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Abstract

A tunable mid-infrared (MIR) laser (quantum cascade laser, QCL) was used for the detection of TNT and RDX in soil samples

at a concentration range from 0 to ˜20% w/w. This type of sensing is complicated due to the complexity of the matrix, i.e.,

the diversity of compounds contained in soil. Thus, the high explosives (HE) detection in soil by QCL was assisted with an

Artificial Intelligence (AI) system. AI managed to predict these HE in seven kinds of soils using minimum information Machine

Learning (ML). The models were generated only from neat HE and soil spectra, without necessity using experimental spectra

of the mixes. AI used these neat spectra to simulate the spectra of HEs/soil mixes. The simulated data was used to train the

ML models and then were tested with real spectra of HEs/soils mixes. The method was designated as “Self-Simulated Learning

Artificial Intelligence” (SSLAI). This methodology has advantages for applications in field scenarios where the matrices are

unknown because SSLAI models do not need to be trained with real samples a priori. Models would only have to be fed with

spectra for the neat components to train itself. The methodology was tested with mixes of seven soils and two explosives. Test

samples were classified into three concentrations ranges: high concentration test (Test H > 10% w/w), medium concentration

test (10% w/w > Test M > 3% w/w), and low concentration test (Test L < 3% w/w). The results show that it is possible

to correctly predict these two HE/soil mixes from the simulated data. Specifically, for TNT and RDX, SSLAI achieved a high

precision in the prediction for the high and medium concentration tests (Test H and Test M). However, for both samples with

concentrations below 3% w/w (Test L), the number of false positives increased, and the precision was reduced.

1 Introduction

The field detection of explosives has received considerable attention globally for many years due to its impor-
tance in forensic applications, defense and security, and environmental control. High explosives (HEs) have
been used for decades in military practice and mining excavation. These are considered as a contamination
source which can generate poisoning of population humans and animals, and producing genetic diseases that
threaten human health. [1,2] In order to monitor the quality of HE-contaminated soils, this study focuses
on the detection of HE in soil using mid-infrared (MIR) laser spectroscopy with a Quantum Cascade Laser
(QCL) source as a remote method of analysis. [3-13] QCL spectroscopy first demonstrated in 1994 by Faist
et al. [14]offers several benefits over conventional or thermal source MIR spectroscopy, such as room tem-
perature operation, small beam sizes, long lifetimes, low energy consumption, long-term power stability, and
fine-tuning of the output frequency. [15] Several groups have demonstrated the capability of remote sensing
of HE and others analytes using MIR laser spectroscopy with QCLs.[14, 16-27] The typical methods used to
detect HE is destructive, require sampling, transferring samples to the lab, and performing a proper treat-
ment of the sample for later detection. These methods include protocols based on gas chromatography-mass
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spectroscopy (GC-MS), gas chromatography-chemiluminescence (GC-CL), ion mobility spectrometry (IMS),
[28] immunosensors,[29] electrophoresis, [30]fluorescence, [31] electrochemical methods,[30,32] high-pressure liq-
uid chromatography (HPLC), [33,34] and HPLC-MS.[33] However, in situ detection of HE in the soil is not
easy due to the presence of solid interfering materials such as organic and inorganic compounds, which vary
for each type of soil [35-37] which makes this detection a challenge for the analyst. Other studies conducted
by this research group involved the characterization [38-40]interactions, [41-43] and detection[44-45] of HE in
soil using Raman and FT-IR spectroscopy. [46,47] In all of these cases, the detection was marginally possible
because the crystalline particles of HE had to be found in the solid matrix by microscopy to achieve the
detection.

Today, AI methods are becoming more popular because they have demonstrated to be a rapidly evolving
research area that offers sophisticated and advanced approaches capable of addressing complicated and
challenging problems. Besides, AI-based systems have a variety of applications in different sectors, such as
engineering, economics, medicine, military, marine sciences, and others.[48] Therefore, AI allows the transfer
of human knowledge to machines through analytical models and learning from the data. This is a task that
can be accomplished by soft-computing methodologies. [49]

AI uses minimum information (spectra of neat explosives and clean soil) for the development of the Machine
Learning (ML) models without the necessity of experimental data of the mixes. AI: Self-Simulated Learning
Artificial Intelligence (SSLAI) models were tested with real spectra of experimental mixes of HE/soils. SSLAI
models do not need to be trained with real contaminated soil samples or real mixes of HE/soils. The model
would only have to be fed with spectra of neat HE and soils for the model to train itself. This provides the
possibility of HE detection in field applications with the advantages that the natural solid matrices could be
unknown.

