Moreover, there
is the question of how good bleaching is at measuring sensitivity to thermal stress (Buddemeier et al.
2004). Bleaching is potentially one of a number of possible adaptive responses to heat or climate warming
stress. Mortality without bleaching, for example, is an infrequently examined response that could influence
resistance estimates (McClanahan 2004). Differential rates and clearly identified causes of mortality and
recovery among taxa creates challenges for large-scale evaluations of climate impacts (McClanahan et al.
2001; Darling et al. 2019). Estimating mortality requires inter-annual monitoring to evaluate changes that
could be poorly tied to heat stress alone (Darling et al. 2013; Donner & Carilli 2019). While we acknowledge
this weakness, bleaching is currently the most commonly used and quantifiable way to measure sensitivity
to heat stress (Donner et al. 2017; Sully et al. 2019).

Difference between the two exposure models contributes to understanding the geography of environmental
stress in the tropics. The propagation of east-west inter-annual SST variability driven by the ENSO is a
critical exposure force. Longitudinal propagation of exposure can explain the uneven distribution of CTAs,
differences between the two exposure models, and the separation of the Coral from non-Triangle sites. ENSO
is likely to be the dominant force over historical time, controlling reef development in the eastern Pacific and
recently increasing in strength in the western Pacific (Peñaflor et al. 2009; Toth et al. 2015). The increasing
strength of the ENSO has also been associated with increases in the penetration of warm waters into the
eastern Indian Ocean (Zinke et al. 2015). Additionally, the Indian Ocean Dipole has been increasing in
strength since the 1920s and adding to the ENSO heat stress (Nakamura et al. 2009; McClanahan 2017).
Consequently, the more recent origins of these forces in the Indian Ocean, may explain the higher sensitivity
and lower resistance of corals observed here.

The higher resistance of corals in the western Pacific or Indo-Pacific biodiversity center indicates geographic
variability that reflects shallow-water biodiversity patterns (Veron et al. 2011; Parravicini et al. 2013). The
Coral Triangle has a spatially variable SST environment (Peñaflor et al. 2009; McLeod et al. 2010) but we
found a combination of high anomalies, neutral to cold-SST skew, and neutral kurtosis. We suggest that
these heat patterns provided some resistance to episodic strong thermal disturbances. High biodiversity in
the Coral Triangle has arisen from a number of interacting forces that are likely to include environmental as
well as geologic complexity, isolation, and changing sea level forces (Barber & Meyer 2015).

Our findings support the contention that historical forces may also be associated with a higher capacity
to tolerate episodic large-scale global heat stress, as observed during this pan-tropical thermal stress event
of 2014-2016. Many models that predict the future of coral reefs treat CTAs, bleaching, and mortality as
interchangeable. Yet, we show here that sensitivity is highly variable and contextual. Therefore, better pre-
dictions for the future state of coral reefs should use resistance metrics rather than just the initial and
projected exposure metrics. Greater resistance to thermal stress in the Coral Triangle may delay and attenu-
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ate the observed increases in warm-water stress responses (Hughes et al. 2018). Thus, our findings indicate a
limited window of opportunity to better manage the impacts and produce less severe outcomes in the Coral
Triangle. Nevertheless, reducing heat-retaining gas emissions, developing sustainable fisheries, and improving
watershed and pollution management remain priorities for coral persistence.
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Tables

Table 1. Results and ranks of multi-model inference statistics . Ranks and fit of model outputs
results of the best models of 96 options where 7 predictors were tested for associations with two resistance
metrics at the study sites. For comparison, results of the single factors and the direction of influence used
in the best models are included. Ranks are based on AIC criteria. NS = not significant, * = p<0.05, ** =
p<0.01. Based on 204 sites because some sites lacked coral cover estimates.

a) Resistance (cumulative thermal anomaly, CTA)

Rank Models df logLik AICc delta weight Maximum VIF R2

Set 1: Best models set (<2 AICc)
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Rank Models df logLik AICc delta weight Maximum VIF R2

1 Resistance (CE) ˜ Intercept + Absolute latitude + Hard coral, % + Longitude + No of genera + Skewness + SST 8 97.2 -177.6 0.00 0.79 2.70 0.72
Set 1b: Best model without SST

3 Resistance (CE) ˜ Intercept + Absolute latitude + Hard coral, % + Kurtosis + Longitude + No of genera + Skewness 8 94.7 -172.6 4.9 0.07 2.75 0.71
Set 2: Single variable models Set 2: Single variable models
Rank Models df logLik AICc delta weight Significance R2

69 Longitude (+) 3 11.26 -16.39 161.23 0.0 0.0001 0.35
78 Skewness (-) 3 -4.04 14.19 191.81 0.0 0.0001 0.25
87 Absolute latitude (-) 3 -10.19 26.50 204.12 0.0 0.0001 0.20
90 No of genera (+) 3 -14.03 34.18 211.80 0.0 0.0001 0.17
92 SST (+) 3 -17.31 40.74 218.36 0.0 0.0001 0.14
93 Kurtosis (+) 3 -18.64 43.40 221.02 0.0 0.0001 0.13
95 Hard coral, % (-) 3 -30.71 67.53 245.15 0.0 0.04 0.02

b) Resistance (Climate exposure, CE)

