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Abstract

It is possible to estimate the prior probability of pathogenicity for germline disease gene variants based on bioinformatic
prediction of variant effect/s. However, routinely used approaches have likely led to the underestimation and underreporting of
variants located outside donor and acceptor splice site motifs that affect mRNA processing. This review presents information
about hereditary cancer gene germline variants, outside native splice sites, with experimentally validated splicing effects. We list
81 exonic variants that impact splicing regulatory elements in BRCA1, BRCA2, MLH1, MSH2, MSH6 and PMS2. We utilized a
pre-existing large-scale BRCA1 functional dataset to map functional splicing regulatory elements, assess the relative performance
of different tools to predict effects of 283 variants on such elements, and develop a generic workflow to prioritize variants that
may impact splicing regulatory elements. We also describe rare examples of intronic variants that impact branchpoint sites and
create pseudoexons. We discuss the challenges in predicting variant effect on branchpoint site usage and pseudoexonization,
and suggest strategies to improve the bioinformatic prioritization of such variants for experimental validation. Importantly, our
review highlights the importance of considering impact of variants outside donor and acceptor motifs on mRNA splicing and
disease causation.
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Introduction

Evaluating the potential functional impact of variants in Mendelian disease genes is a key component in
the interpretation of their clinical significance. Disease gene databases chiefly contain nonsense, frameshift
indels, and missense variants, in addition to variants that impact donor and acceptor splice site motifs.
In particular, synonymous variants are often dismissed from variant curation and test reporting under the
assumption that they are “silent” variants. However, these variants can still impact transcription, mRNA
processing and translation (Sauna & Kimchi-Sarfaty, 2011). Further, intronic variants outside of the donor
and acceptor splice site motifs are mostly disregarded in clinical testing and/or reporting due to the low
sensitivity and specificity of currently available methods to predict their impact on mRNA splicing. This
negative bias in recording of synonymous and intronic variants has implications for their inclusion in data
analyses and functional studies in research settings.

Current variant interpretation approaches also generally ignore the fact that all types of exonic and intronic
variants can potentially affect mRNA splicing (we will term these types of variants as being “spliceogenic”).
Exonic variants initially annotated as synonymous, missense, nonsense or frameshift based on predicted codon
usage can destroy, enhance or create motifs recognized by the mRNA splicing machinery (see below). Intronic
variants outside the native splice sites can destroy branchpoint (BP) motifs, or create or enhance the use of
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cryptic sites. To improve assessment of variant pathogenicity and clinical decision-making, it is important
to expand variant curation and reporting to include reliable bioinformatic prediction of spliceogenicity for
variants located outside the donor and acceptor splice site motifs.

Variants outside donor and acceptor splice site motifs and impact on mRNA splicing

Precursor mRNAs are transcription products of human genes composed of exons interspersed with introns.
Exon-intron boundaries are defined by multiple sequence motifs (Figure 1). Among these are the donor (5’)
and acceptor (3’) splice site motifs based on the definitions by Burge et al (Burge, Tuschi, & Sharp, 1999): 11
bases for the donor splice site motif (from the 3 last exonic to the 8 first intronic bases); and 14 bases for the
acceptor splice site motif (from the 12 last intronic to the first 2 exonic bases). The other significant motifs
are BP sites and the polypyrimidine tract upstream of the 3’ splice site (Z. Wang & Burge, 2008). In mature
mRNAs, introns are spliced out and exons are ligated by a complex cellular machinery called the spliceosome,
containing small nuclear RNAs and proteins (Z. Wang & Burge, 2008). However, precursor mRNAs can
undergo alternative splicing, leading to different mature mRNAs. This process is regulated by cisregulatory
elements including splicing enhancers and silencers that recruit various RNA-binding proteins (Z. Wang &
Burge, 2008). Exonic splicing regulatory elements (SREs) include exonic splicing enhancers (ESEs) and
exonic splicing silencers (ESSs). Sequence variants that alter the composition, affinity, and function of
spliceosomes can lead to the improper identification of exon-intron boundaries, thereby generating mRNAs
that encode a premature termination codon, or otherwise encode a dysfunctional protein (G.-S. Wang &
Cooper, 2007).

