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Abstract

Sensitivity analysis (SA) for the influence of model parametric constants has been integral in the use of mathematical kinetic
models for design and operation of various anaerobic digestion applications. Using Anaerobic Digestion Model No. 1 (ADM1)
as case study, this work aimed to broaden the approach for SA on the time-dependent model outputs of anaerobic digestion
models by demonstrating the use of functional principal component analysis (fPCA) scores as input analysis variables into global
SA (GSA) for the influence of stoichiometric parameters in ADM1. The methodology involved the following: Morris’ screening
design as the GSA technique; ADM1 biomass yield and product yield coefficients as GSA parameters; and ADM1 outputs
transformation via fPCA to generate principal component (PC) scores for GSA. Results indicate that 95-99% of the variations
in the time-dependent outputs can be captured by the PCs after fPCA transformation, and that the first PC is sufficient to
represent the model outputs. Ranked Morris sensitivity indices calculated from the first PC scores revealed the stoichiometric
parameters that dominantly affect kinetic responses and those that are least sensitive. The ranking of stoichiometric sensitivities
can be used for various purposes including driving mechanisms identification, and mathematical model modification.

1. INTRODUCTION

Anaerobic digestion (aka. digestion) is a treatment bioprocess that uses a consortium of anaerobic microor-
ganisms to treat the organic fraction of wastewaters via a stepwise degradation pathway through volatile
organic acids into the primary end-products of methane and carbon dioxide (biogas), which can fuel electric
generators, cookers, boilers, and/or heaters [1-3]. Digester performance can vary dramatically based on the
composition of the wastewater influent and/or digestion operating conditions employed [2, 4]. Hence, any
refinement of models that are capable of predicting both technical and economic performance are of great
value to designers and operators considering options for both waste treatment and power generation using
digestion.

Mathematical models have been instrumental in research and development of many bioprocesses. A conse-
quence of the accumulation of findings on modeled processes and of elucidation of the fundamental structures
of underlying mechanisms is the transformation of simple models into complex mathematical systems [5].
Application dictates how these models are manipulated: (1) fast responding models, which usually are the
simple models, are preferred in process control [6]; (2) complex models are preferred during process and sys-
tem design [7]; and (3) varying model complexities are typically encountered during parameter calibration
with empirical data [8]. Thus, model reduction techniques are essential in using complex bioprocess models
into specific types of applications [8, 9]. Closely related and often times inherent to model formulation and
reduction problems is sensitivity analysis (SA) [10, 11]. SA measures how sensitive model outputs are to
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perturbation of inputs (initial conditions, external forcing factors, model parameters, etc.) [11], which lends
itself as a computational technique for uncertainty analysis, model calibration, model diagnostic evaluation,
and surrogate model formulation [10]. The following SA techniques have been implemented in biological
wastewater treatment models (anaerobic digestion and activated sludge): derivative-based local sensitivity
analysis [6, 12-14], factorial sensitivity analysis [15], Standard Regression Coefficient (SRC) [16, 17], Morris
screening method [18], and Extended Fourier Amplitude Sensitivity Testing (Extended-FAST) method [18].
At the center of these methods are Monte-Carlo type simulations of a model subjected to input perturbations,
hence, simulating various response levels of model outputs [16]. These previous works dealt directly with
the time-dependent model outputs – an approach that may be unsatisfactory due to the following reasons:
(1) the SA input variables (time-dependent model outputs) are highly correlated with one another, (2) the
pointwise (timewise) results can be difficult to interpret for the underlying physical or modelling problem,
and (3) the different simulation runs may not generate outputs at the same points [19]. Others have tried to
overcome the time-varying character of sensitivity indices by computing the overall average of the time-series
sensitivity indices [20]. An alternative approach mathematically demonstrated by Campbell, McKay and
Williams [19] is for the time-dependent outputs to be transformed into an appropriate functional coordinate
system to generate a new set of functional representation (basis functions) that includes time-independent
representation, e.g., coefficients of the set of basis functions . This concept and associated mathematical
technique [19] was adopted by Sumner, Shephard and Bogle [21] to address the need for SA of time-dependent
outputs in bioprocess modelling. The approach combines global sensitivity analysis (GSA) with functional
principal component analysis (fPCA), which results into performing SA on the coefficients (scores) of the
basis functions, also called functional principal components (PCs) derived from the model outputs. An
overview of the methodology is schematically depicted in Figure 1. An advantage of this fPCA transfor-
mation over the typical averaging of sensitivity indices is the quantification of the time-dependent outputs
variations captured by the PCs prior to the calculation of the sensitivity indices using the time-independent
PC scores [19, 21].

