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Abstract

Shared phylogenetic breaks across taxa, syntopic clusters of endemics, and paleogeographic reconstruction of isostatic and

vegetation change over time suggest the existence of one or more ice-free glacial refugia off of North America’s North Pacific

Coast. An incomplete fossil record, however, creates uncertainty over which species persisted in hypothesized refugia, obscuring

interpretation of the timing, potential duration, and surrounding paleoenvironments. We use whole-genome resequencing

to assess the historical biogeography of these complex northern landscapes that consist of multiple coastal archipelagos and

mountain ranges. Discovery of distinct insular and continental clades within Pacific martens (M. caurina) is consistent with

previous morphometric and parasitological studies and also with the Coastal Refugium Hypothesis, thereby supporting the

persistence of diverse, potentially forested refugial communities along the western edges of the Alexander Archipelago. We

found no evidence of admixture on islands that received translocations of American pine martens (M. americana) in the mid

1900s, but we detected introgression in two geographically distinct zones of secondary contact. Evidence of early-generational

hybrids across multiple hybrid zones, each backcrossed with M. americana, is consistent with a history of genetic dilution of M.

caurina through outbreeding with M. americana. Into the future, these hybrid zones will serve as iterative tests for the outcome

of admixture, providing instructive natural experiments for forecasting outcomes of proactive measures such as genetic rescue

by natural resource managers.

INTRODUCTION

Centers of endemism and geographically clustered hybrid zones are hypothesized to be the legacy of species
persistence through the Pleistocene in multiple ice-free glacial refugia followed by population expansion and
contact (Hultén 1937; Heusser 1989; Heaton & Grady 2003; Swenson & Howard 2005). Isostatic adjustment
and lower sea-levels (Mann 1986) are credited with exposing areas of the continental shelf along North
America’s North Pacific Coast (NPC) and providing terrestrial sanctuary for insular and coastal species
displaced by the expanding Cordilleran and Laurentide ice sheets (Heaton et al. 1996; Hewitt 2000; Lacourse
et al. 2003; Mathewes & Clague 2017). Multiple refugia are hypothesized within southeast Alaska’s contem-
porary Alexander Archipelago (e.g., Baranof, Chichagof, Dall, Heceta, and Prince of Wales islands; Foster
1965; Fedorov & Stenseth 2002; Carrara et al. 2003, 2007; Ager 2019) and British Columbia’s Haida Gwaii
Archipelago and surrounding areas (Heusser 1989; Mathewes & Clague 2017). Ice-free coastal refugia may
have also played an integral role in human colonization of the Americas by opening a maritime migration
corridor. New evidence shows the Pacific Northwest was inhabited by humans as early as > 15-16 thousand
years ago (kya; Devièseet al. 2018; Davis et al. 2019) and the Alexander Archipelago at least > 10 kya,
but likely more than 13 kya (Dixon et al. 2014; Carlson & Baichtal 2015; Lesnek et al. 2018; Mackie et
al. 2018; McLaren et al. 2018), potentially predating the opening of an ice-free migration corridor through
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central Alberta, Canada (<=14.8 kya; Margold et al. 2019). An incomplete fossil record, however, creates
uncertainty over which species persisted in hypothesized refugia, obscuring interpretation of their duration
and paleoenvironments. Unlike humans with access to rudimentary sea-faring technologies (Erlandson et
al. 2007), other coastal refugial mammals would have been essentially isolated from mainland populations,
leading to a cessation in gene flow and divergence over time (Hewitt 2000). As such, the genomes of refugial
descendants can provide clues to whether populations or species diverged in refugial isolation. Predicted
variation includes high genetic differentiation from other refugial populations and the abundance of endemic
or ancestral alleles, low genetic diversity as a consequences of small population sizes and genetic drift, and
less spatial structure relative to recently colonized populations (Hewitt 2000).

In contrast to glacial isolation, post-glacial population expansion from multiple refugia can lead to secondary
contact and the formation of hybrid zones between previously isolated taxa (Hewitt 2000; Swenson & Howard
2005). The rapid climatic oscillations of the Pleistocene (Williams 1998) led to recurrent opportunities for
contact and gene flow between incompletely diverged taxa (Hewitt 2000, 2003). The consequences of genetic
exchange are complex and range from homogenization to hybrid speciation (Arnold 1997; Harrison & Harrison
1993; Genovart 2009; Abbott et al. 2016), depending on the level of differentiation, but they can now be
examined in detail using whole-genome sequences (Twyford & Ennos 2012).

North American martens are relatively small meso-carnivores, hypothesized to have diverged in at least two
independent glacial refugia south of the Laurentide ice sheet (Stone et al. 2002): one refugium east of the
Rocky Mountains or Mississippi River drainage giving rise to American pine martens (Martes americana ,
Turton 1806) and another to the west, presumably the cradle for Pacific martens (Martes caurina , Merriam
1890). However, the disjunct contemporary range of Pacific martens and occurrence of two natural hybrid
zones between these species one occurring on near-coastal islands (Kuiu and Kupreanof, AK) along the
NPC and another in the northern Rocky Mountains (Fig. 1) suggest Pacific martens may have a deeper
evolutionary history along the NPC than previously thought (Pauli et al. 2015). The widespread coast-to-
coast boreal distribution of M. americana directly contrasts with the fragmented distribution of M. caurina,
found along the Pacific coast (CA, OR, WA), mountaintops of the American Southwest (NM, CO, UT) and
northward into Montana and Idaho, and four islands within the putative refugial archipelagos of the NPC:
Graham, Moresby, Kuiu, and Admiralty islands.