2 Methodology

2.1 Reagents

HE used as analytes in this study were cyclotrimethylenetrinitramine (RDX), and 2,4,6-trinitrotoluene
(TNT). TNT was purchased from ChemService (West Chester, PA, USA), and RDX was synthesized in
the lab. Seven types of natural soils were used: first natural (Soil-1) and second natural soil (Soil-2) were ob-
tained from suburban sites located near the municipality of Mayaguez, PR, USA (coordinates: 18°13’25.7”N
67°07’51.2”W); third natural soil (Soil-3) and fourth natural soil (Soil-4) from (coordinates: 18°9’36”N
67°6’40”W); fifth natural soil (Soil-5), sixth natural soil (Soil-6), and seventh natural soil (Soil-7) were
obtained from suburban sites located near the municipality of Ponce, PR, USA (coordinates: 18°00’39.9”N
66°36’50.6”W).

2.2 Samples Preparation

Calibration samples did not require complicated preparation steps. Neat samples consisted of 0.20 g of neat
HEs or neat soils. Samples of mixes also consisted of approximately 0.20 g of HE/soil with concentrations
of 0% to 20% w/w for each HE. The test samples were prepared by grinding the explosive into a fine
powder using a mortar and pestle, followed by mixing in a mini vortex mixer for approximately 10 s at 3000
rpm. The mixed samples were ground again and mixed in the mini vortex mixer for a second time. The
test samples, were classified into three concentrations ranges; high concentration test (Test H> 10% w/w),
medium concentration test (10% w/w > Test M > 3% w/w) and low concentration test (Test L < 3% w/w).

2.3 Data acquisition and QCL system

Before measuring the QCL spectra, a background spectrum of a roughened gold substrate was obtained.
This background spectrum provided a good and smooth reference trace, due to the lack of MIR signals from
the employed solid matrix. The samples were placed in the wells of metal holders (2.54 cm in diam., 10 mm
deep). The sample surface was flattened to create a smooth surface for accurate measurements. Duplicate
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spectra were collected at ten (10) different locations on the surface, resulting in a total of twenty (20) spectra
per sample. These were used for the calibration and test analyses. This process was used for the neat samples,
and each concentration in the test mixes samples. The spectra were obtained in reflectance (R) mode at a
distance of approximately 15 cm, using a LaserScan MIR pre-dispersive spectrometer (Block Engineering,
Marlborough, MA, USA) equipped with three tunable MIR lasers with a tuning range from 990 to 1111,
1111 to 1178 and 1178 to 1600 cm-1, the scan time was 0.5 s approximately on each laser for a total time
scan of 1.5 s. The average power typically varied between 0.5 to 10 mW across the 600 cm-1 total tuning
range with 100:1 transverse electromagnetic polarization (TEMoo) and beam divergence of < 2.5 mrad in
the x-axis and < 5 mrad in the y-axis. The spectrometer had a ZnSe lens of 3 in. in diameter, which was
used to focus the MIR beam, to collect the reflected light, and to focus the light onto a thermoelectrically
cooled mercury-cadmium-telluride (MCT) detector. The wavelength accuracy and precision were 0.5 cm-1

and 0.2 cm-1, respectively. The spectroscopic system worked best at a laser head to target distance of 15 +-
3 cm. Each laser diode formed an elliptical spot of 4 x 2 mm2 at the focal plane of the ZnSe lens due to the
difference of beam divergence in the axes.

2.4 Self-Simulated Learning Artificial Intelligence (SSLAI) Analysis

A classifier algorithm used to compare machine learning (ML) methods for classification was developed
in Python 3 using the library of sklearn 3.2. [50] Ten ML methods for classification were employed: K-
Neighbors Classifier, Support Vector Machine (SVM), Nu-Support Vector Classification (NuSVC), Decision
Tree Classifier, Random Forest Classifier, AdaBoost Classifier, Gradient Boosting Classifier, Gaussian Naive
Bayes, Linear Discriminant Analysis, and Quadratic Discriminant Analysis. A basic description of each ML
method used is included in Table 1 .

The most efficient ML method for the prediction of the data was selected by the algorithm, considering the
highest accuracy value and the lowest Log Loss value (defined later). To accomplish this, it was necessary to
provide the algorithm with the simulated training data and the real test data. The algorithm trained each
of the ten methods, calculating the accuracy and the log-loss, and comparing the results.