Variants within the first two bases or last three bases of the exon can alter the native splice sites and
inactivate them. Exonic variants that introduce sequences that are identical or closely similar to donor or
acceptor splice site sequences can be spliceogenic if the de novosplice site motif has sufficient activity to
outcompete the native splice site. Exonic variants can also induce exon skipping through ESE loss and/or
ESS gain (Cartegni, Hastings, Calarco, de Stanchina, & Krainer, 2006).

Intronic variants that abrogate BP sites, commonly located within the -18 to -44 nucleotide window (Signal,
Gloss, Dinger, & Mercer, 2018), can lead to exon skipping (Khan et al., 2004; Wappenschmidt et al., 2012;
K. Zhang, Nowak, Rushlow, Gallie, & Lohmann, 2008), intron retention (M. Li & Pritchard, 2000), or
usage of new distant 3’ splice sites (Crotti et al., 2009). Deeper intronic variants, typically more than
100 nucleotides from exon-intron junctions, can lead to insertion of cryptic exons into the mature mRNA
transcript by creating a new (or enhancing use of a cryptic) donor or acceptor motif, or by interfering with
SREs [reviewed in (Vaz-Drago, Custódio, & Carmo-Fonseca, 2017)].

Utility of splicing prediction tools in variant interpretation

Multiple in silico tools have been developed to predict the impact of spliceogenic variants (Table 1), and such
prediction is an important component of variant curation and interpretation processes for Mendelian disease
genes. Several studies have assessed the utility of prediction tools in interpretation of variants in hereditary
breast and ovarian cancer genes. These include: clinical calibration of the MaxEntScan (MES) tool to estimate
the prior probability of pathogenicity of genetic variation in BRCA1 and BRCA2 due to impact on native
donor and acceptor motifs, or the creation of exonic de novo donor sites (Vallée et al., 2016); assessment of
the sensitivity and specificity of different MES thresholds to predict aberrant splicing using experimentally
validated spliceogenic variants in BRCA1 ,BRCA2 , MLH1, MSH2, MSH6 and PMS2 (Shamsani et al.,
2018); and the combined use of MES and Splice Site Finder-like, trained and validated using in vitro mRNA
data to improve in silico prediction of spliceogenic variants in donor and acceptor splice site motifs (Leman
et al., 2018). The combined MES and Splice Site Finder-like analysis pipeline has been previously proposed
as a prioritization method for splicing analysis of BRCA1 andBRCA2 variants of uncertain significance
(VUSs) (Houdayer et al., 2012). These studies have shown the reliability of bioinformatic tools in predicting
spliceogenic variants in the donor and acceptor splice site motifs, especially those that disrupt the highly
conserved dinucleotides at the 3’ (AG) and 5’ splice sites (GT).

In contrast, predictors of variant effects on exonic SREs or BP sites currently perform poorly (see below),
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which limits their utility to inform variant classification in routine diagnostics. There is currently no predic-
tion tool specifically designed for pseudoexon-activating variants. In the following sections, we discuss: i) the
spliceogenic variants outside of the donor and acceptor splice site motifs; ii) the current tools used to pre-
dict their effects on splicing and their predictive performance; and iii) combined strategies using functional
studies and in silico tools to prioritize variants for confirmatory splicing assays.