This work demonstrates a GSA-fPCA approach in the area of anaerobic digestion kinetics modelling and
simulation. The approach combined fPCA with conventional global SA (Morris’ technique) with the intent
of establishing a comprehensive GSA for this particular bioprocess application. Of the many possible kinetic
models for anaerobic digestion available in the literature, the Anaerobic Digestion Model No. 1 (ADM1) [22]
was chosen due to its standardized consolidation of kinetic data from multitudes of research works, and for
its complexity in terms of the integrated differential and algebraic equations, and of the nonlinear relations of
model parameters. ADM1 describes the dynamics of 24 biochemical species (time-dependent) and 19 biocon-
version processes together with key physico-chemical processes such as liquid-liquid and liquid-gas processes.
The model can be implemented as systems of differential equations (DEs) or of differential-algebraic equa-
tions (DAEs) depending on how the acid-base reactions are computationally expressed. Though complex,
this model does not necessarily describe all the mechanisms involved in anaerobic digestion, and calibration
and validation of model parameters are required to achieve sufficient accuracy for application to specific
feedstocks and operating condition [22]. The ADM1 parameters are grouped into three categories: (1)
stoichiometric parameters, (2) kinetic parameters, and (3) physico-chemical parameters. ADM1 has been
successfully used to model and simulate digestion of sewage sludge [7, 23-25], agricultural biomass [26-28],
food waste [29], and municipal solid wastes at industrial-scale co-digestion [30]. More works are being per-
formed for the extension of model database via constants calibration on new substrates [31-33], and process
conditions [30, 34]. For these reasons, ADM1 was an appropriate benchmark model for the proof-of-concept,
i.e., the success of GSA-fPCA approach in a mathematically complex digestion model (ADM1) should be an
indication of its capability to handle SA on simpler or similarly complex mathematical models on digestion.

The main objective of this study is to demonstrate a comprehensive approach of GSA for anaerobic diges-
tion models through aggregation of time-dependent response patterns into time-independent coefficients of
functional PCs combined with a traditional GSA (Morris’ technique). The GSA is implemented on the 24
biochemical time-dependent outputs of ADM1 as influenced by 22 stoichiometric parameters through the
transformation of the model outputs into functional principal components (PCs) and their associated scores.
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The PC scores were then used as inputs for the GSA for the calculation of sensitivity indices. This work
intends to broaden the knowledge area for SA methodologies on ADM1 and other digestion kinetics mod-
els by demonstrating a GSA-fPCA approach and its implications in computational modelling of anaerobic
digestion systems.

2. METHODOLOGY

The implementation of GSA-fPCA on ADM1 is schematically depicted in Figure 1.
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Figure 1. Overview of the GSA-fPCA approach implemented for the sensitivity analysis of stoichiometric
parameters of ADM1.
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2.1 The ADM1

ADM1 could be represented as a model of the formy (t) = F (u,P, t), wherey (t) are the N time-dependent
response curves, u are external model inputs, P is the kparameters vector, i.e.,P = (p1, p2, . . . , pk), and
F consists mainly of a system of differential and algebraic equations that are highly nonlinear in terms of P.
The details on the implemented DAE for ADM1 are summarized in the supplementary material. The default
mass basis was kilograms chemical oxygen demand (kg-COD), the volume basis was metric (m3), and the time
basis was in days (d). All of the biochemical, physico-chemical, and mass transfer components in the ADM1
were included in the computational algorithm as all of these components have some dependencies on one
another, but only the 24 biochemical responses were included in the GSA. Specifically, the target responses
for GSA were:y∗ (t) = [Ssu(t),Saa(t), Sfa(t), Sva(t),Sbu(t), Spro(t), Sac(t),Sh2(t), Sch4(t), SIC(t),SIN(t), SI(t),
Xc(t), Xch(t),Xpr(t), Xli (t),Xsu(t), Xaa(t), Xfa(t),Xc4(t), Xpro(t), Xac (t),Xh2(t), XI(t)]. The S’s are the
soluble components and the X’s are the particulate components with units expressed as kg-COD/m3. See
Nomenclature section for definitions of model outputs y∗ (t). Among all model parameters, only the 22
stoichiometric parameters were used for this study. They were of two types: fprod,subs, which are the
product yield coefficients from specific substrates and are of no units (dimensionless); and Ysubs, which are
the biomass yield coefficients from specific substrates and with units expressed as kg-COD/kg-COD. These
were: P∗ = [ffa,li, fva,aa, fbu,su, fbu,aa,fpro,su, fpro,aa, fac,su, fac,aa,fh2,su, fh2,aa, fxI,xc, fsI,xc,fpr,xc, fch,xc,
fli,xc, Yaa,Ysu, Yc4, Yfa, Ypro,Yac, Yh2]. The P∗sampling band was set within ±30% of the suggested nominal
levels (Table 1) to emulate the common parameter variation levels suggested in the ADM1 literature [22].
The other model parameters were set their nominal values (see supplementary material). The notations were
chosen to be consistent with the nomenclature in the ADM1 literature. The ADM1 model implementation
was based on the digestion conditions, hence modelling conditions, in the work of Demitry [35] which focused
on the co-digestion of municipal sewage sludge and bakery waste, and on the use of ADM1 as modelling
platform [36, 37]. Specifically, the levels of initial conditions for the state variables were used to emulate the
feedstock characteristics in the said previous work [35]. This case study system was chosen with the intent
of demonstrating the various aspects of the GSA-fPCA approach. The period for simulation runs was set to
30 days to capture the transitional behavior from initial conditions to steady state conditions in the system.

