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Abstract

Accurate prediction of protein secondary structure (alpha-helix, beta-strand and coil) is a crucial step for protein inter-residue
contact prediction and ab initio tertiary structure prediction. In a previous study, we developed a deep belief network-based
protein secondary structure method (DNSS1) and successfully advanced the prediction accuracy beyond 80%. In this work,
we developed multiple advanced deep learning architectures (DNSS2) to further improve secondary structure prediction. The
major improvements over the DNSS1 method include (i) designing and integrating six advanced one-dimensional deep con-
volutional/recurrent/residual/memory/fractal/inception networks to predict secondary structure, and (ii) using more sensitive
profile features inferred from Hidden Markov model (HMM) and multiple sequence alignment (MSA). Most of the deep learning
architectures are novel for protein secondary structure prediction. DNSS2 was systematically benchmarked on two independent
test datasets with eight state-of-art tools and consistently ranked as one of the best methods. Particularly, DNSS2 was tested
on the 82 protein targets of 2018 CASP13 experiment and achieved the best Q3 score of 83.74% and SOV score of 72.46%.
DNSS2 is freely available at: https://github.com/multicom-toolbox/DNSS2.
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Introduction

Three major types of protein secondary structure are alpha-helix (H), beta-strand (E) and coil state (C)
1, each of which represents the local structure state of an amino acid in a folded polypeptide chain. The
predicted information of protein secondary structure is useful for many applications in computational bi-
ology, such as protein residue-residue contact prediction 2-4, protein folding5-7, ab-initio protein structure
modeling8-10 and protein model quality assessment11-12. For instance, secondary structure prediction was
widely utilized in the template-based structure modeling through threading or comparative modeling on those
proteins that have structurally determined homologs10, 13-14, and in ab initio modeling for those proteins
whose sequences share few sequential similarities with known solved structures15-16.

The progress in protein secondary structure prediction over the past few decades can be generally summarized
from two aspects: the discovery of novel features that are useful for prediction and the development of effective
machine learning algorithms 17-18. The early attempts utilized statistical propensities of single amino acid
observed from known structures to identify secondary structures in proteins19. The subsequent improvements
came from the inclusion of sequence evolutionary profile features inferred from multiple sequence alignment
(MSA) such as position-specific scoring matrices (PSSM)20-25. In addition to the PSSM, the Hidden Markov
model (HMM) profiles derived from HHblits 26was proposed for predicting protein structural properties27.
Atchley’s factors were also included in some studies to capture the similarity between the types of amino
acids 28-29.
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Meanwhile, the machine learning algorithms for protein secondary structure prediction also continued to
improve. Several early approaches applied shallow neural networks 30-31, information theory and Bayesian
analysis 32-34 to secondary structure prediction. PSIPRED21 method proposed a two-stage neural network to
predict the secondary structure from the PSI-BLAST sequence profiles. SSpro 24 used bi-directional recurrent
neural networks to capture the long-range interactions between amino acids. Deep learning techniques
recently achieved significant success in secondary structure prediction 25, 29, 35-38. DNSS 29 applied an
ensemble of deep belief networks to predict 3-state secondary structure. SPIDER2 39 employed stacked
sparse auto-encoder neural networks to predict the several structural properties iteratively, and this method
was further advanced by bidirectional long- and short-term memory (LSTM) neural networks to capture
the long-range interactions37. DeepCNF 36 integrated the convolutional neural networks with conditional
random-field to learn the complex sequence-structure relationship and interdependence between sequence
and secondary structure. Porter 5.0 40 ensembled seven bidirectional recurrent neural networks to improve
the protein structure prediction. Assisted with the power of deep learning, the accuracy of 3-state secondary
structure prediction has been successfully improved above 84%36-38 on some benchmark datasets.