Exonic variants can lead to loss/gain of SREs

Variants annotated as synonymous, missense, nonsense, or frameshift variants that disrupt exonic SREs
have been identified in hereditary cancer genes. Most of the published splicing assays on exonic SREs have
focused on variants in BRCA1, BRCA2 and the mismatch repair genes (MLH1 , MSH2 , MSH6 and PMS2
). We have generated a comprehensive list of 81 variants in exonic SREs in these genes that resulted in
exon skipping in Supplementary Table 1 (BRCA1 , BRCA2 ) and Supplementary Table 2 (MLH1 ,MSH2
, MSH6 , PMS2 ). Exonic splicing variants in other hereditary cancer genes include: a synonymous variant
in theAPC gene, NM_000038.6:c.1869G>T [p.(Arg623=)], detected in a familial adenomatous polyposis
family, that leads to exon 14 skipping (Montera et al., 2001); and two nonsense NF1 variants identified in
Neurofibromatosis type 1 patients, NM_000267.3:c.6792C>A and NM_000267.3:c.6792C>G [both initially
annotated as p.(Tyr2264*)] that induce skipping of exon 37 and exons 36-37 (Baralle et al., 2006; Messiaen,
Callens, De Paepe, Craen, & Mortier, 1997). In addition to single nucleotide substitutions, other types of
exonic variants can also disrupt SREs, such as small deletions, e.g. NM_000059.3(BRCA2 ):c.470_474del
(Sanz et al., 2010), and duplications, e.g. NM_000535.6(PMS2 ):c.325dup (van der Klift et al., 2015). Some
variants can act through a combination of mechanisms. For example, NM_000249.3(MLH1 ):c.840T>A
[p.(Tyr280*)] and NM_000249.3(MLH1 ):c.842C>T [p.(Ala281Val)] have each been shown to disrupt an
SRE and at the same time create a new donor site leading to exon skipping and partial exon deletion
(Soukarieh et al., 2016).

Experimental assays can identify active exonic SREs:BRCA1/2 as exemplars

It has been recommended that a precise and detailed map of active SREs be established for each gene of
interest in order for SRE prediction to be useful in clinical diagnostics (Houdayer et al., 2012). A large
proportion of missense and synonymous BRCA1 and BRCA2variants are currently catalogued in ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/) as (likely) benign or VUS. We describe below published findings
and our own bioinformatic analysis of existing experimental data, which reveal that some of these variants
are located in putative exonic SREs. Variant nomenclature is based on NM_007294.3 for BRCA1 and
NM_000059.3 for BRCA2 .

Minigene-based microdeletion assays have been used to map ESEs in BRCA2

Minigene constructs, containing a genomic segment from the gene of interest that includes the alternatively
spliced exon(s) and flanking intronic regions, express pre-mRNAs. These constructs provide a rapid assay
for SRE function, and effect of trans-acting factors on splicing regulation (Cooper, 2005).

Acedo et al. (2015) functionally mapped the ESE-rich regions inBRCA2 exons 19-27 using minigene splicing
assays to improve ESE predictions and facilitate identification of ESE-disrupting spliceogenic variants. Since
the density of active ESEs is highest near splice sites ( 50 nt at both exon ends) (Fairbrother, Holste, Burge,
& Sharp, 2004), they mapped functional ESEs by introducing 34 30-nt microdeletions at the ends of each
exon (Acedo et al., 2015). They found a microdeletion in exon 19 and another in exon 20 that clearly
affected the splicing process, and six other microdeletions in exons 19, 20, 21 and 23 that had weak effects.
Three previously characterized ESE variants, c.8378G>A (exon 19), c.8969G>A (exon 23), and c.9006A>T
(exon 23) (Acedo et al., 2012), lay within microdeletions shown to impact mRNA splicing, so demonstrating
the utility of this strategy to locate putative ESE variants (Acedo et al., 2015). Fraile-Bethencourt et al.
adapted this systematic minigene assay approach to map active ESEs in BRCA2 exons 2-9 and 14-18 (Fraile-
Bethencourt et al., 2017; Fraile-Bethencourt, Valenzuela-Palomo, Diez-Gomez, Acedo, & Velasco, 2018;
Fraile-Bethencourt, Valenzuela-Palomo, Diez-Gomez, Caloca, et al., 2019; Fraile-Bethencourt, Valenzuela-
Palomo, Diez-Gomez, Goina, et al., 2019). Selection of variants within the microdeletion-mapped ESEs
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improved the specificity of bioinformatic predictions (Fraile-Bethencourt, Valenzuela-Palomo, Diez-Gomez,
Goina, et al., 2019). Results from these assays have also been useful in re-classifying variants. For example,
two variants in ClinVar, c.441A>G [p.(Gln147=), likely benign] and c.451G>A [p.(Val151Ile), VUS], were
designated as spliceogenic variants and re-interpreted as VUS and likely pathogenic, respectively (Fraile-
Bethencourt, Valenzuela-Palomo, Diez-Gomez, Goina, et al., 2019).