In addition to two natural hybrid zones, a series of intentional wildlife translocations in the mid-1900s
introduced M. americanato multiple NPC islands without prior knowledge of the native marten species in
the region (Powell et al. 2012). While these introductions may complicate the interpretation of genomic
signals from this region, they also provide a framework for interpreting the consequence of natural versus
anthropogenically-mediated gene flow on the evolution and persistence of species. Accidental introductions
(Fenichel et al. 2008; Weber et al. 2017) or intentional, motivated by economics (McNeely 2001; Fenichel
et al. 2008; Powell et al. 2012), public safety (Massei et al. 2010) or conservation (Powell et al. 2012),
are increasingly common and can result in unanticipated consequences, including hybridization with native
species (Todesco et al. 2016) and exchange of parasites (Prenter et al. 2004) with unknown evolutionary
outcomes. Genetic management techniques, including genetic rescue (Whiteley et al.2015) or gene tweaking
(Thomas et al. 2013), are increasingly proposed as viable mechanisms to boost diversity in small inbred
populations. Application of these techniques can be informed through investigations of existing hybrid zones
and historical wildlife translocations which can cumulatively inform a predictive framework for anticipating
the evolutionary consequences of genetic exchange. In martens, hybridization may disproportionately impact
Pacific martens through genetic dilution from outbreeding (Colella et al. 2018a). Low genetic variation in
certain insular populations of M. caurina (Stone et al. 2002; Small et al. 2003) has led to further concerns
over their persistence, which may be exacerbated by ongoing harvest of forests and extraction of minerals
on those islands (Durbin 1999; USDA 2018).

We use whole-genome resequencing data to refine our understanding of the biogeographic history of NPC
martens and place these results within the context of the Coastal Refugium Hypothesis (CRH; Heusser
1989; Scudder & Gessler 1989; Heaton et al. 1996; Demboski et al. 1999; Sawyer et al. 2019). With increased
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molecular resolution, we explore the evolutionary consequences of introgression in New WorldMartes to
further inform natural resource management initiatives. We examine the distribution of geographic variation
and estimate the timing and directionality of introgression to assess the role of natural hybridization, historic
wildlife translocations, natural colonization events, and glacial cycling in shaping the evolution of New World
martens.

MATERIALS AND METHODS

Genome sequencing, assembly, and post-processing

We generated 11 whole-genome sequences representing both New World marten species, including individuals
collected in both known hybrid zones (Kuiu [KUI] and the northern Rocky Mountains [MTX]) and multiple
translocated islands (Prince of Wales Island, POW; Chichagof Island, CHI), with an Old World sable (Martes
zibellina ) included as an outgroup (Table 1). Sequences were generated on an Illumina HiSeq X through the
Beijing Genomics Institute (BGI Americas, Philadelphia, PA, USA) and NextSeq 500 through the Molecular
Biology Facility at the University of New Mexico. Sampling was based on previous genetic (Dawsonet al.
2017; Colella et al. 2018a) and morphological analyses (Colella et al. 2018b) that helped define species limits
and refine hybrid zone locations through the identification of mixed mitochondrial and nuclear haplotypes.
Subsamples of liver tissue were loaned from the University of New Mexico’s Museum of Southwestern Bio-
logy (MSB) and the Burke Museum at the University of Washington (UWBM). DNA extractions followed
a DNeasy Blood and Tissue Kit (Qiagen, Venlo, The Netherlands) protocol. Our assembly pipeline followed
Colellaet al. (2018c). Read quality was examined using FastQC (Andrews 2010) and adapter sequences and
sex chromosomes removed by excluding those scaffolds from the reference (Trimmomatic v0.33; Bolger et
al. 2014). The Burrows-Wheeler aligner (BWA, Li & Durbin 2010) was used to map reads to the domestic
ferret genome (Mustela putorius furo ; Peng et al. 2014) and an additional BWA iteration extracted mit-
ochondrial genomes using the same reference. Final depth of coverage ranged from 19 to 30X (Table 1).
PCR duplicates were removed using Picard v1.9 (MarkDuplicates; http://broadinstitute.github.io/picard/)
and nuclear and mitochondrial consensus sequences called using SAMtools (mpileup; Li et al.2009). Single
nucleotide polymorphisms (SNPs) were called with the Genomic Analysis Toolkit (GATK, Haplotypecaller;
McKenna et al.2010) for all North American marten and again against the M. zibellina outgroup. SNPs
were filtered (Supplemental Information1) by minimum depth (minDP = 2, set to 1/3rd the coverage of our
lowest coverage sample, as recommended for PSMC analyses; Li & Durbin 2011), genotype quality (minGQ
= 30), minimum minor allele frequency (MAF = 0.1), and scaffold size (1Mb). Private alleles and indels were
removed using VCFtools (Danecek et al. 2011). A MAF of 0.1 removed singletons (e.g., individual-specific,
rare mutations), which are not informative about allelic overlap among populations, to reduced potential
sequencing errors more common in lower coverage genomes. Format conversions (vcf, ped, bed) were conduc-
ted in PLINK (Purcell et al. 2007). Missing data were removed (–max-missing, VCFtools) based on analysis
specifications. Variants were spaced (1 per 100bp window) to account for linkage disequilibrium and sorted
into 46 ‘pseudo-chromosomes’ to enable the application of human-specific analyses to a non-model system
with only 38 chromosomes using custom python scripts available online at https://github.com/jpcolella/.