Table 1. ADM1 stoichiometric parameters used for the GSA implementation.

Parameter Coefficient Definition Nominal Nominal (-) 30% Nominal (+) 30%

ffa,li Fatty acids from lipids 0.95 0.910+ 0.980+
fva,aa Valerate from amino acids 0.23 0.16 0.30
fbu,su Butyrate from sugars 0.13 0.09 0.17
fbu,aa Butyrate from amino acids 0.26 0.18 0.34
fpro,su Propionate from sugars 0.27 0.18 0.35
fpro,aa Propionate from amino acids 0.05 0.03 0.07
fac,su Acetate from sugars 0.41 0.28 0.53
fac,aa Acetate from amino acids 0.40 0.28 0.53
fh2,su Hydrogen from sugars 0.19 0.13 0.25
fh2,aa Hydrogen from amino acids 0.06 0.04 0.08
fxI,xc Particulate inerts from composites 0.25 0.18 0.32
fsI,xc Soluble inerts from composites 0.10 0.07 0.13
fpr,xc Proteins from composites 0.20 0.14 0.26
fch,xc Carbohydrates from composites 0.20 0.14 0.26
fli,xc Lipids from composites 0.25 0.18 0.32
Yaa Biomass from amino acids 0.08 0.06 0.10
Ysu Biomass from sugars 0.10 0.07 0.13
Yc4 Biomass from butyrate and valerate 0.06 0.04 0.08
Yfa Biomass from fatty acids 0.06 0.04 0.08
Ypro Biomass from propionate 0.04 0.02 0.05
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Parameter Coefficient Definition Nominal Nominal (-) 30% Nominal (+) 30%

Yac Biomass from acetate 0.05 0.03 0.07
Yh2 Biomass from hydrogen 0.06 0.04 0.08

+The ±30% variation constraint was not applied. Batstone, Keller, Angelidaki, Kalyuzhnyi, Pavaostathis,
Rozzi, Sanders, Seigrist and Vavilin [22] noted that the typical range is 0.91-0.98 depending on the LCFA
chain length.

2.2 Functional Principal Component Analysis (fPCA)

The N time-dependent model outputs y(t) may be projected into some familiar functional expansions, and
this study used functional bases computed through fPCA. The y(t) components are usually smoothed as
spline curves using n samples from the time-series results of model simulation. The fPCs are specifically
adapted to maximize the variance of the data projection onto the first basis vector, then to the spanned first
and second basis vector, and so on, resulting into information aggregation through the first few PCs [19].
This approach considers time-series data as a function rather than discrete measurements. The PCs may be
interpreted as a set of curves of the formξ (t) = (ξ1 (t) , ξ2 (t) , . . . , ξq (t))such that each model output yi (t)
can be expressed as:

yi (t) =
∑q
j=1 ωijξj (t); for i = 1, . . . , N(1)

where ωij is the score for the model output i on the jth PC. The PC score (ωij) captures how much of
the model response yi (t) is represented in the basis function ξj (t)[21]. The ωij’s, therefore, are satisfactory
measures of the aggregate behavior of the model outputs, and are appropriate analysis inputs for global
SA [19]. For simplicity of GSA, the units of y(t), which were in kg-COD/m3, have been assumed to be
associated with theξ (t), so the ωij’s were dimensionless.