In this work, we developed an improved version of our ab initiosecondary structure method using multiple
advanced deep learning architectures (DNSS2). Three major improvements have been made over the original
DNSS method. Firstly, besides the PSSM profile features and Atchley’s factors used in DNSS, we incorpo-
rated several novel features such as the emission and transition probabilities derived from Hidden Markov
model (HMM) profile26, and profile probabilities inferred from multiple sequence alignment (MSA) 22. All
the three new features represent the evolutionary conservation information for amino acids in sequence. Sec-
ondly, we designed and integrated six types of advanced one-dimensional deep networks for protein secondary
structure prediction, including traditional convolutional neural network (CNN) 41, recurrent convolutional
neural network (RCNN) 42, residual neural network (ResNet) 43, convolutional residual memory networks
(CRMN) 44, fractal networks45, and Inception network 46. The ensemble of six networks from DNSS2 signifi-
cantly improved the secondary structure prediction. Finally, DNSS2 was trained on a large dataset, including
4,872 non-redundant protein structures with less than 25% pairwise sequence identity and 2.5 Å resolution.
Our method was extensively tested on the independent dataset and the latest CASP13 dataset with other
state-of-art methods and delivered the state-of-the-art performance.

Materials and Methods

2.1 Experimental design

In this work, the main objective was to improve the secondary structure prediction by developing more
advanced deep learning architectures and introducing more useful features. In the process, we have devel-
oped a systematic framework to effectively build deep learning architectures and obtain features to improve
secondary structure prediction.Figure 1 provides an overview of our experimental design.Figure 1(A) lists
the six major steps of designing, training and testing deep learning architectures. Figure 1(B)illustrates the
process of creating training and validation datasets. The key analysis is to design appropriate architectures
and investigate if they can improve prediction accuracy. Six different deep neural network architectures
were evaluated in the study, including convolutional neural network (CNN) 41, recurrent convolutional neu-
ral network (RCNN) 42, ResNet43, convolutional recurrent memory network (CRMN)44, FractalNet 45, and
Inception network 46. Most of these architectures were applied to secondary structure prediction for the
first time. The detailed description of each network is included in Section 2.4. To ensure a fair comparison,
each network was optimized using the original feature profiles of training proteins and evaluated on the
same validation set of DNSS1. The network that achieved the best Q3 accuracy was selected to explore the
feature space on the profiles derived from multiple sequence alignments (MSA) generated by PSI-BLAST
20 and HHblits26, Atchley factors, and emission/transition probabilities inferred from the Hidden Markov
model (HMM) profile. The optimal feature set was determined according to the highest Q3 accuracy on the
validation datasets. The networks were then re-trained using the optimal input profiles to obtain the best
models.

Since combining predictors generally improved the prediction accuracy, the different combinations of networks

2
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were also evaluated. Finally, after the optimal sets of deep learning architectures and feature profiles were
determined, all networks were re-trained on the large dataset that was manually curated including the non-
redundant proteins whose structures have been released publicly before 2018. The final networks were used
to predict the secondary structure for the test proteins. The probabilities of the three states (i.e. helix, sheet,
and coil) for each residue predicted by six networks were averaged to make the final secondary structure
prediction. Our method was then benchmarked with other state-of-art methods on the two independent test
datasets.

2.2 Datasets and evaluation metric

As described in section 2.1, two training datasets were used in our experiment. In the first stage, the original
DNSS dataset 29 that included 1,230 training proteins and 195 validation proteins was utilized to investigate
whether the deep learning architectures and novel features can boost the prediction accuracy.

To utilize more data available since DNSS1 was published, a new, larger training set of DNSS2 was con-
structed from CullPDB 47curated on 18 October 2018 (Figure 1(B) ). The dataset consists of 12,566 proteins
that share less than 25% sequence identity with 2.5Å resolution cutoff and R-factor cutoff 1. The structures
of all the proteins were determined by X-ray crystallography. The dataset was then filtered by removing
proteins with non-standard amino acids, chain-break (i.e. distance of adjacent Ca-Ca atoms is larger than 4
Å), and sequence length shorter than 30 or longer than 700 amino acids. Considering all external methods
benchmarked in this work were developed prior to year 2018, the proteins that were released after Jan 1st,
2018 were extracted as independent test set (DNSS2_TEST). The resulting set of proteins was further filtered
against DNSS2_TEST set using CD-HIT suite48 with criteria of 25% sequence identity cutoff and e-value
threshold 0.1. Finally, 5,413 proteins released prior to Jan 1st, 2018 were obtained as our training set, in
which 4,872 proteins were used for network training (DNSS2_TRAIN) and 547 proteins were used for model
selection (DNSS2_VAL). In addition, the proteins of the CASP13 (2018) experiment were collected and the
ones with at least 25% sequence identity with training proteins were removed, which results in a set of 82
test proteins. The proteins were also classified into template-based (TBM) and free-modeling (FM) targets
based on the official CASP definition (CASP 13, 2018, http://www.predictioncenter.org/casp13/index.cgi).
In summary, the final test set contain 429 proteins from DNSS2_TEST and 82 proteins from CASP13.