Saturation genome editing experimental data are used here to map putative SREs in BRCA1

Currently, there are no studies that systematically map the active SREs in BRCA1 exons, covering their
entire lengths and all possible nucleotide substitutions. However, we took advantage of available mRNA
expression data from a recently published large-scale functional analysis of BRCA1 (Findlay et al., 2018) to
identify putative SREs across multiple exons of this gene. The study of Findlay et al. applied saturation
genome editing to measure the cell survival consequences of all possible single nucleotide variants in the 13
exons that encode the BRCA1 RING and BRCT protein domains, critical for its role as a tumor suppressor
(Findlay et al., 2018). Specifically, near-haploid HAP1 cells were genomically edited using CRISPR-Cas9
to introduce BRCA1 single nucleotide variants and variant abundances were quantified by targeted DNA
sequencing as readout for a cell survival assay; this information was used to assign a “function score.”
Variants that did not affect DNA abundance were classified as “functional”; otherwise, variants were classified
as “non-functional” or “intermediate” depending on the extent of DNA depletion. In total, function scores
were calculated for 3,893BRCA1 variants, and these scores were observed to accurately predict variant
pathogenicity as reported to the ClinVar database. mRNA expression scores were also determined for 96%
of the functionally characterized variants, and variants that were depleted in mRNA relative to DNA were
interpreted to affect mRNA expression and/or processing.

From this dataset, we selected 33 BRCA1 synonymous or missense variants in putative SREs (Table 2)
based on the following criteria (Figure 2): (a) depleted in mRNA (Findlay mean RNA score < -2); (b) non-
functional or intermediate function based on DNA depletion; (c) outside of the donor and acceptor splice
site motifs; (d) not predicted to create de novo donor or acceptor sites by the MES-based Variant Effect
Predictor plugin using the thresholds and decision flowchart described in Shamsani et al. (2018); and (e)
predicted to alter or create SREs by at least one SRE algorithm in HSF. These bioinformatic tools were
chosen because they are freely available and easy to use. The MES-based Variant Effect Predictor plugin also
allows high-throughput submission, and HSF accepts multiple variant queries for analysis using 14 different
SRE algorithms (Table 1) in a single platform. Although nonsense variants can also alter SREs to lead to
exon skipping (Supplementary Tables 2 and 3), these were excluded because they are expected to deplete
mRNA via nonsense-mediated decay.

Exons 2, 3, and 19-22 did not harbor variants that passed the above criteria. The 33 variants prioritized as
likely to impact SREs, are shown in Table 2. We then mapped the location of putative SREs in exons 5,
6, 16-18, 23 and 24 ofBRCA1 by identifying SRE sequences that overlap with these 33 variants (Figure 3,
Supplementary Figure 1). Notably, the putative SREs mapped to exons with at least one weak splice site
(MES score < 6.2), or with moderate strength for both splice sites (MES score between 6.2 and 8.5) (Table
3). With a single exception, in exon 23, putative SREs did not map to exons with strong splice donors (MES
score [?] 8.5) (Table 3). Since variants demonstrating minor mRNA depletion (Findlay mean RNA score
between -0.5 and -2) were excluded to limit false predictions, this map is expected to capture only putative
SREs with strong activity.