Assessing genomic differentiation

We generated maximum-likelihood phylogenies for complete mitochondrial genomes and autosomal SNPs,
with and without the inclusion of an outgroup, using RAxML (GTRCAT model, 10,000 bootstrap repli-
cates, random starting seed; Stamatakis 2014). It should be noted that phylogeny inference using highly
variable data (e.g., SNPs) can induce acquisition bias resulting in longer branch lengths (Leaché et al. 2015).
Phylogenies were visualized in FigTree v1.2.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Principal component analyses (PCA) were run and visualized using the SNPrelate (Zheng et al. 2012) R
v3.3.4 library (R Development Core Team 2008). Diversity statistics (FIS , FST, FS or relatedness2 statistics,
nucleotide diversity (π), and Tajima’s D ) were calculated in VCFtools (Commands: –het, –weir-fst-pop,
–relatedness2, –window-pi, –TajimaD, respectively), with π and Dcalculated in 100 bp window intervals.
F2 statistics were generated from the compute moment stats and compute most additive trees functions in
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MixMapper (Lipson et al. 2013) with 1000 bootstraps and SNP blocks of 100 (1 per 100 bp) in MatLab
2018 (The MathWorks, Inc., Natick, Massachusetts, USA).

Introgression analyses

For ADMIXTURE (Alexander et al. 2009) analyses, sites with >80% missing data were removed. The
greatest delta (Δ) in cross-validation (cv) score identified the most appropriate number of populations (K)
by iteratively leaving a sample out and reexamining the partitioning of genetic structure among the remaining
samples. ADMIXTURE results were visualized in R v3.3.4. Populations identified by ADMIXTURE were
used in F- statistics.

F -statistics were run in AdmixTools (Patterson et al.2012) using M. zibellina as an outgroup. F3- statistics
[Target: Source-1, Source-2] explicitly test for admixture (3PopTest in AdmixTools) and considered all
permutations where Source-1, Source-2, and the Target samples came from different populations. While a
significantly negative F3 score (Z < 5) denotes admixture in the Target sample, a positive F3 value does not
necessarily indicate the absence of admixture (Peter 2016). To determine the generational status (e.g., F1,
F2, B1, B2, etc.) of each identified hybrid individual, we use R code available from Lavretsky et al.(2016) to
simulate multi-generational hybrids based on unadmixedM. americana (‘POP1’) and M. caurina (‘POP2’).
We contrasted admixture proportions of empirical hybrids against proportions output for simulated multi-
generational hybrids to estimate generational status. Last, Treemix (Pickrell & Pritchard 2012) was used to
infer historical relationships among populations with 2, 3 or 4 mixture events.

To characterize the backcrossing history of each hybrid sample, we usedF4- statistics, similar to D-statistics
or ABBA/BABA (Kulathinalet al. 2009; Green et al. 2010; Durand et al.2011), in AdmixTools with block-
jackknifing accommodating non-independence between loci. Although F -statistics alone cannot deduce
the direction of gene flow in a system, admixture graph fitting can test whether a proposed evolutionary
model fits the data well (Lipson et al. 2013; Martin et al. 2015). AdmixtureGraph (Mailund et al. 2016)
iteratively fit hybrid individuals into two non-admixed tree topologies (RAxML topology and the RAxML
topology collapsed into K = 6 populations; Supplemental Information 2-3) by estimating the minimal error
placement from F4 results. We tested all F4 population permutations excluding hybrids identified through
F3- statistics. We then tested hybrids against individuals from ‘pure’ populations (e.g., F4 (Outgroup,
Hybrid; continentalamericana , insular caurina )) to decipher the backcrossing histories of hybrid samples
and characterize patterns of gene flow across populations. F4 -statistics [W, X ; Y, Z] are negative (Z-score
[?] -5) if there is more allelic overlap between X and Y than between X and Z, and positive (Z score [?] 5) if
there has been more recent allele sharing between X and Z than between X and Y. To estimate the timing of
introgressive events, we converted drift unit branch lengths (D ) output from MixMapper to absolute time
(years) using the formula D [?] 1- e-t/2Ne (solved for tgenerations; Puckett et al. 2015) and a generation
time of 5 years (Buskirk et al. 2012). Small sample sizes and the absence of a Martes linkage map prevents
linkage disequilibrium-based estimates of Ne and more refined dating of admixture events.

Historical demography

PSMC (Li & Durbin 2011) was used on consensus genomic sequence data to characterize historical demog-
raphy by examining heterozygosity densities in 100bp sliding windows across the genome. PSMC was run
twice for each individual, once utilizing all mapped sequence data and again on data down-sampled to 20X
coverage (near the lowest coverage sample) using the DownsampleSam tool (Picard). Results were scaled
by a general mammalian mutation rate (2.2 x 10ˆ-9 per base pair per year; Kumar & Subramanian 2002)
and marten generation time (5 years), resulting in distributions of effective population size (Ne) through
time. One hundred PSMC bootstrap replicates were performed and plotted for both full-coverage and down-
sampled data to confirm consistent distributional shapes and enable comparison across individuals, as PSMC
is sensitive to variation in coverage depth (ideal coverage >18X; Nadachowska-Brzyska et al. 2016).