2.3 Global Sensitivity Analysis (GSA)

The GSA was the start and the end of the SA methodology (Figure 1). At the beginning, GSA set the
level combinations of the k∗ target parameters (P∗) , using an assignment approach, which is dependent
on a particular GSA technique. This generated a design of experiment (DOE) for theP∗ that were then
used to solve the ADM1 DAEs and to generate the responses that were eventually transformed via fPCA
to determine the ωij’s. After these intermediate steps, the ωij’s were passed back to the GSA technique to
analyze the ωij’s dataset against the DOE of P∗, hence, determining the SA indices. The GSA used in this
study was the Morris’ screening design.

Morris’ technique works on the evaluation of the elementary effect (EEd, ij ) of the dth parameter defined as
follows [38, 39].

EEd, ij (P∗) =
[ωij(p1,...,pd−1,pd+,pd+1,...,pk∗)−ωij(P

∗)]
(
σpd
σω

)
(2)

For each input, a number of incremental ratios called Elementary Effects (EE’s) were calculated from which
statistics are calculated to be aggregate measures, hence, global sensitivities. The is selected such that
P∗ + is still in the set of the allowable values of the k∗ parameters [38]. This EEd, ijequation incorporates
a scaling factor, which is the ratio of the standard deviations of the model output (in this case the PC
scores),σω, and of the dth parameter,σpd. Scaling of the DOE levels ofP∗ after building the design and
before computing the EE’s is necessary to eliminate the influence of step size on the sensitivity results
especially when the parameter values are very small [39]. Changing for each pd by r times generates a
DOE containingP∗1, . . . , P∗r . The simulation of the ADM1 model using these randomly sampled parameter
values emulate a Monte-Carlo simulation, which has been the main approach in generating time-dependent
outputs for SA of several wastewater treatment models [16, 18, 20]. The ADM1 model simulation using the
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P∗ DOE followed by the transformation ofy∗ (t) to PCs and calculation of elementary effects consequently
result to a finite distribution ofEEd, ij values that can be aggregated using statistics. Hence, Morris method
requires only r (k∗ + 1) model runs to generate r EE’s for each of the k∗parameters.[40] The rtrajectories
for the various ’s are randomly assigned; hence, the calculated EE’s are random samples [38]. The mean
of the absolute values of the elementary effects (µ∗), and standard deviation of the elementary effects (σ)
are unbiased estimators, which are meaningful indices for SA [40]. The aggregation of local indices through
these estimators makes the Morris technique a global SA. A high level of µ∗ indicates high overall effect of
the dth parameter on theith model output as represented by the jthPC. The relative values of µ∗’s for the k∗
parameters are used to rank the parameters for their influence on theωij and hence on the yi (t). A relatively
high level of σ indicates a parameter with significant interactions with other parameters. As demonstrated by
Sin, Gernaey, Neumann, van Loosdrecht and Gujer [16], ranking of sensitivity indices has been a convenient
way of reporting GSA results due to the need to identify the most sensitive and least sensitive parameters.

µ∗ =
∑

r|EEd, ij |
r (3)

µ =
∑

r EEd, ij

r (4)

σ =
√

1
r

∑
r (EEd, ij − µ)

2(5)

2.4 Computational Implementation

All computational works were implemented using the open-source R statistical software (version 3.2). The
Morris’ screening design for GSA was performed using the ‘morris()’ function from the ‘sensitivity’[41] R-
package (version 1.15) with the following arguments: r (varied) = 20, 50, 100; levels = 6; grid jump =
3; scaled = TRUE. The GSA parameters were the 22 stoichiometric coefficients of ADM1 defined above
asP∗. Morris technique randomly generated the various parameter combinations (hence trajectories) to
create the design of experiments (DOE) for the SA. Ten random number generator seeds were used through
the ‘set.seed()’ function for each set of experiments to facilitate randomization of the r trajectories. After
the DOE of the stoichiometric parameters, i.e., a set of P∗’s, was generated, the ADM1 was simulated
using the ‘ode()’ function from the ‘deSolve’[42] R-package (version 1.20). The simulation was set from 0-30
days of digestion, andn = 100 equally-spaced data samples were taken from each response variable in y(t).
The simulation results on the 24 biochemical responses, i.e.,y∗ (t) , were transformed via fPCA. fPCA was
performed using the functions from the ‘fda’[43] R-package (version 2.4.7). This fPCA step generated the
PC scores (ωij’s) on all the target ADM1 outputs. Finally, the scores were analyzed against the DOE of P∗

via analysis of the EE’s through the ‘morris()’ function. The Morris GSA indices were theµ∗and σ of the
EE’s. The program script written for the execution of these steps is in the supplementary material.

