Lower Bound of Decay Rate for Higher Order Derivatives of Solution to the Compressible Quantum Magnetohydrodynamic Model

Gao Jincheng¹, Lyu Zeyu¹, and Yao Zheng-an¹

¹Sun Yat-Sen University

May 5, 2020

Abstract

The lower bound decay rate of global solution to the compressible viscous quantum magnetohydrodynamic model in three-dimensional whole space under the h^4 -times h^4 -times h^4 -framework is investigated in this paper. We firstly show that the lower bound of decay rate for the density, velocity and magnetic field converging to the equilibrium state (1,0,0) in h^2-2 -norm is $(1+t)^{-1}$ -trac $(3)^{4}$ -has when the initial data satisfies some low frequency assumption. Moreover, we prove that the lower bound of decay rate of h^2-2 -norm is $(1+t)^{-1}$ -trac $(3+2k)^{4}$ -has whom that the lower bound of decay rate for the time derivatives of density and velocity converging to zero in h^2-2 -norm is $(1+t)^{-1}$ -trac $(3)^{4}$ -has but the lower bound of decay rate for the time derivative of magnetic field converging to zero in h^2-2 -norm is $(1+t)^{-1}$ -trac $(3)^{4}$ -has but the lower bound of decay rate for the time derivative of magnetic field converging to zero in h^2-2 -norm is h^2-2 -norm is h^2-2 -norm is h^2-2 -has but the lower bound of decay rate for the time derivative of magnetic field converging to zero in h^2-2 -norm is h^2-2 -norm is h^2-2 -norm is h^2-2 -has but the lower bound of decay rate for the time derivative of magnetic field converging to zero in h^2-2 -norm is h^2-2 -

Hosted file

Decay_vQMHD_New.pdf available at https://authorea.com/users/302442/articles/432523-lower-bound-of-decay-rate-for-higher-order-derivatives-of-solution-to-the-compressible-quantum-magnetohydrodynamic-model