RESULTS

Genomic differentiation

4
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Mitochondrial and nuclear phylogenies (Fig. 2d) show strong support for two reciprocally monophyletic
species: M. americana and M. caurina. Both trees also show support for an insular M. caurinaclade (QCI,
ADM). The placement of the two continental M. caurina(COL, PNW) differed in the two phylogenies,
but they were strongly supported as distinct from the insular M. caurina , suggesting substantial genomic
divergence between continental and insular M. caurina . Two individuals (KUI, MTX) exhibited cytonuclear
discordance. PCA results (Fig. 2a-c) are consistent with our nuclear phylogeny, demonstrating substantial
divergence not only between New WorldMartes species (PC1 = 46%; Fig. 2b), but also between insular
and continental populations of M. caurina (PC1 = 39%; Fig. 2c). Within M. caurina, PC2 also separates
mainland M. caurinapopulations (COL, PNW) and accounts for a notable 34% of the variation. PCA plots
(Fig. 2a-c) highlight the intermediacy of putative hybrid individuals (KUI, MTX) and also their distinction
from each other.

The inbreeding coefficient, FIS, is highest for insularM. caurina : 0.89 for ADM and 0.77 for QCI (Supple-
mental Information 4). Mainland M. caurina also exhibit high FIS, 0.65 for PNW and 0.62 for COL, followed
by populations of M. americana. CHI has the lowest FIS of all M. americana populations and the 2 putative
hybrid individuals have an FIS of essentially 0. FST was 0.438 between pooled M. americana and pooled
M. caurina . Contrasting pooled M. americana against pooled (insular and mainland) populations of M.
caurina found similar, high FST estimates (mean = 0.44-0.45, weighted mean = 0.68-0.70) with only moder-
ate FST estimates between insular and continental populations of M. caurina (mean = 0.01, weighted mean
= 0.11; Supplemental Information5).F2- statistics (Supplemental Information 6) and FS(local inbreeding or
relatedness2, Supplemental Information 7) demonstrate similar patterns of genetic differentiation between
individuals and species, highlighting divergence within M. caurina . Nucleotide diversity (π) was similar
across species, but analysis of insular and mainland M. caurina populations separately produced elevated π
estimates, with the highest values for insular M. caurina (Supplemental Information 8). Insular M. caurina
also exhibited the highest positive D value, with mainland M. caurina exhibiting only negative and the
lowest median D value (Supplemental Information 8).

Tests for introgression

The most supported ADMIXTURE result parsed six populations (K = 6; Fig. 3a): two within each marten
species and two putative hybrids, identified as independent populations (KUI, MTX). Although K6 exhibited
the greatestΔcv (Supplemental Information 9), we also examined alternative values of K (Lawson et al. 2018;
Supplemental Information 10) to thoroughly characterize genetic structure in North AmericanMartes (Janes
et al. 2017). The K2 model splits M. caurinafrom M. americana , while K3 through K5 models identify ad-
ditional intraspecific structure. Insular and continental M. caurinapopulations were separated under K4 and
K6 models, while K7 distinguished each M. caurina sample as an independent population (Supplementary
Information 10-11). Under all values of K, only two individuals were identified as admixed: KUI and MTX.
NegativeF3 -statistics (Table 2) also consistently identified these samples as hybrids between M. americana
and M. caurina , while all other F3 results were positive or insignificant (Supplemental Information 12-13).
Consistent with geography and a K3 ADMIXTURE model, F3 -statistics, among populations identified by
K6, found the KUI hybrid to be the result of mixture between the insular populations of each species, while
the continental hybrid appears to be a combination of the continental populations of each species (Table
2). Under K2 through K4 models, hybrid samples contain near 50% genetic proportions corresponding to
each species, suggesting that these individuals may represent F1 hybrids or early generational backcrosses
(Supplemental Information 11). Consistent with these results, hybrid-class simulations most support the
KUI hybrid (empirical admixture proportions: 55% M. americana , 45% M. caurina ) as an F1 or 48-54%
assignment to each species. Empirical admixture proportions for the MTX hybrid (60% M. americana , 40%
M. caurina ) fall intermediate to simulated admixture proportions for an F1 hybrid and a single generation
backcrossed with M. americana(73-76% assignment to the backcrossed species, 22-26% assignment to the
other parental species). Results were identical for simulations on all M. americana and M. caurina and
for insular and continental populations of each species, when run separately, indicating that both hybrids
represent early generational stage crosses, with MTX potentially the result of a complex backcrossing history
between both species. R simulations based on Lavretsky et al. (2016) demonstrate the loss of a signature of
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introgression after four generations of backcrossing into either species (Supplemental Information 14).

Consistent with those backcross estimates, Treemix phylogeny estimations rooted on M. zibellina placed
both hybrids as separate sister lineages to the M. americana clade and identified the first most likely gene
flow event between MTX and an M. caurina ancestor, followed by a migration event between KUI and M.
caurina(Supplemental Information 15). Interestingly, the third most likely migration event was estimated
between the outgroup M. zibellinaand the KUI hybrid.