The validity of the mapping approach is supported by published mRNA splicing assay results that re-
late to variants prioritized as SRE-disrupting (Table 2). Variants c.5080G>A, c.5434C>G and c.5453A>G
have been proven to lead to exon skipping in previous studies. Variants c.5080G>A and c.5123C>G are
located at the same nucleotide position as three other variants for which exon skipping has been previ-
ously reported. Of these latter three variants, one was excluded from our mapping analysis since it en-
codes a premature termination codon, one had a minor mRNA depletion score of -0.55 above the filter
of < -2, and the last was a 2 bp deletion and thus not assayed by Findlay et al. (2018). Eleven of
the 33 putative SRE-disrupting variants are reported in ClinVar, where nine are catalogued based on pre-
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dicted codon usage, and not annotated as spliceogenic variants; the (likely) pathogenic classification of
c.5434C>G and c.5453A>G considered published splicing assay results as evidence (Table 2). Eight of
these variants are currently not interpreted as (likely) pathogenic: c.5007C>T [p.(Ala1669=), likely benign],
c.5044G>A [p.(Glu1682Lys), benign], c.5044G>C [p.(Glu1682Gln), VUS], c.5045A>T [p.(Glu1682Val),
VUS], c.5078C>T [p.(Ala1693Val), VUS], c.5080G>A [p.(Glu1694Lys), VUS], c.5444G>C [p.(Trp1815Ser),
VUS], and c.5528C>A [p.(Ala1843Glu),VUS].

The assay of Findlay et al. (2018) shows the effect of variants on mRNA levels and does not directly inform
variant effect on mRNA splicing. Follow-up splicing assays would still be needed to confirm SRE-related
mRNA aberrations for those variants in Table 2 without previously reported splicing assay results. The
confirmatory splicing assays would provide further evidence to establish the BRCA1 SRE map for the exons
examined, as well as potentially aiding the re-interpretation of variant pathogenicity.

Bioinformatic analysis of exonic SREs

SRE predictions have poor specificity. There are several factors that contribute to the complexity of SRE
prediction, including the diverse range of splicing regulatory motifs (Ke et al., 2011; X. H.-F. Zhang &
Chasin, 2004) and the context-dependence of their activity (Fu & Ares Jr, 2014; Z. Wang & Burge, 2008).
The surrounding sequences and their location in the gene relative to the consensus splice sites significantly
impact their activity and usage. For instance, some ESS motifs, including G runs, can promote splicing
when located in an intron (Z. Wang & Burge, 2008). Moreover, RNA secondary structure and chromatin
state may also influence SRE accessibility affecting its usage (reviewed by (Fu & Ares Jr, 2014; Hnilicova &
Staněk, 2011)).

There are already several datasets and prediction algorithms (Table 1) that have been used to identify SREs
or test if a variant can potentially create or abolish SREs (reviewed by Grodecká, Buratti, and Freiberger
(2017)). However, experimental studies have shown that these bioinformatic prediction tools have high false
positive rates. For example, one of the largest studies to date (Houdayer et al., 2012) reported that predictions
were confirmed for only 14% (15/108) ofBRCA1 and BRCA2 variants predicted to alter ESEs using a
combination of ESEfinder, RESCUE-ESE, PESE octamer, and HSF algorithms.

More recently, two studies have assessed both positive andnegative predictive values of selected bioinformatic
tools to determine variant effects on SREs. ΔtESRseq (using hexamer scores from Ke et al. (2011)) and
ΔHZEI were reported to perform better than ΔΨ and EX-SKIP in analysis of 154 variants (including 50
spliceogenic) from select exons from five genes (Soukarieh et al., 2016). The data from this study led the
authors to postulate that the predictive performance of SRE-dedicated tools varies for different genes and
exons (Soukarieh et al., 2016). For example, sensitivity of ΔtESRseq ranged from 67-100% and specificity
from 66-97% depending on the gene and exon (Soukarieh et al., 2016). In another evaluation of ΔtESRseq,
ΔHZEI, and EX-SKIP (Grodecká et al., 2017), analysis of only 20 variants (10 spliceogenic) from four genes
found that ΔtESRseq had higher sensitivity (80%) but lower specificity (60%) compared to ΔHZEI and
EX-SKIP (both 70% sensitivity, 70% specificity). However, given the sample sizes for these two studies
(Grodecká et al., 2017; Soukarieh et al., 2016), it is difficult to have confidence in their assessment of
comparative performance of bioinformatic tools.