The package of libraries in scikit-learn [50]provides a set of open-source software of efficient AI techniques for
the Python programming language. They are accessible to non-experts of ML and apply to various scientific
disciplines. The calibration model was developed with simulated training data. The simulated training data
are linear combinations of each of the spectra of neat HE with each of the spectra of neat soil considering
their compensation of intensities in percentages. External evaluation of the predictions was accomplished
using HE/soil mixes. These data were not used in the calibration model. A schematic representation of
SSLAI analysis is shown in Fig. 1 .

The parameters that were used to evaluate the performance of the classification model developed were: recall,
Log Loss, precision, f1-score, weighted average, support, and accuracy. In binary classification, recall of the
positive class is also known as “sensitivity,” and recall of the negative class is “specificity.” The Log Loss
function is used in (multinomial) logistic regression and extensions of it, such as Neural Networks, defined
as the negative log-likelihood of the true labels given a probabilistic classifier’s predictions. The Log Loss is
only defined for two or more labels. For a single sample with true label yt in {0,1} and estimated probability
yp that yt = 1, the Log Loss is (Eq. (1) :

-log P(yt|yp) = -(yt) log(yp) + (1 - yt) log(1 - yp)). (1)

The precision is also called the positive predicted value, and it is the ratio: TP / (TP + FP) where TP
is the number of true positives, and FP is the number of false positives. The precision (intuitively) is the
ability of the classifier of not labeling as positive a sample that is negative. The f1-score is also known as
the balanced f-score or the f-measure. The f1-score can be interpreted as a weighted average of the precision
and recall, where the f1-score best value is 1, and the worst is 0. The relative contributions of precision and
recall to the f1-score are equal. The formula for the f1-score is shown in Eq. 2 :

f1-score =2 * (precision * recall) / (precision + recall). (2)

3



P
os

te
d

on
A

u
th

or
ea

7
M

ar
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

35
39

61
.1

98
59

34
6

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

The f1-score in multi-class and multi-label cases is the average of the f1-score for each class, with weighting
that depends on the average parameter. The support is the number of records used, i.e., the numbers of
spectra for each class. The accuracy classification score in multi-label classification computes the accuracy
subset: the set of labels predicted for a sample must exactly match the corresponding set of labels in y true.
The reported averages include the macro average (averaging the unweighted mean for each label) and the
weighted average (averaging the support-weighted mean for each label).

Other parameters for the model evaluations were obtained using areas under the receiver operator curve
(ROC) plots. This was generated using the ML method selected to evaluate the “sensor” performance. The
ROC plots allow inspection of the fundamental trade-off in the models between TP and FP. This provides
much more information than a straightforward accuracy calculation. When comparing two models, the ROC
plots clearly show that a curve that is entirely over another represents a model with better results regardless
of the threshold used. The area under a ROC plot is equal to the probability that a randomly selected
positive case will receive a higher score than a randomly chosen negative case. In other words, it is the
probability of sensing the HE.

3 Results

3.1 QCL MIR spectra

Reflectance spectra for TNT and RDX were acquired. Fig. 2(a)shows the characteristic spectroscopic
signals for each HE. For TNT, the prominent signal located at 1567 cm-1(-NO2 asymmetric stretch), 1472
cm-1(CH3 deformation), 1445 cm-1 (C-C ring stretch), 1359 cm-1 (ring stretch), 1199 cm-1 (CH in-plane ring
bend), 1173 cm-1 (CH in-plane ring bend scissoring), 1089 cm-1 (CH3 bend twisting), and 1025 cm-1 (CH
in-plane ring bend rocking; CH3 deformation) were observed. [52] For RDX, the important band at 1321
cm-1 for -N-NO2 symmetric stretch and the signal at 1593 cm-1 for the -N-NO2 asymmetric stretch were
observed. Other signals that stand out include the band at 1234 cm-1 and the band at 1034 cm-1 for -N-C-N
stretch; the signals at 1016 cm-1 for the combination -N-NO2stretch and in-plane C–H bending. [53-55]

Fig. 2(b) shows the reflectance spectra of the seven soil samples, identified by Soil-1, Soil-2, Soil-3, Soil-
4, Soil 5, Soil-6, and Soil-7. A Principal Components Analysis (PCA) was carried out with the spectra
of standard samples of clays and sand, and it was found that PC2 could differentiate between the classes
clay and sand. The PC model enabled to conclude that Soils 1-4 have a higher clay proportion (60-65%) in
comparison with Soils 5-7, with a clay proportion of 22-29%, considered mostly sandy soils (data not shown).
These percentages were calculated from the distances of the PC2 scores with respect to the average of the
classes (sand and clay).