F4 statistics show the directionality and intensity of backcrossing is similar across the two hybrids (Sup-
plemental Information 16-17). KUI shares more genetic overlap with insular M. caurinacompared to the
continental clade and MTX has similar proportions of insular and continental M. caurina alleles (Supplemen-
tal Information 16-17). For tests across all individuals, AdmixtureGraph identified KUI as a mix between
CHI and POW (minimal error = 0) and MTX as a cross between ADM and the ancestor of continental M.
americana (Supplemental Information 18-20). Interestingly, when considering only the populations identi-
fied by ADMIXTURE (e.g., pooled continental and insular populations of each species), AdmixtureGraph
identified both hybrids as a mix between the continental populations of each species. However, notably there
were multiple clustered minimal-error estimates (Supplemental Information 20) that we anticipate will be
resolved with increased sample sizes. MixMapper found that the timing of admixture did not differ from the
present (0) for either hybrid (Supplemental Information 21).

Demographic histories

PSMC identified three major demographic histories: distinct insular and continental histories within M.
caurina and a single general demographic history within M. americana with greater variance relative to
either M. caurina distribution (Fig. 3b). AllM. caurina distributions are lower (Ne) thanM. americana ,
with insular M. caurina exhibiting the lowest Ne of all groups examined. Of the populations examined, CHI
has the highest historic peak in Ne, while MAK had a larger effective population size recently.

DISCUSSION

Ice-cover during the last glacial maximum (LGM; 26.5-19 kya) displaced most high-latitude species, forcing
them into ice-free glacial refugia (Hultén 1937; Hewitt 2000, 2003; Bennett & Provan 2008; Clark et al. 2009).
The largest documented LGM macro-refugium in North America was located south of the Laurentide and
Cordilleran ice sheets in the contiguous U.S., evidenced by fossil data, climatic modeling, and phylogeographic
signatures (Graham et al. 1996; Jackson et al. 2000; Holliday et al. 2002), although the extent and complexity
of this refugium requires further resolution. Additional LGM refugia are hypothesized in Beringia, the area
of exposed continental shelf connecting Alaska to eastern Siberia (Hultén 1937; Abbott & Brochmann 2003;
Hope et al. 2013), and multiple smaller micro-refugia are proposed among the archipelagos of the North
Pacific Coast (Heaton et al. 1996; Hewitt 2000; Carrara et al. 2003, 2007; Lacourse et al. 2003; Mathewes &
Clague 2017), although the duration and possible cyclic recurrence of these refugia remains uncertain. Coastal
refugia within the Alexander and Haida Gwaii archipelagos could explain high levels of endemism in this
region (Cook & MacDonald 2001; Dawson et al. 2007) and clustered phylogenetic breaks separating insular
and continental populations (Colella et al. 2018c; Sawyer et al. 2019) hypothesized to result from post-glacial
refugial population expansion limited by secondary contact with closely-related, previously-allopatric taxa
(Hewitt 2000). Paleoendemic refugial persistence also explains the rapid reestablishment of complex biotic
communities so quickly following deglaciation (Lesnek et al. 2018; Ager 2019).

Significant geographic structure within Pacific martens is consistent with the Coastal Refugium Hypothesis
(CRH) (Fig. 3, 4), suggesting the persistence of at least one insular M. caurina population in a North Pacific
coastal refugium potentially located along the western fringe of the Alexander or Haida Gwaii archipelagos.
The two clades within M. caurina are genetically distinct, parsing an insular and continental lineage, despite
mitochondrial nesting (Fig. 2d; Supplemental Information 5). The two insular and continental M. caurina
clades are geographically discontinuous (Fig. 1) and estimated to have diverged almost 1 million years ago
(Fig. 3b), although PSMC date estimates are highly sensitive to scaling (mutation rate and generation ti-
me). Divergence predating the most recent interglacial suggests that insular M. caurina may have diverged
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from continental populations over multiple glacial cycles, perhaps initially in a coastal refugium and then
subsequently on one or more NPC islands. Our genomic results initially contradict the fossil record, which
shows a scarcity of fossils on POW Island during the LGM (˜20-15 kya, Lesnek et al. 2018) and documents
martens appearing on POW during the late Pleistocene (>14 kya) and early Holocene (9-14 kya, Heaton &
Grady 2003; Pauli et al. 2015). Absence of martens and other mammals in the Southeast Alaskan fossil record
during the LGM may reflect sampling bias, as most dated fossil materials from the region were collected
from the Shuká Káa cave at the northern end of POW. Insular M. caurina have not been documented on
POW and this site was likely ice-covered at the peak of the LGM (Lesnek et al. 2018). Even so, a number of
meso-carnivore teeth from Shuká Káa cave morphologically identified as mink (Mustela vison ) may instead
mark the early presence of insularM. caurina (Heaton & Grady 2003), as these species have similar tooth
morphology. Similar to misidentifications of Pleistocene coastal black bear (Ursus americanus ) fossils from
POW that were originally listed as brown bears (Ursus arctos ) due to size differences over evolutiona-
ry timescales (Lindqvist pers. obs.), insular M. caurina are physically larger than bothM. americana and
continental M. caurina (Colella et al. 2018b) which may confound taxonomic assignment of dentition. The
persistence of diverse communities of large terrestrial mammals, including caribou, bears, and foxes, evident
in the fossil record both pre- and post-LGM (Lesnek et al. 2018), points to a higher potential for local refugial
persistence through the LGM over the recolonization of these outer islands from mainland sources since the
Holocene (Ager 2019).