3. RESULTS

The analysis results started with the transformation of model outputsy∗ (t) to PCs (Figure 2) followed by
the calculation of the µ∗ (Figure 3 & Figure 4) and σ (Figure 5 & Figure 6). Finally, the parameters
were ranked for their influence on the model outputs based on µ∗ (Figure 7) and σ (Figure 8). Several
intermediate results (ADM1 time-dependent output series as graphs, fPCA curves as graphs, and tabulated
values of graphical results presented below) are summarized in the supplementary material. The GSA
experiments were completed in approximately two days using a desktop computer. Though the GSA-fPCA
approach was implemented with varyingr (20, 50, 100), the results used for discussion are fromr = 100,
which produced improved convergence of values. The results from all three r levels are summarized in the
supplementary material.

3.1 Model Outputs Transformation to PCs

The strategy for the use of the ωij’s as inputs for the elementary effects analysis in the Morris’ technique
is predicated on the assumption that the jth PC captures most of the variations in the time-dependent
model outputs. The reliability of this transformation must be examined prior to the analysis of the SA
indices. Figure 2 shows the percentages of variations in the biochemical time-dependent outputs of ADM1
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as captured by the first three principal components (PC1, PC2 & PC3). These components captured more
than 99% of the total variations in all of the model outputs. Notably, the PC1 captured between 95 to 99%
of the variations. This warranted the use of PC1 (hence ωi1’s) as the fPCA component representing the
variations of the target model outputsy∗ (t) in the computation of the SA indices.

Figure 2. The first three functional principal components (PC1, PC2 & PC3) as transformations of the
biochemical dynamical outputs in ADM1. The boxplots represent the values distribution from the analyses
performed using ten different seeds for random number generator that perturbed the Morris screening design.

3.2 Sensitivity Indices on Stoichiometric Parameters

After verifying that the PC1 was sufficient enough to represent the variations in the target model outputs
(Figure 2), the PC1 scoresωi1’s were passed to the fPCA step for the calculation of the µ∗ and σ for each
parameter inP∗ for every target model output iny∗ (t). Figure 3 and Figure 4 show theµ∗ results for the
S and the X components, respectively. In general, some parameters consistently standout from the others
across the model outputs (Figure 3a-3k; Figure 4a, 4g-4k) while some parameters become significant only in
few model outputs (Figure 3l; Figure 4b-4f, 4l). The range of µ∗ levels varies across the model outputs due
to the direct relationship of the ωi1’s with the levels of the time-dependent model outputs y∗ (t). Theωi1’s
are high when the levels of yi (t)are high; otherwise ωi1’s are low. This behavior is unique to each model
formulation. However, the ranking for the influence of parameters on the model outputs is implemented on
the elementary effects of the parameters within each model output (S or X). The parameters ranking in a
model output is compared with the parameters ranking associated with other model outputs. This approach
results in a summary of the various rankings of the parameters on their influence on various model outputs.
Figure 7 shows the rankings summary of theP∗ parameters based on the PC1 µ∗.

Figure 5 and Figure 6 show the σ results for the S and the X components, respectively. Unlike the µ∗ that
measures significance of influence on model output, σ measures the non-linear effect of the parameter on
the mode output or the interaction effect of the parameter with other model parameters. The σsignifies the
possibility of significant interaction effects with other parameters, but it does not indicate which parameters
are interacting. In general, most of the parameters exhibit consistent rank across the model outputs based
on PC1 σ (Figure 8

8
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Figure 3. Mean absolute values (μ*) of the first principal component (PC1) elementary effects for the
influence of the stoichiometric parameters on the solubles (S’s) time-dependent outputs in ADM1. The
boxplots represent the values distribution from the analyses performed using ten different seeds for random
number generator that perturbed the Morris screening design

Figure 4. Mean absolute values (μ*) of the first principal component (PC1) elementary effects for the
influence of the stoichiometric parameters on the particulates (X’s) time-dependent outputs in ADM1. The
boxplots represent the values distribution from the analyses performed using ten different seeds for random
number generator that perturbed the Morris screening design.
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Figure 5. Standard deviations (σ) of the first principal component (PC1) elementary effects for the influence
of the stoichiometric parameters on the solubles (S’s) time-dependent outputs in ADM1. The boxplots
represent the values distribution from the analyses performed using ten different seeds for random number
generator that perturbed the Morris screening design.

Figure 6. Standard deviations (σ) of the first principal component (PC1) elementary effects for the influence
of the stoichiometric parameters on the particulates (X’s) time-dependent outputs in ADM1. The boxplots
represent the values distribution from the analyses performed using ten different seeds for random number
generator that perturbed the Morris screening design.
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Figure 7. Ranking of the ADM1 stoichiometric parameters (p) for their influence on the time-dependent
outputs (S or X) based on the overall mean absolute value (μ*) of elementary effects in the first principal
component (PC1) scores. A high level of the mean (hence rank) indicates high overall effect of a parameter
on a model output. High rank – low number in matrix grid.