We evaluated our secondary structure prediction based on two primary metrics: Q3 accuracy and Segment
Overlap measure (SOV). Q3 score represents the percent of correctly predicted secondary structure states
in a protein. SOV score measures the similarity between the predicted segments of continuous structure
states and those in the experimental structure 29, 49. The Q3 and SOV scores are complementary with each
other for secondary structure evaluation. All training and testing proteins’ structure files were parsed by
DSSP program 50 to obtain the real secondary structure classification for each amino acid for training and
evaluation.

2.3 Input features

The profile of each amino acid is represented by 21 numbers from PSI-BLAST-based position specific scoring
matrix (PSSM), 20 emission probabilities and 7 transition probabilities extracted from Hidden Markov Model
(HMM) profile, 20 probabilities of standard amino acid calculated from the multiple sequence alignment
(MSA) and 5 numbers derived from Atchley’s factor. These features (73 numbers in total) represent the
evolutionary conservation and physicochemical properties for residues in a protein sequence.

PSI-BLAST was run to generate multiple sequence alignment and PSSM profile through searching a sequence
against filtered UniProt sequence database at 90% sequence identity (UniRef90) 51 with three iterations and
an e-value cutoff 0.001 (‘-evalue .001 -inclusion_ethresh .002’). Less stringent threshold was used (‘-evalue
10 -inclusion_ethresh 10’) in case some proteins did not have homologous sequences returned. In a PSSM
profile, each position is represented by 20 numbers related to the probabilities for 20 standard amino acids
appearing at the position in the multiple sequence alignment. In addition, the sequence information in the
second to the last column in PSI-BLAST profile is given for each residue.
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HMM profile was generated by running three iteration of ‘HHblits’ against the uniclust30 database (version:
October 2017)52. Two types of probabilities were associated with each residue in a HMM profile: emission
probability and transition probability. Emission probability represents the probability of a given amino
acid occurring at the position in the multiple sequence alignment. The transition probability represents the
probability transiting from an alignment state (i.e. match, insertion, and deletion) to another. Similar to
PSSM, the emission frequencies of the 20 standard amino acid for each residue were reported in the HMM
profile, and the probabilities were calculated according to formula:

pik = 2(−
Freqik
1000 ) (1)

where i is the i -th residue in sequence and k is the k -th standard amino acid. And the probability is set
to 0 if the frequency is denoted as ‘*’. The transition probabilities for each amino acid were also derived in
the same fashion. In total, 20 emission probabilities and 7 transition probabilities for each amino acid were
collected to represent the residue conservation inferred from HMM.

Since HHblits was more sensitive to identify distant homologous sequences than PSI-BLAST, the probability
matrix of amino acids was also calculated from the multiple sequence alignment (MSA) generated by HHblits.
The conversion from MSA to a probability matrix follows the same calculation as SSpro 22.

2.4 Deep learning architectures

A widely used deep learning architecture in bioinformatics is deep convolutional neural networks (CNN).
Convolutional neural networks have some distinctive advantages over the traditional neural networks for the
bioinformatics problems in several ways: (1) it can learn informative representation directly from sequence
features without requiring segmentation (e.g. sliding window) or dimension reduction (e.g. principle compo-
nent analysis) techniques; (2) the convolutional network can learn both local and global features to discover
complex patterns; and (3) the architecture is independent of input size (i.e. length or volume). In this work,
we design a standard CNN and five advanced deep learning architectures based on both convolutional and
other useful operations as in Figure 2.