The viability of a coastal migration route for human colonization of the Americas hinges on our understanding
of glacial extent and biotic community composition along the NPC during the late Pleistocene. Geological
investigations of southeast Alaska have produced mixed results. Bathymetry (Carrara et al. 2003, 2007)
and palynology (Ager 2019) support the persistence of coastal refugia, while cosmogenic exposure dating has
shed doubt on hypothesized refugial locations (Lesnek et al. 2018). Multiple signatures of refugial persistence
across taxa (Foster 1965; Heaton et al. 1996; Hewitt 2000, 2003; Weckworth et al. 2005; Colella et al. 2018c;
Sawyer et al. 2019) is detailing increasingly complex refugial communities along the coast.

For marten, the laterally dilated cranial shape of insular M. caurina hints at a dietary shift towards the
consumption of marine prey items (Colella et al. 2018b), also documented in stomach contents (Giannico
& Nagorsen 1989) and also reflected in insular wolves of the NPC (Darimont et al. 2009; Muñoz-Fuentes
et al. 2010). Martens rely on deep persistent snow and complex forest structure (Proulx 1997; Pauli et al.
2013; Manlick et al. 2017; Martin et al. 2019) for predator avoidance, thermal management, and efficient
locomotion, suggesting that refugial ecosystems would have contained forest community assemblages. Access
to both marine and terrestrial prey items and timber resources along a NPC migration route, would have
enhanced human survivorship during an early pulse of human migration into the Americas via the Pacific
coast (Fladmark 1979; Dixon 1993).

The insular-continental biogeographic and phylogenetic break withinM. caurina is largely consistent with
signatures from numerous other NPC paleoendemics (bears, Heaton et al. 1996; deer, Latchet al. 2009; er-
mine, Colella et al. 2018c; shrews, Demboski & Cook 2001; deer mice, Sawyer et al. 2019) and also evident
in the few associated parasites examined to date (Soboliphyme baturini , Koehler et al. 2007, 2009; Ho-
berget al. 2012). Disparate distributions of insular lineages across these heterogeneous archipelagos suggests
that the geographic pattern and duration of refugial isolation may vary across climate cycles, depending
on the ecological plasticity and dispersal abilities of incumbent species. Insular ‘ABC’ brown bears (Ursus
arctos,Heaton et al. 1996), for example, are currently geographically restricted to the three northern most
islands of the Alexander Archipelago (Admiralty, Baranof, Chichagof), while the insular black bear lineage
(Byun et al. 1997) has a more southerly distribution encompassing southern Alexander Archipelago islands,
the Haida Gwaii Archipelago, Vancouver Island, and coastal British Columbia. Under the assumption of
niche conservatism, this phylogeographic pattern suggests a cooler, northern refugium within the Alexander
Archipelago and a slightly warmer, perhaps more heavily vegetated refugial ecosystem to the south, either
in the southern Alexander Archipelago or Haida Gwaii. Early paleoclimatic models for NPC refugia hypo-
thesized these areas to be primarily tundra and unable to support forest-associated taxa such as black bears
and martens (Hansen & Engstrom 1996; Ager 2007). More recently however, palynological investigations
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and radiocarbon dating of postglacial peat and sediment cores indicate that coastal forests similar to today’s
forests existed in the Alexander Archipelago during the last interglacial (Ager 2019). Rapid colonization
of the western-most islands by pine trees (Picea ) immediately following glacial recession (˜17 kya) hints
at the potential refugial persistence of coniferous forests (Lesnek et al. 2018; Ager 2019) and parallels our
hypothesis that refugial persistence of insularM. caurina is more likely than post-glacial recolonization.

Comparative demography also identified at least three major evolutionary trajectories: M. americana, conti-
nental M. caurina (Fig. 3b) and insular M. caurina, consistent with the CRH. Martes americana distributions
of effective population size are overall higher than those of M. caurina clades, consistent with the contiguous
contemporary range of this species and historical divergence in and subsequent expansion from a single, large
eastern refugium (Stoneet al. 2002). Within M. americana , Chichagof Island exhibits the highest effective
population size (Ne), followed by central Alaska (Fig. 3b). Although high Neis surprising for an insular po-
pulation, Chichagof Island received iterative translocations of M. americana in the mid-1900s from multiple
source populations, including four other islands in southeast Alaska (Baranof, Wrangell, Mitkof [Peters-
burg], and Revillagigedo [Ketchikan] islands) and one distant continental locality (Polly Creek, in central
AK). These introductions may inflate population size estimates as a consequence of outbreeding (Paul 2009)
and make the historical distribution of Ne for this individual resemble that of its source populations (e.g.,
MAK). In contrast, Prince of Wales Island (POW) received introductions from only two proximate sources:
Revillagigedo and Mitkof islands (Burris & McKnight 1973). Revillagigedo Island shows a similar demogra-
phic history to POW, suggesting those translocations resulted in successful establishment (Elkins & Nelson
1954). Although our results hint at insular-continental structure within M. americana (Fig. 3), this signal
is muddled by historical wildlife translocations and remains unresolved from a nuclear perspective (Fig.
2). Relative to M. americana , both continental and insular M. caurina have persistently smaller effective
population sizes.

