Zero-Hopf Bifurcations and chaos of quadratic jerk systems

Bo Sang ${ }^{1}$, Rizgar Salih ${ }^{2}$, and Ning Wang ${ }^{3}$

${ }^{1}$ Liaocheng university
${ }^{2}$ University of Raparin
${ }^{3}$ Tianjin University
May 5, 2020

Abstract

The purpose of this paper is to propose some coefficient conditions, characterizing the stability of periodic solutions bifurcated from zero-Hopf bifurcations of the general quadratic jerk system, and apply these theoretical results to a special jerk system in order to predict chaos. First, we characterize the zero-Hopf bifurcations of the general quadratic jerk system in $\$ \backslash \operatorname{mathbb}\{\mathrm{R}\}^{\wedge} 3 \$$. The coefficient conditions on stability of periodic solutions are obtained via the averaging theory of first order. Next, we apply the theoretical results to a two-parameter jerk system. Finally special attention is paid to a jerk system with one non-negative parameter $\$ \backslash$ epsilon $\$$ and one non-linearity. By studying the continuation of periodic solution initiating at the zero-Hopf bifurcation, we numerically find a sequence of period doubling bifurcations which leads to the creation of chaotic attractor.

Hosted file

sang.pdf available at https://authorea.com/users/300831/articles/430564-zero-hopf-bifurcations-and-chaos-of-quadratic-jerk-systems
figures/phase/phase-eps-converted-to.pdf
figures/attractor/attractor-eps-converted-to.pdf
figures/bifur/bifur-eps-converted-to.pdf
figures/lyap/lyap-eps-converted-to.pdf
figures/coexist1/coexist1-eps-converted-to.pdf
figures/coexist2/coexist2-eps-converted-to.pdf