Map of BRCA1 putative SREs is used here to assess bioinformatic predictor performance

To extend the comparisons described above, we have evaluated the performance of ΔtESRseq, ΔHZEI, and
HOT-SKIP (same approach as EX-SKIP, examines all possible exonic substitutions simultaneously) (Table 4,
Supplementary Table 3). We used the 33BRCA1 variants identified as located in putative SREs (Table 2) as
positive controls, and 250 non-spliceogenic variants as negative controls, as selected from all exons included
in the assays of Findlay et al. (2018) (Figure 2). HSF was used in the selection of positive control variants
as it incorporates several different algorithms thus capturing a more comprehensive set of SRE sequences;
by design HSF could thus not be used to assess sensitivity in a comparative analysis but it tested a large
proportion of negative control variants as false positives (27% specificity). Previous studies used ΔHZEI

arbitrary thresholds of -20 (Soukarieh et al., 2016) and -0.5 (Grodecká et al., 2017) and ΔtESRseq cut-off of
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-0.5 (Grodecká et al., 2017; Soukarieh et al., 2016). For our analysis,ΔtESRseq andΔHZEI cut-off scores were
adjusted based on serial Matthews Correlation Coefficient calculations to obtain optimal predictive values:
we set -0.75 for ΔtESRseq and -5 for ΔHZEI as the cut-off scores. We set the HOT-SKIP threshold (alt/wt >
1) based on the EX-SKIP cut-off score used by Grodecká et al. (2017). Results comparing tool performance
are shown in Table 4. ΔHZEI had the best performance with 76% sensitivity and 82% specificity, followed
by ΔtESRseq with 73% sensitivity and 80% specificity. HOT-SKIP had the lowest sensitivity (45%) and
specificity (78%). Further, as a secondary analysis, false positive variants located in exons with no mapped
SRE (see Table 3) were designated as true negatives (i.e. they were not predicted to impact an SRE). This
markedly improved the specificity of all three tools (Table 4).

Future use of mapped SREs in BRCA1 to improve SRE prediction

Solving the problem of over-prediction is an important step towards the utility of SRE-dedicated bioinfor-
matic tools in variant interpretation and clinical diagnostics. As shown in our detailed BRCA1 SRE map
(Supplementary Figure 1), there are negative control variants within the mapped SREs that are predicted by
HSF to alter these motifs. Some are even located at the same nucleotide position as positive control variants.
For example, c.5007C>T, categorized as non-functional and with effects on mRNA depletion (as per Figure
2), is designated a true positive since it is also predicted to create an ESS by HSF (Supplementary Figure
1); whereas, c.5007C>A and c.5007C>G have no functional impact, and are designated false positives since
they were predicted to create an ESS and break an ESE, respectively (Supplementary Figure 1). ΔtESRseq,
ΔHZEI, and HOT-SKIP – which combine the scores of ESEs and ESSs disrupted or created by a variant –
correctly predicted c.5007C>A and c.5007C>G to have no impact on an SRE. Similar results are observed for
other co-located HSF-predicted false positive variants at c.5127, c.5130, c.5430, and c.5472 (Supplementary
Figure 1), where at least two of the three tools (ΔtESRseq, ΔHZEI, and HOT-SKIP) had negative calls in
agreement with mRNA depletion score results. While the quantitative combined ESS-ESE scoring approach
of ΔtESRseq, ΔHZEI, and HOT-SKIP appears to significantly lower the number of HSF-predicted false
positives, there are still negative control variants within the mapped SREs that are predicted as impacting
SREs by these three tools. Clearly, there are other factors that need to be considered to improve prediction
of variant effect with mapped SREs.

The false positive variants can be studied further to gain more understanding of the structural features that
prevent the usage of SREs. For false positive variants outside of the mapped SREs, the location of predicted
SREs with respect to local mRNA secondary structure could also play a role e.g. inclusion of SRE in the stem
of a stem-loop structure may possibly lessen the access of a corresponding RNA-binding protein (Buratti
et al., 2004). In the same way, the positive control dataset of 33 variants could be assessed for structural
features that enable these variants to alter mRNA expression. More information on structural patterns that
influence exonic SRE activity, which can be obtained from bioinformatic analysis, may be useful in improving
SRE prediction not only in BRCA1 but also in other genes.