Table 2. Regional comparisons of temperature, coral community, and dominant taxa. Long-
term temperature metrics (mean, kurtosis and skewness) for sites within the coral triangle (n = 27) and
sites outside the coral triangle (n= 199) compared by the Wilcoxon tests of significance. Metrics of the
coral communities and two measures of their bleaching responses. Community axis 1 and 2 are the first
and second Community Correspondence Axes of a multivariate evaluation of coral taxa. Susceptibility
weights taxa abundance by a mean bleaching response during the 2016 period. Bleaching intensity weights
bleaching by 7 categories of bleaching intensity. DHM = degree heating months from 1985 to 2015. CTA =
cumulative thermal anomaly model based on sum of DHM. CE = climate exposure model based on multiple
environmental variables.

Variable
Coral triangle mean
(SD)

Non-coral triangle
mean (SD) Z Prob > |Z|

Resistance
variables

Resistance
variables

Resistance
variables

Resistance
variables

Resistance
variables

Resistance, CTA 1.38 (0.23) 0.83 (0.22) 7.5 <.0001
Resistance, CE 1.42 (0.27) 1.03 (0.26) 5.7 <.0001
Temperature
variables

Temperature
variables

Temperature
variables

Temperature
variables

Temperature
variables

Mean sea-surface
temperature

28.93 (0.44) 27.57 (1.16) 6.3 <.0001

Kurtosis 0.05 (0.31) -0.70 (0.49) 6.3 <.0001
Skewness -0.48 (0.19) 0.03 (0.27) -7.3 <.0001
Cumulative DHM 43.10 (4.30) 18.80 (7.40) 8.3 <.0001
Coral community
variables

Coral community
variables

Coral community
variables

Coral community
variables

Coral community
variables

Hard coral cover,
%

43.65 (21.59) 43.75 (21.64) 0.2 NS

Number of coral
taxa

21.26 (5.78) 18.18 (7.16) 2.5 0.01

Community Axis
1

-0.11 (0.78) 0.02 (0.76) -1.0 NS

Community Axis
2

-0.17 (0.39) 0.02 (0.74) -0.4 NS
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Variable
Coral triangle mean
(SD)

Non-coral triangle
mean (SD) Z Prob > |Z|

Community
bleaching
susceptibility, %

27.34 (2.69) 27.98 (2.43) -1.4 NS

Coral bleaching Coral bleaching Coral bleaching Coral bleaching Coral bleaching
Bleached colonies,
%

39.78 (25.11) 59.71 (28.60) -3.4 0.0007

Bleaching
intensity, %

15.20 (13.13) 28.19 (17.13) -3.6 0.0003

Acropora, % 43.33 (30.03) 60.86 (34.36) -2.7 0.008
Montipora, % 32.85 (24.31) 59.98 (40.17) -2.8 0.005
Pocillopora, % 59.32 (35.88) 71.62 (36.29) -1.9 0.05
Porites
branching, %

19.38 (29.48) 54.12 (38.41) -3.6 0.0003

Porites massive,
%

26.36 (27.65) 53.84 (34.44) -3.8 0.0002

Figures
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Figure 1. Evaluating coral reef resistance to the 2016 El Niño thermal anomaly . (a) Resistance is a
metric for measuring the capacity of coral reefs to resist bleaching, estimated from exposure to environmental
stress divided by ecological sensitivity. (b) Map of 226 Indo-Pacific coral reefs showing resistance calculated
using a cumulative thermal anomaly (CTA) exposure model and (c) using a multivariate climate exposure
(CE) model. Coloured dots show resistance; background shading represents chronic heat stress, evaluated as
cumulative degree heating months (DHM) between 1982 and 2016 estimated from satellite data.
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Figure 2. Temperature distributions, exposure, and coral resistance. The (a) density of tempera-
ture distributions of the 27 sites in and 199 sites outside the Coral Triangle based on monthly temperatures
from 1985 to 2015. (b) Resistance as a function of the cumulative thermal anomaly (CTA) exposure model,
and (c) resistance as a function of the multivariate climate exposure (CE) model in and outside the Coral Tri-
angle. MMM = mean monthly summer maximum temperatures and CTA = cumulative thermal anomalies
based on the cumulative degree heating months.
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Figure 3. Scatterplots between the three sea-surface temperature metrics. Relationships between
mean SST, kurtosis, and skewness variables used to test the factors influencing resistance models based on
226 study sites.

Figure 4. Community correspondence analysis (CCA) of the coral communities in and out of the Coral
Triangle region. Summary of the two axes and comparison between the Coral and non-Coral Triangle are
presented in Table 2 and not statistically different.

Supplementary Figure 1 . Density plots showing the distribution of (a) the two exposure models, (b) the
two metrics of ecological sensitivity, and (c) the two resistance models calculated from each exposure model.
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Percent bleaching was used as the ecological sensitivity metric in each resistance model. Density plots show
values from the 226 sites included in this study from 12 countries across the Indo-Pacific.
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