Figs. 2(c) and 2(d) show a comparison of the simulated spectra with the experimental spectra considering
the mixes at high concentrations and with the same type of soil (Soil 1). The characteristic fingerprint
signatures were observed for both TNT and RDX with Soil 1, respectively, Figs. 2(c) and 2(d) . However,
some differences in the spectral patterns between the simulated and experimental spectra are observed.

3.2 Comparison of ML methods

A classifier algorithm to compare ten ML methods was done. Fig. 3 shows a graphical representation of the
relationship between % Accuracy and Log Loss values generated by the classifier algorithm, for each of the
tests performed with the ten ML methods selected previously. In this figure, the marker color is associated
with the name of the ML method, and the marker shape with the concentration range of the test.

Moreover, from these results, the most efficient methods were selected. Four ML methods with the lower
value of Log Loss (closer to zero) and a higher value of % Accuracy (ML methods with % Accuracy values
close to 100%) were selected. The selected methods were: RFC, SVM, NuSVC, and GBC. Next, these
four ML methods were evaluated by a ROC analysis, obtaining as a result that the best ML model for
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classification is the one carried out by the RFC algorithm, demonstrating that RFC has a better probability
of sensing.

Another reason for which RFC was chosen is that when there is binary discrimination, the precision parameter
is decisive. Since the RFC model was the one with the highest precision value in the different tests, it was
selected as the optimum model. This means that the number of false positives using this model is low.

3.3 Random Forest Classifier Analysis

The performance of the RFC model was evaluated with the test samples using the parameters observed in
Table 2 . Excellent results were obtained in the precision parameters, with values close to 1.00 for high and
medium concentration tests, Test H, and Test M, respectively. However, for the tests of low concentrations
(Test L), the precision parameter remained at 1.00 for TNT but decreased to 0.75 for RDX. This decrease
in the precision parameter for RDX is because some samples at low concentrations of TNT (3 samples, see
confusion matrix) were predicted as RDX. However, it is essential to highlight that despite that the RFC
model did not correctly predict most of the samples with TNT and RDX for the low concentration test,
the model maintained a good accuracy. This is because at these concentrations (< 3%), soil particle size
generates a lack of homogeneity in the samples, creating explosive clusters that make detection difficult since
the interrogation area for the QCL spot is only 4 x 2 mm2. This spot size generates a certain probability
of not finding HE particles when this is sensing takes place on the sample surface. A possible solution to
this problem is to increase the interrogation area of the QCL system to generate an adequate average of the
spectral acquisition.

The recall values in the low concentration test for both explosives were poor because most of the samples
that had HE were classified as having no HE (none). According to f1-score values, this parameter measures
the model in a general way, considering the recall and precision values, throwing poor values for the low
concentration test.

Fig. 4 shows the analysis of the ROC curves for each of the Tests using the model generated by the RFC
method. The ROC curve evaluates the model with different decision thresholds and measures the probability
of sensing, which is calculated as the integration of the area under the ROC curve. The probability of sensing
for the medium and high concentration test was excellent, with values close to 1.00. Although the probability
of sensing for the low concentration test was expected to be poor, it presented a moderate probability of
sensing.

4 Conclusion

This research establishes a strategic method for the detection of HE (TNT, RDX) in soil samples. The
benefits of the methodology “Self-Simulated Learning Artificial Intelligence” (SSLAI) is that simulated data
generated from spectra of neat HE and clean soil were used to create the training data set used to generate
ML models. SSLAI was validated using 3 tests with experimental spectra of HE/soils mixtures and obtained
favorable results. The remote detection was achieved using the benefits of MIR laser spectroscopy, which
can be applied in field applications.

The detection of threat chemicals in solid matrices such as natural soil is complicated, specifically in field
applications where the detection time is essential, and where often these solid matrices are unknown. This
methodology permits to generate the model at the moment with insufficient information for training, sur-
passing previous methodologies where the volume of experimental data necessary to generate good prediction
models takes time to collect and analyze the data.

