Shell equations in terms of Günter's derivatives, derived by the $\Gamma\text{-}\mathrm{convergence}$

Roland Duduchava¹ and Tengiz BUCHUKURI²

¹The University of Georgia ²Tbilisi State University, A. Razmadze Mathematical Institute

May 5, 2020

Abstract

A mixed boundary value problem for the L\'ame equation in a thin layer $\Omega^h:\CC\times[-h,h]\$ around a surface $\CC\$ with the Lipshitz boundary is investigated. The main goal is to find out what happens when the thickness of the layer tends to zero $h\$ to $\$. To this end we reformulate BVP into an equivalent variational problem and prove that the energy functional has the Γ -limit being the energy functional on the mid-surface $\CC\$. The corresponding BVP on $\CC\$, considered as the Γ -limit of the initial BVP, is written in terms of $G\$ under stangential derivatives on $\CC\$ and represents a new form of the shell equation. It is shown that the Neumann boundary condition from the initial BVP on the upper and lower surfaces transforms into a right-hand side term of the basic equation of the limit BVP.

Hosted file

G-convergence_Lame.pdf available at https://authorea.com/users/301062/articles/430842-shell-equations-in-terms-of-g%C3%BCnter-s-derivatives-derived-by-the-%D0%B3-convergence