Figure 2(A) illustrates our standard convolutional neural network (CNN) for secondary structure pre-
diction, consisting of a sequence of convolutional blocks, each of which contains a convolutional layer, a
batch-normalization layer, and an activation layer. The original input is a L × K vector (X ), where L is
sequence length and K is the number of features per residue position in the sequence. For each convolution
block, the feature maps are obtained after the convolution operation is applied by multiplying the weight
matrices (called filters, W ) with a window of local features on the previous input layer and adding bias
vectors (b ) according to the formula: X l+1 = W l+1 ∗ X l + bl+1 , where l is the layer number. The batch
normalization layer is added to obtain a Gaussian normalization of convolved features coming out of each
convolutional layer. Then an activation function such as rectified linear function (i.e. ReLU) is applied to
extract non-linear patterns of the normalized hidden features. To avoid overfitting, regularization approaches
such as dropout 53 can be applied in the hidden layers. The final output node (also a filter) in the output
cell uses the softmax function to classify the input of each residue position from its previous layer into one
of three secondary structure states. The output is a L × 3 vector, holding the predicted probability of three
secondary structure states for each of L positions in a sequence. The final optimal CNN architecture includes
6 convolutional blocks, in which the filter size (window size) for each convolutional layer is 6, and the number
of filters (feature maps) in each convolution layer is 40.

The residual network (ResNet) was designed to make traditional convolutional neural network deeper without
gradient vanishing. The architecture constructs many residual blocks and stacked up them to form a deeper
network, as shown in Figure 2 (B) . In each residual block, the input X l is fed into a few convolutional layers
to obtain the non-linear transformation outputG( X l+1) . In order to make the network deeper, an extra
skip connection (i.e. short-cut) is added to copy the inputX l to the output of non-linear transformation layer,
whereX(l+1)∗can be represented as X(l+1)∗ = X l+G( X l+1) before applying another ReLU non-linearity.
This process makes neural network deeper by adding shortcuts to facilitate gradient back-propagation during
training and achieve better performance. The residual blocks with different configuration can be stacked to
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achieve higher accuracy. For instance, the final best architecture in DNSS2 is made up of 13 residual blocks,
each of which includes 3 convolutional layers with filter size 1, 3, 1 respectively. The first three residual
blocks used 37 filters to learn features, while the middle four blocks used 74 filters for each convolution layer,
and the last six residual blocks used 148 filters. In total, 39 convolutional layers are included in the final
residual network. In the network, the dropout and batch normalization were also added to prevent network
from overfitting.

Inception network is an advanced architecture for building deeper networks by repeating a bunch of inception
modules, as shown inFigure 2(c) . Instead of trying to determine the best values for certain hyper-parameters
(i.e. number of filter size, number of layers, inclusion of pooling layer), inception network proposes to con-
catenate outputs of hidden layers with different configuration through an inception module and trains the
network to learn patterns from the combination of diverse hyper-parameters. Despite its high computation
cost, inception network has performed remarkably well in many applications 38, 46. For secondary structure
prediction, a combination of three filter sizes 1×K,3×K and 5×K was applied to convolve feature input,
where K is the number of original input features for each residue position. The concatenation of the con-
volution outputs is fed into an activation layer for non-linear activation calculation. This kind of inception
module is repeated to make a deeper network. After the parameter tuning, the optimal inception network is
comprised of three inception blocks with 24 convolution layers included.

In addition, we designed three more deep learning architectures: recurrent convolutional neural network
(RCNN) 42, convolutional residual memory networks (CRMN) 44, and fractal network for secondary struc-
ture prediction. The recurrent convolutional neural network (RCNN) was designed to model sequential
dependency hidden inside the sequential features (Figure 2(D)) , It firstly extracts the higher-level feature
maps by a convolution block, and then uses a recurrent neural network (i.e. bi-directional Long-Short-Term
Memory (LSTM) network) for modeling the inter-dependence among the convolved features. Such a recur-
rent convolutional block with 4 convolutional layers included is repeated 5 times to build a deep recurrent
convolutional neural network for secondary structure prediction in this work. The CRMN network augmented
the architectures by integrating convolutional residual networks with LSTM (Figure 2(E)) (e.g., 2 residual
blocks and 2 LSTM in the network). Both methods advanced the convolutional neural network by introducing
the memory mechanisms of recurrent neural network (RNN). Moreover, inspired by ResNet and Inception
Network, we built a Fractal network stacking up different number of convolution blocks in both parallel and
hierarchical fashion by adding several shortcut paths to connect lower-level layers and higher-level layers, as
shown in Figure 2(F) . After tuning, the fractal network was assembled with 16 convolution layers for one
fractal block.