Among continental species, a common response to rising temperatures is the upward distributional shift in
elevation (or latitude) to retain suitable environmental conditions (Hampe & Jump 2011). The fragmented
contemporary distribution of continental M. caurina populations (U.S. west coast, Pacific Northwest forests,
mountaintops of the American Southwest; Fig. 1) is consistent with the retention of a cooler paleoclimatic
niche for species experiencing increasing fragmentation under current warming conditions (Brown 1971;
Anderson et al.2000; Parmesan 2006; Hampe & Jump 2011; Meng et al. 2019). Relative to all continental
taxa, insular M. caurina show a significantly depressed effective population size through time, with the
highest overall inbreeding coefficients. Although likely a consequence of island life, small effective population
sizes and high levels of inbreeding place insular martens at an elevated risk of extinction (Frankham 1998;
Rybicki & Hanski 2013).

Refugial divergence along the NPC also explains the disjunct contemporary distribution of M. caurina (Fig.
1). Along the NPC,M. caurina inhabits at least three islands; however, Admiralty Island in Southeast Alaska
is more than 300 km north of the two insular Canadian populations. Although geographic disjunction across
three islands is substantial, the genetic similarly of these island populations points to historical divergence
in a single coastal refugium and a potentially more widespread historical distribution of insularM. caurina
throughout NPC islands. Higher density sampling across the NPC will be necessary to refine the geographic
limits of insular and continental M. caurina clades. Refugial divergence of insularM. caurina is further
supported by the persistence of the insular lineage in the Kuiu Island hybrid zone (Dawson et al. 2017), ˜20km
south of Admiralty Island, relictual signatures ofM. caurina on POW (Pauli et al. 2015), and associated
nematodes (Soboliphyme baturini ) on Chichagof Island (Koehleret al. 2007, 2009; Hoberg et al. 2012).
Chichagof martens harbor distinctive nematodes that are phylogenetically close to S. baturini found in other
populations of M. caurina , suggestingM. caurina or a ‘ghost’ marten lineage may persist or have persisted
on this island until relatively recently (Koehler et al. 2007, 2009; Hoberg et al. 2012). Similarly, POW is
hypothesized to have been colonized by multiple natural sources (Pauliet al. 2015) and iterative translocations
of M. americanato this island were surprisingly successful considering as few as 10 martens (4 females) were
introduced to the island (Paul 2009). In contrast, our genomic analyses did not find M. caurina alleles in
either of the individuals sequenced from islands that received translocations of M. americana . Instead, we
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found each island to be genetically aligned with M. americana and their translocation source populations:
Chichagof Island with central Alaska and POW with Revillagigedo Island (Fig. 2 and 3). Overall our results
suggest thatM. caurina were either not present on these islands prior to translocations or were recently
replaced or swamped by introduced or invading M. americana . Interspecific competition, outbreeding, or
the introduction of foreign pathogens among other variables may have impacted native M. caurina (Plein
et al. 2016; Colellaet al. 2018b; Northover et al. 2018). Ultimately, until additional hybrids are sequenced,
our results discourage the translocation of American marten for the genetic rescue or restoration of coastal
martens due to potential swamping and emphasize the importance of careful source population selection, as
the NPC harbors significant cryptic diversity and complex evolutionary histories.

We detected a hybrid individual collected from each natural mixing zone: Kuiu Island Alaska and western
Montana in the northern Rocky Mountains (Table 2; Fig. 2-4; Supplemental Information 9-16). Both hybrids
were female, had M. americana mitochondrial haplotypes (Fig. 2d), and mixed nuclear ancestry, with the
Montana hybrid containing continentalM. caurina alleles and the Kuiu hybrid containing insularM. caurina
alleles (Table 2; Supplemental Information 10-13, 16-17). Both admixed individuals were identified as early
generational-stage hybrids (e.g., F1’s or a single generation backcrossed with M. americana , Supplemental
Information 11-12) with introgression occurring recently (Supplemental Information 21). Although sample
sizes are small, the absence of late-generational hybrids is surprising, especially for the Montana zone which
has persisted for many generations (Wright 1953). Detection of only early-generational hybrids is consistent
with the presence of hybrid incompatibilities, where F1 hybrids experience a temporary elevation in fitness
(heterosis) compared to later generational-stage hybrids (e.g., F2 and beyond) that may suffer outbreeding
depression as a result of disrupted co-adapted gene complexes (Todesco et al. 2016). The disruption of co-
adapted gene complexes or genes involved in local adaptation via introgression, and particularly loci involved
in disease and pathogen resistance (Alibert et al. 1994), may pose a particular challenge to näıve insular
taxa. This hypothesis warrants further genomic investigation with fine-scale sampling from within hybrid
zones and translocated islands.