Figure 8. Ranking of the pooled standard deviations (σ) of the elementary effects of each parameter (p)

11
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influencing the ADM1 time-dependent outputs (S or X). A relatively high standard deviation value (hence
rank) indicates a parameter with significant interactions with other parameters. High rank – low number in
matrix grid.

4. DISCUSSION

In this work, a data projection approach for the sensitivity analysis of time-dependent outputs in anaerobic
digestion models has been demonstrated with the goal of establishing a response pattern aggregation tech-
nique to address the issue of time-varying character of SA indices. The approach integrates basis function
representation via fPCA with traditional GSA (Morris’ technique) to remove the time-varying character
of SA indices. Removing the time-varying character of the sensitivity indices has been a key step in the
interpretation of GSA results, and this has been typically achieved by calculating the grand average of the
time-series indices [20]. An alternative approach proposed in this work is GSA-fPCA, which accounts for
the amount of variation being captured via time-independent coefficients (PC scores) that aggregately mea-
sure the curvatures of the original time-series outputs. It is shown in this work has shown that the use of
functional PCs as the projection functions for the transformation of the time-dependent variables into time-
independent coefficients (PC scores) is valid for a complex digestion kinetics model such as ADM1. This
projection via fPCA essentially reduces the dimensionality of the model output yi (t) from the n time-series
samples to a single jth PC score ωij in each of theN responses for each simulation. The PC1 has captured
most of the variations (95-99%) in the target model outputs (Figure 2) indicating that fPCA can successfully
transform model outputs and aggregate curve patterns into a simple measure (ωij). This warrants the claim
that fPCA may successfully reduce the dimensionality of a dataset prior to other data analysis steps such as
GSA.

The ADM1 stoichiometric parameters, among all model parameters, have been chosen for this work due
to their significance to the mass conversion kinetics in digestion, i.e., they indicate the mass flow profile of
various organics in the digestion process. Thefprod,subs coefficients measure the tendencies of the organics
to be converted to extracellular products. The Ysubscoefficients, on the other hand, measure the tendencies
of the organics to be assimilated by the anaerobes and be metabolically incorporated as intracellular struc-
ture. Findings about the sensitivities of variables of interest, such as methane production, to stoichiometric
coefficients may show digestion pathways that significantly influence the process variables of interest. For
example, consider the parameters ranking under the state variable for soluble methane (Sch4) based onµ∗ as
shown in Figure 7. The results indicate that Sch4kinetics is greatly influenced by the conversions of (ranks
1 to 5, respectively) sugars to hydrogen (fh2,su), sugars to acetic acid (fac,su), acetic acid to biomass (Yac),
sugars to butyric acid (fbu,su), and amino acids to butyric acid (fbu,aa). Interestingly, these parameters
have been ranked on the same order under Sch4 based on the σ (Figure 8), which indicates their degree of
interaction with other parameters in the model. This means that the stoichiometric parameters on whichSch4
is highly sensitive are the parameters that have strong interaction with other stoichiometric parameters in
the model. In a model-formulation perspective, the ranking results based on µ∗are supported by the ranking
results based on σ. That is, include these stoichiometric parameters (digestion pathways) in the model not
only because they significantly influence the target state variable (Sch4), but also because they exhibit strong
interaction effects with other model parameters. The high-rank (low-numbered) parameters also imply the
biological mechanisms that drive the digestion system.

As much as results of high-sensitivity parameters are important, the results on low-sensitivity parameters
may also imply some key refinements on theoretical and practical aspects of digestion modelling. Consider
again the parameters ranking under Sch4 (Figure 7). Starting from the bottom of the parameters ranking,
Sch4 is least sensitive to the conversions of (ranks 22 up to 18, respectively) amino acids to propionic acid
(fpro,aa), amino acids to biomass (Yaa), composites to soluble inerts (fxI,xc), composites to proteins (fpr,xc),
and combined butyric and valeric acids to biomass (Yc4). In modelling perspective, these least sensitive
parameters may not need calibration during data fitting into the mathematical model. These can then
be (1) fixed to the nominal values suggested in literature such as those in the standard ADM1 [22], or (2)
discarded from the model since the underlying mechanism they describe are not so influential to the behavior