2.5 Training and evaluation procedure

Deeper networks with complex architectures are generally difficult to train effectively due to the high-
dimensional hyper-parameter space. To obtain good performance on specific feature sets within a reasonable
amount of time for each deep network, we developed an efficient heuristic random sampling approach for
model hyperparameter optimization. Specifically, based on the several trials on network training, we first
determined heuristically a reasonable range for each type of the network hyperparameters, including the
number of filters from 20 to 50, the number of convolution blocks from 3 to 7, and the filter size from 3 to 7.
For each subsequent trial, the values of hyper-parameters were randomly sampled from their specified range
and the Q3 accuracy of the network on the validation dataset under the specific parameter combination was
assessed. For each deep network, the best parameter set was determined after 100 trials were evaluated. We
found that using the random sampling technique was able to generate better models in most cases and was
also more efficient than the traditional grid search or greedy search.

The performance of different deep architectures and different feature profiles on the secondary structure
prediction were rigorously examined using the training and validation set from original DNSS method. After
the parameters and input features were determined, we trained each deep network on the latest curated
dataset (DNSS2_TRAIN) and selected best models using the Q3 accuracy on the independent validation
dataset (DNSS2_VAL). We used the Keras library (http://keras.io/) along with Tensorflow as a backend to
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train all networks.

The performance of DNSS2 was evaluated on the two independent datasets and compared with a variety
of the state-of-art secondary structure prediction tools, including SSpro5.2 22, PSSpred54, MUFOLD-SS 38,
DeepCNF36, PSIPRED 55, SPIDER337, Porter 5 40 and our previous method DNSS1 29. All the methods
were assessed according to the Q3 and SOV scores on each dataset.

Results

Benchmarking different deep architectures of DNSS2 with DNSS1

The first evaluation was to investigate whether the new deep architectures networks (DNSS2) outperform
the deep belief network (DNSS1) for the secondary structure prediction. In order to fairly compare them, we
trained and validated the six deep networks on the original input features of the same 1,230 training and 195
validation proteins used to train and test DNSS1. Table 1 compares the Q3 and Sov scores of DNSS1 and
DNSS2 architectures on the validation set. The results show that five out of six new advanced deep networks
(RCNN, ResNet, CRMN, FractalNet, and InceptionNet) except the standard CNN network obtain higher
Q3 scores than the deep belief network that used in DNSS1. InceptionNet worked best among individual
deep architectures. The ensemble of the six deep architectures (DNSS2) achieved the highest Q3 score of
83.04%, better than all the six individual deep architectures and 79.1% Q3 score of DNSS1.

Impact of different input features

After the best deep learning architecture (i.e. InceptionNet) was determined, it was utilized to examine
the impact of the different input features including PSSM, Atchley factor (FAC), Emission probabilities
(Em), Transition probabilities (Tr), and amino acids probabilities from HHblits alignments (HHblitsMSA).
In this analysis, the protein sequence databases required for alignment generation were updated to latest
and all the input features for DNSS1 datasets were regenerated. Specifically, the Uniref90 database that
was released at October 2018 was used to generate PSSM profiles by PSI-BLAST, and the latest version of
Uniclust30 database (October 2017) was used to generate HMM profiles by HHblits. The Inception network
was then trained on the 1,230 proteins using the combination of five kinds of features. We tested six feature
combinations shown in Table 2 . Hyper-parameter optimization was applied to obtain the best model on
each feature combination. Table 2 shows the performance of different input feature combinations with the
inception network on the validation dataset of 195 proteins. Adding the emission profile inferred from HMM
model on top of PSSM and Atchley factor features increased the Q3 score from 79.81% to 82.31%. Integrating
all the five kinds of features will yield the highest Q3 score (i.e. 82.72%) and Sov score (75.89%).