Differentiation between insular and continental M. caurina was suggested previously based on reduced-
representation genetic approaches (Demboski et al. 1999, 2001; Stone et al. 2002; Smallet al. 2003; Dawson
et al. 2017), but the extent of divergence was unknown. A genomic pattern of refugial divergence may be more
widespread than previously suspected and additional forest-associated taxa, that are not well represented in
the fossil record, may have persisted in NPC refugia. Our results underscore the importance of reevaluating
work previously based on one or a few genes, as genomic resolution continues to provide unexpected insight
into the evolutionary complexities of coastal refugia (Miller et al. 2012; Colella et al. 2018c) and complex
landscapes and holds great promise to unravel complexity across time.
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TABLES & FIGURES

Figure 1. Range maps for M. americana (green) andM. caurina (blue) based on IUCN distributions (iucn-
redlist.org) and mitochondrial haplotype distributions (Dawson et al. 2017; Colella et al. 2018b) with hybrid
zones (Kuiu and Kupreanof island and western Montana into southern British Columbia) denoted by gray
hashing. Genome samples are indicated with points and 3-letter locality abbreviations that correspond to
Table 1. Genome samples are colored based on ADMIXTURE K6 assignment (Fig. 3a): insularM. caurina
(QCI, ADM), continental M. caurina (COL, PNW), continental (MAK, CHI*) and insular M. america-
na (POW*, REV). * indicates an island population that was received M. americanatranslocations from a
mainland source population. Two hybrid individuals (KUI, MTX) are shown in grey with an X.

Figure 2. (a) Principal component analysis (PCA) of onlyM. americana samples; (b) All examined New
World Martessamples, identifying 2 intermediate hybrids; and (c) PCA of M. caurina samples only, demon-
strating significant differentiation between insular and continental populations (39% of variation, PC1), and
also between distinct continental populations of M. caurina (34% of variation, PC2). (d) mirrored mitochon-
drial genome (mitogenome, left) and autosomal SNP (right) phylogenies, depicting 2 monophyletic marten
species (M. americana green, M. caurina blue) and 2 unsorted, putative hybrids (MTX, KUI). Sample
abbreviations are defined in Table 1.
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Figure 3. (a) Optimal ADMIXTURE population assignments (K6) and ancestry proportions for sampled
New World Martes genomes, indicating 2 independent populations within each species (M. caurina blue and
M. americana green) and two admixed individuals (KUI, MTX: gray; see also Supplemental Information 10).
Specimen ID’s correspond to abbreviations in Table 1; (b) PSMC distributions of historical demography for
unadmixed samples scaled by a generation time of 5 years (g) and general mammalian mutation rate (mu =
2.2 x 10-9) demonstrating 3 distinct demographic trajectories: one for continental (C) M. caurina , one for
insular (Is.) M. caurina , and one for M. americana . Colors correspond to the admixture plot in (a).
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Figure 4. AdmixtureGraph results for each hybrid (KUI, MTX) based on F4 -statistics of populations
identified by ADMIXTURE (K = 6). Node abbreviations indicate: CA = coalescence between all M. caurina
and M. americana , CC = coalescence between all M. caurina lineages, AA = coalescence between all M.
americanalineages, CMX/CIX = coalescence between mainland/insular M. caurina and hybrids, AMX/AIX
= coalescence between mainland/insularM. americana and hybrids. OG = outgroup (Martes zibellina ).

TABLES

Table 1. Museum specimen catalog numbers (ID), collection localities, and corresponding abbreviations
(Abbrev.), species assignment, genomic coverage, and year of collection. MSB = Museum of Southwestern
Biology (MSB:Mamm), UWBM = University of Washington (UWBM:Mamm), Burke Museum, UAM =
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University of Alaska Museum of the North (UAM:Mamm). IS = insular M. caurina clade, C = continentalM.
caurina clade

Museum ID Abbrev. Collection locality Species Coverage Year Collected Sequencing method

MSB197660 MAK Central Alaska M. americana 22.52 2005 NextSeq 500
MSB221158 POW Prince of Wales Is. M. americana 19.89 2004 HiSeq 10X
MSB34701 CHI Chichagof Is. M. americana 21.15 1994 NextSeq 500
MSB197227 REV Revillagigedo Is. M. americana 23.77 2003 HiSeq 10X
UWBM81779 PNW Washington M. caurina (C) 30.33 <2010 HiSeq 10X
MSB224027 COL Colorado M. caurina (C) 28.19 2008 NextSeq 500
MSB197762 ADM Admiralty Is. M. caurina (IS) 21.15 2004 NextSeq 500
MSB157350 QCI Graham Is. M. caurina (IS) 24.46 2005 HiSeq 10X
UAM69033 MTX Montana admixed 19.95 2004 NextSeq 500
UAM48762 KUI Kuiu Is. admixed 28.57 1997 HiSeq 10X
MSB192919 Mazi Russia M. zibellina 28.65 2005 HiSeq 10X

Table 2. Significantly (Z score [Z] > 5) negative F3 statistics for both hybrids examined and associated
source populations, group according to ADMIXTURE K6 results (Is.americana = REV, POW; ML amer-
icana = CHI, MAK; Is.caurina = QCI, ADM; ML caurina = PNW, COL - where Is. indicated island and
ML indicated mainland or continental localities). SE = standard error.

Target Source2 Source2 F3 SE Z SNPs

KUI Is. americana Is. caurina -0.341386 0.011619 -29.382 36782
KUI ML americana Is. caurina -0.339249 0.01224 -27.716 37150
KUI Is. americana ML caurina -0.32483 0.013937 -23.306 38129
KUI ML americana ML caurina -0.322549 0.014368 -22.449 38495
MTX ML americana ML caurina -0.304466 0.015845 -19.215 35448
MTX ML americana Is. caurina -0.303897 0.015705 -19.35 34614
MTX Is. americana ML caurina -0.298224 0.018026 -16.545 35550
MTX Is. americana Is. caurina -0.297276 0.017801 -16.7 34681
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