12



P
os

te
d

on
A

u
th

or
ea

20
F

eb
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

22
13

21
.1

96
87

75
0

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

of the system. Model fitting through regression is not within the scope of this study, so approach (1) is not
discussed in this work. Nonetheless, a consequence of approach (2) has been evaluated through a simple
modification of the computational algorithm from the GSA work, and the results are shown in Figure 9,
which shows the changes on Sch4 as ADM1 model parameters that are least sensitive are zeroed starting from
the 22nd up to the 15th rank. Zeroing the model parameters means excluding the mass conversion mechanism
represented by those parameters. As the parameters are eliminated, Sch4 is gradually being underestimated
(Figure 9b). The simulation error (Figure 9a) can be interpreted as the error the regression algorithm
must minimize as the remaining parameters are calibrated. This approach (2) is how model reduction is
implemented, i.e., the mathematical model is modified by removing (in this case, zeroing) the factors that may
be considered non-influential and the remaining model parameters are adjusted to minimize the error between
the fitted values and the measurement data. The reduced model may be a more accurate representation
of the system mechanisms for further study such as estimation of optimum operating conditions targeted
for methane or hydrogen production. In practical aspect, model reduction has several advantages including
reduction of the cost of monitoring in a process control system by eliminating unnecessary measurements.
That is, if a conversion mechanism is insensitive to critical variables such as organic acids (short-chain or
long-chain) concentration in the digester, the variables related to that mechanism may be ignored, hence, not
measured. For example in Figure 7, all of the product yield coefficients using composites as substrate (fxI,xc,
fsI,xc, fpr,xc, fch,xc,fli,xc, , ) are low-rank parameters when considering the organic acids concentration (Sac,
Spro,Sbu, Sva, Sfa), and the organic acids degraders (Xac, Xpro,Xc4, Xfa). Hence, the composites (Xc), which
are the decayed anaerobic microorganisms is not critical variable for control of organic acids concentration.
Approach (2) shall complement other techniques being developed towards a systematic way of simplifying
complex digestion mathematical models.[8]
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Figure 9. Sample results on the ADM1 model reduction by successive elimination (zeroing) of the stoichio-
metric parameters under soluble methane state variable starting from the least sensitive parameter going up
the ranking (s:22nd up to z:15thrank).

An interesting comparative view of parameter influences can be made when the sensitivities of all the
target biochemical state variables on the stoichiometric coefficients are calculated, ranked, and summarized
according to Figure 7 and Figure 8. There are parameters that dominantly influence most of the state
variables (Figure 7): fh2,su,fac,su, Yac, fbu,su, fbu,aa,ffa,li, etc. These same parameters are significantly
interacting with other stoichiometric parameters in almost all of the state variables based on the rankings
in Figure 8. There are some parameters that are very influential on the certain state variables. Take for
example the parameter for conversion of amino acids to biomass (Yaa), which is high-rank parameter under
soluble amino acids Saa and under amino acid degraders (Xaa), but is a low-rank parameter in other state
variables. This is reasonable since they are directly related. That is, if the Yaa is low (allowed to fluctuate
from lower bound to upper bound levels during GSA) then there are lower amounts of amino acids degraded
and assimilated as biomass resulting to lowerXaa, and higher Saa. The reverse of this relation is also true,
i.e., higher Yaa means higherXaa and lower Saa. This apparent diversion and conservation of mass is due
to the imposed balancing of COD (kg-COD/m3) in the ADM1, which has been standardized on the mass
balance of organics (as COD) in digestion. The above discussions on how the results may be interpreted and
used aim to put into perspective the potential of the GSA-fPCA methodology in broadening the techniques
on SA for anaerobic digestion models. SA has always been integral in digestion kinetics modelling and
parameter estimation.

The GSA method (Morris’) used in this work is one of many that can be used for ADM1 and other biopro-
cessing kinetics models. Morris’ technique, however, has been tested as a practical approach for parameters
SA of bioprocess models that include many parameters that are nonlinearly related to the variables of inter-
est [21]. It has also been used for GSA of models on chemical reaction for dimethylsulphide (DMS), which is
a gas involved in climate change [40]; on human insulin signaling pathway [21]; on urban water supply yield
[44]; and on whole-year dynamics of grasslands [45]. These studies have shown that Morris’ technique is at
par with other GSA methods. An aspect of the Morris’ technique that has been emphasized in this work is
the randomization of the parameter sampling trajectories by setting unique random number generator seed
for each set of r elementary effects. This randomization improves the coverage of the trajectories in the
sampling space of all the parameters under study. This ensures that many combinations of parameter levels
have been accounted, hence, model responses have exhibited multitudes of possible patterns. Though this
work focused only on Morris’ technique as the GSA method, others may be amenable to integration with
fPCA as demonstrated by Sumner, Shephard and Bogle [21] on integrating fPCA with the Sobol method.
Though Morris’ requires fewer model evaluations, it is still at par with Sobol method which requires signif-
icantly more model evaluations (In the work by Sumner, Shephard and Bogle [21]: 15min for Morris’ and
1.06 days for Sobol to achieve the same level analysis). Integrating fPCA with previously explored GSA for
biological wastewater treatment models such as Extended-FAST and SRC may also worth considering.