Prioritization model to identify SRE-disrupting variants for splicing analysis

While the current SRE-dedicated bioinformatic tools have significant limitations in terms of specificity, our
results indicate that using a combination of tools can improve prediction and increase confidence in the
selection of variants for confirmatory splicing assays. Drawing from the variant selection process (Figure 2),
results relating to donor and acceptor splice site strength (Table 3), and the evaluation of SRE prediction
tools (Table 4), we developed a generic workflow. This prioritization model uses MES for native and de novo
splice site analysis, and HSF and ΔHZEI in series for SRE prediction, as summarized in Figure 4.

Intronic variants can abrogate a BP site or activate a pseudoexon

Only a limited number of variants in hereditary cancer genes have been reported to cause aberrant splicing
through the alteration of BP sites (Table 5). Of these, experimental validation of BP abrogation has been
conducted for only two XPC variants detected in patients with xeroderma pigmentosum, a condition that
increases the risk of skin cancers: LRG 472t1:c.413-24A>G resulted in partial skipping of exon 4 skipping
in patient-derived mRNA (Khan et al., 2004); and LRG 472t1:c.413-9T>A, located within the acceptor
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motif but also annotated as a BP site variant, was found to lead to complete exon 4 skipping (Khan et al.,
2004). The -9 and -24 nucleotides in intron 3 of XPC were subsequently shown to be functional BP sites
necessary for the efficient and accurate splicing ofXPC pre-mRNA using U2 small nuclear ribonucleoprotein-
BP interaction assays (Khan et al., 2010). Two substitutions predicted to alter a BP motif within the RB1
gene, identified in patients with retinoblastoma, result in the skipping of a downstream exon (Houdayer
et al., 2008; K. Zhang et al., 2008). Similarly, a substitution at the -18 nucleotide upstream of exon 5
in BRCA1 (LRG 292t1:c.135-18T>G) resulted in a three-fold increase of the Δ5 transcript isoform in an
analysis of mRNA from a hereditary breast and ovarian cancer patient (Wappenschmidt et al., 2012). This
variant was not captured by in silico prediction methods but it is within the -18 to -44 nucleotide window
of high-confidence annotated BPs (Signal, Gloss, Dinger, & Mercer, 2018). Nine other variants within the
BP window in BRCA1 , MLH1 and RAD51C have been reported to lead to exon skipping (Leman et al.,
2020).

Pseudoexon-activating variants have been documented mostly in rare monogenic disorders, but several ex-
amples have also been reported in genes causing hereditary cancer syndromes (Vaz-Drago et al., 2017). To
date, there are at least 13 documented pseudoexon-activating variants in hereditary cancer genes (Table 5):
12 are single nucleotide variants that create a new 5’ splice site or strengthen an existing cryptic 5’ splice
site, and the other is a 4-bp deletion that introduces an intron-splicing processing element.

Bioinformatic prediction of BP site abrogation

BP prediction tools (Table 1) have demonstrated poor specificity due to BP motif degeneracy combined
with a lack of experimental data to train algorithms (Corvelo, Hallegger, Smith, & Eyras, 2010). BP
characterization has lagged far behind that of 5’ and 3’ splice sites because of experimental difficulties in
detecting BPs (Paggi & Bejerano, 2018). A large genome-wide dataset of experimentally confirmed BPs
(Mercer et al., 2015) has been used to develop the BP prediction tools Branchpointer and LaBranchoR.
Based on the Mercer dataset (Mercer et al., 2015), only ˜18% of human 3’ splice sites have high confidence
experimental BP annotations (Mercer et al., 2015; Paggi & Bejerano, 2018).