The performance of the six deep architectures and their ensemble on the latest features (the combination of
all five kinds of features) of the DNSS1 validation dataset was also reported in Table 3 . All six architectures
were re-trained on the 1,230 proteins and evaluated on the validation dataset. Compared to the results in
Table 1 , the prediction accuracy of all the networks on the validation set was improved. The Q3 and SOV
scores of the ensemble (DNSS2) were increased to 83.84% and 75.5%, respectively. The results indicate that
the update of the protein sequence databases helps improve prediction accuracy.

Comparison of DNSS2 with eight state-of-the-art tools on two independent test datasets

DNSS2 was compared with eight state-of-art methods including SSPro5.2, DNSS1, PSSpred, MUFOLD-SS,
DeepCNF, PSIPRED, SPIDER3, and Porter 5 on the DNSS2_TEST dataset. The test dataset contains
non-redundant proteins released after Jan 1st, 2018. All the tools were downloaded and configured based on
their instructions. The sequence databases that the tools require were updated to the latest version.

The Q3 score of each tool on the test dataset was reported inTable 4 . In general, DNSS2 is comparable
to the two predictors (Porter 5 and SPIDER3) on this dataset and outperforms the other six methods.
Specifically, DNSS2 achieved a Q3 accuracy of 85.02% and SOV accuracy of 76.01% on the DNSS2_TEST
dataset, which was significantly better than DNSS 1.0 on the DNSS2_test dataset with p-value equal to
2.2E-16.
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In addition to the DNSS2_test dataset, we also compared these methods on the 82 protein targets of 2018
CASP13 experiment, which share less than 25% sequence identity with the training proteins of DNSS2.
Both template-based (TBM) and free-modeling (FM) protein targets were used to evaluate the methods and
the results are summarized in the Table 5 . Consistent with the performance on the DNSS2_test dataset
shown inTable 4 , DNSS2, SPIDER3 and Porter 5 performed best, while DNSS2 achieved slightly better
performance than SPIDER3 and Porter 5.Figure 3 plots the distribution of the Q3 scores for all CASP13
targets obtained by DNSS2 and the other eight methods. In general, the distribution of DNSS2 consistently
shifts to higher Q3 score compared with other methods, even though the distribution of DNSS2 largely
overlaps with that of SPIDER3 and Porter 5.

Table 6 summarized the confusion matrix of predictions of three kinds of secondary structures (helix, sheet,
coil) by DNSS2 on the CASP13 dataset. DNSS2 yields the highest accuracy for helical prediction (87.91%),
followed by the coil prediction (80.21%) and the sheet prediction (76.45%). The prediction errors between
helix, sheet, and coil was also reported. The error rate of misclassifying helix as sheet is the lowest (0.57%)
and sheet as coil is the highest (22.46%).

Conclusion

In this work, we developed several advanced deep learning architectures and their ensemble to improve secon-
dary structure prediction. We investigated six advanced deep learning architectures and five kinds of input
features on secondary structure prediction. Several deep learning architectures such as inception network,
fractal network, and recurrent convolutional memory network are novel for protein secondary structure pre-
diction and performed better than the deep belief network. The performance of the deep learning method
is comparable to or better than seven external state-of-the-art methods on the two independent test data-
sets. Our experiment also demonstrated that emission/transition probabilities extracted from hidden Markov
model profiles are useful for secondary structure prediction.
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Figure Legend

Figure 1. Overview of the experimental workflow for improving secondary structure prediction. (A) Six
principal steps are conducted to construct and train deep networks. The solid box represents an analysis
step. The dashed box represents the output from the previous step. The scroll represents the dataset used
in each step. (B) Dataset generation and filtering process.

Figure 2. Six deep learning architectures: (A) CNN, (B) ResNet, (C) InceptionNet, (D) RCNN, (E) CRNN,
(F) FractalNet) for secondary structure prediction. L: sequence length; K: number of features per position.