Using GSA-fPCA approach on ADM1 as demonstrated in this work, other SA problems related to digestion
kinetics may be addressed via similar computational technique. For example, the kinetic and physico-
chemical parameters such as rate constants, inhibition constants, temperature, and pH may be subject to
GSA for their influence on the time-dependent outputs. Moreover, though the focus of the work has been
on parameter sensitivities, the GSA-fPCA approach may also be used for sensitivities on initial conditions,
which are properties of the incoming feedstock stream in digestion. That is, allow the initial values of the
S’s and the X’s to fluctuate within specified ranges and evaluate their elementary effects on their time-series
values (transformed via fPCA). This is a reasonable analysis problem when testing for the robustness of a
digestion setup with high chances of variations in the incoming organic feedstock. Examples of highly-varied
feedstocks are organic wastes that are not homogenized in bulk amounts prior to digestion, and feedstocks
that temporally vary due to external factors. Digestion stability analysis has been the concern in some appli-
cations of digestion models and actual setups [35]. The GSA-fPCA methodology may also be implemented
to systems that include digestion-related processes such as activated sludge process in wastewater treatment.
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A series of standard mathematical models as rigorous as the ADM1 related to wastewater are the Acti-
vated Sludge Models (ASM1, ASM2, ASM2d, and ASM3). These have been implemented as ADM1-coupled
mathematical models to simulate and study aerobic sludge-asnaerobic digestion systems [46-48]. Evaluating
them within the context of SA by subjecting them under GSA-fPCA approach may elucidate patterns only
obvious under a systematic GSA methodology.

5. CONCLUSIONS

A comprehensive GSA on a complex and computationally demanding mathematical model can systematically
elucidate pertinent model behaviors. In this work, the combination of the conventional GSA Morris’ screening
technique with functional PCA has been implemented to evaluate the influences of stoichiometric parameters
on the state variables in the standard model ADM1 describing anaerobic digestion kinetics. The GSA-fPCA
eliminates the time-varying character of sensitivity indices allowing improved interpretability of GSA indices
and accounting for the amount of variations being captured for indices calculations. Functional PCA can
capture most of the variabilities of the time-dependent model responses (95-99%) through the first few
PCs resulting into a reliable responses projection into time-independent PC scores. Using these PC scores
for elementary effects evaluation that are eventually aggregated through statistics essentially determines
global sensitivities of the PC scores, hence model responses, to the fluctuations of stoichiometric parameters.
The ranking of stoichiometric sensitivities can be used for various purposes including driving mechanisms
identification, and mathematical model modification. This GSA-fPCA approach may be extended to other
bioprocesses modeled as time-dependent dynamical kinetics to perform comprehensive numerical sensitivity
analysis of model parameters. Depending on the application, these models are manipulated to be fast
responding models, which usually are the simple models, preferred in process control; or to be complex models
preferred during process and system design; or to be at varying model complexities such as those typically
encountered during parameter calibration with empirical data. In any of these cases, GSA-fPCA offers
the advantage of calculating time-independent sensitivity indices amenable to ranking of model parameters
while being able to account for the amount of variations of the original time-dependent model outputs being
captured by the first few PCs as basis function projections.
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APPENDIX

See supporting information (SI) for details of the GSA-fPCA on ADM1 model and for samples of intermediate
results.

NOMENCLATURE

Ssu Monosaccharides

Saa Amino acids

Sfa Long chain fatty acids

Sva Total valerate

Sbu Total butyrate

Spro Total propionate

Sac Total acetate

Sh2 Soluble hydrogen
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Sch4 Soluble methane

SIC Inorganic carbon

SIN Inorganic nitrogen

SI Soluble inerts

Xc Composites

Xch Carbohydrates

Xpr Proteins

Xli Lipids

Xsu Sugar degraders

Xaa Amino acid degraders

Xfa LCFA degraders

Xc4 Valerate & butyrate degradersXpro Propionate degraders

Xac Acetate degraders

Xh2 Hydrogen degraders

XI Particulate inerts

fprod,subs product yield coefficients from specific substrates (‘dimensionless)Ysubs, biomass yield coefficients
from specific substrates (kg-COD/kg-COD)
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