The synergy between QCL technology and SSLAI can be a promising strategy for the detection of weapons
of mass destruction in the fields of defense and security because solid matrices such as soil contain many
interferences and varieties from the multiple components that they contain and also because they are sub-
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strates/media with low reflectivity. Therefore, the detection of analytes in soil matrices is considered a
challenge.
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GRAPHICAL ABSTRACT

A Machine Learning (ML) strategy was used to enhance mid-infrared (MIR) laser reflectance spectra based
detection of high explosives (HE) in mixes with soil samples. The Artificial Intelligence (AI) methodology
termed “Self-Simulated Learning Artificial Intelligence” (SSLAI) demonstrated that it is possible to detect
a chemical threat in solid matrices such as natural soil. There is an excellent possibility to transfer the
methodology to field applications where the detection time is essential, and where often these solid matrices
are unknown.

Table 1. Basic description of machine learning methods for classification [50]

ML METHODS DESCRIPTION

K-Neighbors Classifier (KNC) K-Neighbors Classifier is a neighbors-based classification where k is an integer value specified by the user. It is an instance-based learning or non-generalizing learning: it does not attempt to construct a general internal model; simply, it stores instances of the training data. Classification is computed from a simple majority vote of nearest neighbors of each point: a query point is assigned the data class that has most representatives within nearest neighbors.
SVM Support vector machines (SVM) and NuSVM are algorithms capable of performing multi-class classifications on datasets. They are a set of supervised learning methods used for classification. SVM and NuSVC are similar methods, but accept slightly different sets of parameters and have different mathematical formulations. These are based on a library (libsvm). In SVM, the fit-time scales at least quadratically with the # of samples and may be impractical beyond tens of thousands of samples. NuSVM is similar but uses a parameter to control the # of support vectors.
NuSVM
Decision Tree Classifier (DTC) Decision Tree Classifier is a non-parametric supervised learning method. It is an algorithm capable of performing multi-class classification on datasets. The goal is to create models that predict the value of a target variable by learning simple decision rules inferred from the data features. For example, a classical decision tree learns from the data to approximate a sine curve with a set of if-then-else decision rules. The deeper the tree, the more complex the decision rules, and the better the model.
Random Forest Classifier (RFC) Random Forests Classifier is an ensemble learning method for classification, that operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. Random decision forests correct for decision trees’ habit of overfitting to their training set. A random forest is a meta estimator that fits a # of decision trees classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
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ML METHODS DESCRIPTION

AdaBoost Classifier (ABC) An AdaBoost (51) classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases.
Gradient Boosting Classifier (GBC) Gradient Boosting Classifier builds an additive model in a forward stage-wise fashion. It allows for the optimization of arbitrary differentiable loss functions. In each stage n classes, regression trees are fit on the negative gradient of binomial or multinomial deviance loss function. Binary classification is a special case where only a single regression tree is induced.
Gaussian Naive Bayes (GNB) In the Gaussian Naive Bayes, the likelihood of the features is assumed to be Gaussian. Can perform online updates to model parameters via partial fit.
Linear Discriminant Analysis (LDA) Linear Discriminant Analysis is a classifier with a linear decision boundary generated by fitting class conditional densities to the data using Bayes’ rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can be used to reduce the dimensionality of the input, projecting it to the most discriminative directions.
Quadratic Discriminant Analysis (QDA) Quadratic Discriminant Analysis, it is a classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayes’ rule. The model fits a Gaussian density to each class.

Table 2. Performance evaluation parameters for the RFC model

Precision Recall f1-score Support Accuracy Confusion Matrix Confusion Matrix Confusion Matrix

Test H > 10% w/w Test H > 10% w/w Test H > 10% w/w Test H > 10% w/w Test H > 10% w/w NONE TNT RDX
NONE 0.98 1.00 0.99 606 0.98 606 0 0
TNT 1.00 1.00 1.00 36 0 36 0
RDX 1.00 0.93 0.96 174 13 0 161

10 % w/w > Test M > 3% w/w 10 % w/w > Test M > 3% w/w 10 % w/w > Test M > 3% w/w 10 % w/w > Test M > 3% w/w 10 % w/w > Test M > 3% w/w
NONE 0.96 1.00 0.98 606 0.97 606 0 0
TNT 1.00 0.82 0.90 60 11 49 0
RDX 1.00 0.81 0.89 73 14 0 59

Test L < 3% w/w Test L < 3% w/w Test L < 3% w/w Test L < 3% w/w Test L < 3% w/w
NONE 0.84 1.00 0.91 606 0.84 606 0 0
TNT 1.00 0.11 0.20 71 60 8 3
RDX 0.75 0.15 0.24 62 53 0 9
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