Figure 3 . Comparison of the distribution of Q3 scores of eight existing methods and that of DNSS2 on all
CASP13 targets.

Tables

Method Q3(%) Sov(%)

DNSS1 79.1 72.38
DNSS2_CNN 77.86 68.42
DNSS2_RCNN 79.87 72.34
DNSS2_ResNet 79.61 69.94
DNSS2_CRMN 79.32 69.21
DNSS2_FractalNet 79.85 72.82
DNSS2_InceptionNet 80.68 72.74
DNSS2 83.04 72.74
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Table 1. Performance of the six different deep architectures and their ensemble on the DNSS1 validation
dataset. DNSS2 represents the ensemble of six deep architectures (CNN, RCNN, ResNet, CRMN, FractalNet
and InceptionNet).

Rank Feature Name Q3(%) SOV(%)

1 PSSM + FAC + Em + Tr + HHblitsMSA 82.72 75.89
2 PSSM + FAC + Em + Tr 82.36 76.03
3 PSSM + FAC + Em 82.31 74.15
4 PSSM + FAC + HHblitMSA 81.98 74.67
5 PSSM + FAC + Tr 80.13 71.61
6 PSSM + FAC 79.81 71.43

Table 2. Performance of different input feature combinations on the validation dataset of 195 proteins.
PSSM, FAC, Em, Tr, HHblitsMSA denote five kinds of features: PSSM, Atchley factor, Emission probabili-
ties, Transition probabilities, amino acid probabilities from HHblits alignments.

Method Q3(%) Sov(%)

DNSS2_CNN 80.29 72.1
DNSS2_RCNN 81.83 73.97
DNSS2_ResNet 81.53 73.71
DNSS2_CRMN 81.91 73.37
DNSS2_FractalNet 82.02 73.8
DNSS2_InceptionNet 82.74 75.3
DNSS2 83.84 75.5

Table 3. Performance of the six different deep learning architectures (CNN, RCNN, ResNet, CRMN,
FractalNet, and InceptionNet) and their ensemble (DNSS2) on DNSS1 validation dataset and the updated
protein sequence database.

Method Q3 (%) SOV (%)

SSPro5.2 79.26 70.78
PSSpred 81.86 71.65
MUFOLD 81.85 73.56
DeepCNF 82.85 70.57
PSIPRED 83.94 74.49
SPIDER3 85.34 77.61
Porter 5 85.07 76.79
DNSS1 80.14 73.63
DNSS2 85.02 76.01

Table 4. Q3 scores of 9 secondary structure prediction methods on DNSS2_test dataset. Three methods
(SPIDER3, Porter5, DNSS2) have Q3 score higher than 85%.

All All TBM TBM FM FM

Method Q3 (%) SOV (%) Q3 (%) SOV (%) Q3 (%) SOV (%)
SSPro5.2 76.73 69.94 78.16 71.32 76.12 70.88
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All All TBM TBM FM FM

PSSpred 78.8 67.85 81.32 72.11 76.99 64.55
MUFOLD 79.58 71.74 79.71 74.13 79.8 70.79
DeepCNF 80.24 69.5 82.34 73.68 78.36 65.55
PSIPRED 80.7 72 83.67 76.72 78.41 68.14
SPIDER3 81.73 74.39 84.84 78.31 78.89 71.1
Porter5 82.07 74.61 84.79 78.98 79.42 70.3
DNSS1 77.06 70.40 79.48 73.58 75.46 68.79
DNSS2 82.2 73.03 85.37 76.98 79.82 70.56

Table 5. Comparison of methods on the CASP13 dataset in terms of all CASP13 targets, template-based
targets, and template-free targets.

C pred E pred H pred

Coil (C) 80.21% 9.51% 10.28%
Sheet (E) 22.46% 76.45% 1.10%
Helix (H) 11.52% 0.57% 87.91%

Table 6. Confusion matrix of helix, sheet and coil predicted by DNSS2 on CASP13 dataset.

Figure 1

Figure 2
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Figure 3
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