First principles study of the vibronic coupling in positively charged $\mathrm{C_{60}}^+$

Zhishuo Huang¹ and Dan Liu²

¹KU Leuven

²Northwestern Polytechnical University

May 5, 2020

Abstract

Orbital vibronic coupling parameters for C_{60}^+ were derived by using frozen-phonon approach via density functional theory calculations with hybrid B3LYP and CAM-B3LYP functional. Based on these derived vibronic coupling parameters, the static Jahn-Teller effect of C_{60}^+ were analyzed. At the global minima of adiabatic potential energy surface (APES), the Jahn-Teller deformation shows a D_{5d} structure with stabilization energies of 110 and 129 meV with B3LYP and CAM-B3LYP respectively. These stabilization energies are two times larger than that in C_{60}^- , suggesting the crucial role of the dynamical Jahn-Teller effect in C_{60}^+ . Present coupling parameters enable us to assess the actual situation of dynamical Jahn-Teller effect in C_{60}^+ and also that of excited C_{60} in combination with the established coupling parameters for C_{60}^- .

Hosted file

main_article.pdf available at https://authorea.com/users/274061/articles/430677-firstprinciples-study-of-the-vibronic-coupling-in-positively-charged-c60