The Branchpointer BP annotations were used to attribute hundreds of clinically associated variants with
changes in BP architecture, but the impact of these variants on splicing was largely uncharacterized (Signal et
al., 2018). Other tools (SVM-BPfinder, BPP, RNABPS) are also available but, similar to Branchpointer and
LaBranchoR, these are mainly for predicting the presence of a BP site. Namely, these tools were not designed
to automatically identify spliceogenic variants, and require separate input of wild-type and variant intronic
sequences for non-automated comparison of scores. Branchpointer also allows input of single nucleotide
variants using rsIDs to evaluate separately the effect of reference and alternative variants on BPs (Signal et
al., 2018). The use of R by Branchpointer, and python scripts by LaBranchoR and BPP, have also rendered
these tools less accessible to non-bioinformatician users (Leman et al., 2020). HSF, an older and easy-to-use
online splicing tool, can directly analyze an intronic variant to predict BP site abrogation; however, recent
evaluations have revealed its poor performance in detecting experimentally verified BPs (Leman et al., 2020;
Signal et al., 2018; Q. Zhang et al., 2017).

It is important to note that variants predicted to disrupt a BP do not necessarily induce aberrant splicing,
as introns can have multiple functional BPs (Mercer et al., 2015), which adds to the complexity of predicting
the spliceogenicity of a single variant in the BP window. Moreover, in the analysis of Leman et al. (2020),
the use of score change to predict BP disruption by a variant was found to not be the best strategy to
predict spliceogenic variants. According to Leman et al. (2020), the best approach would be to consider a
variant as potentially spliceogenic if it is located in the BP motif regardless of score change. Performance
of BPP, Branchpointer, HSF, LaBranchoR, RNABPS, and SVM-BPfinder was evaluated by checking the
co-location of confirmed spliceogenic variants within predicted BP motifs, and revealed BPP as having the
highest accuracy of 89.17% (Leman et al., 2020). In their positive control set of 38 spliceogenic variants, 32
variants were within BP motifs predicted by BPP, which predicted a total of 39 BP motifs (Leman et al.,
2020).
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Generally, the current BP prediction tools are useful in prioritizing candidate spliceogenic variants for down-
stream analysis through predicting their location in putative BP sites. Further, while variants reported
to alter a BP site sequence generally lead to exon skipping, other types of splicing aberrations have been
observed (Crotti et al., 2009; M. Li & Pritchard, 2000). Hence, the current BP prediction tools are not
suitable for predicting a specific splicing effect.

Bioinformatic prediction of pseudoexon activation

Currently, there is no bioinformatic tool dedicated to prediction of pseudoexon-activating variants together
with the corresponding size and/or sequence of the inserted cryptic exon. The current prediction strategy is
to determine whether a deep intronic variant leads to ade novo splice site gain, and then separately check
for a nearby pre-existing cryptic splice site of opposite polarity that could define the boundary of the new
exon (Caminsky et al., 2016; Lee et al., 2017).

In the variant prioritization method of Caminsky et al. (2016), an Information Theory model was used to
measure changes in splicing-relevant protein binding sites and predict whether a variant would lead to a
gain or loss of a splicing motif. A total of 623 variants in hereditary breast and ovarian cancer genes were
predicted to create or strengthen an intronic cryptic splice site. However, only 17 variants were prioritized
as likely to create a pseudoexon due to their location within 250 nucleotides of another existing intronic
site of opposite polarity and the existence of an hnRNPA1 site within five nucleotides of the acceptor of
the predicted pseudoexon (Caminsky et al., 2016). However, these prioritized variants have yet to undergo
splicing analysis, and so it is not possible to assess the performance of the Information Theory model.

Another workflow incorporates use of CryptSplice, a tool which extends the splice site definition of Burge
et al. (1999) to capture more sequence component information (Lee et al., 2017). The donor sequences
extend from seven nucleotides upstream of GT (-7) to six nucleotides downstream of GT (+6), and acceptor
sequences extend from 68 nucleotides upstream of AG (-68) to 20 nucleotides downstream of AG (+20).
This extended definition was previously reported to improve splice site prediction by combining the feature
information of splicing signals and SREs around splice sites (J. L. Li, Wang, Wang, Bai, & Yuan, 2012).
In an analysis of CFTR variants in cystic fibrosis patients with partly explained genetic cause for their
recessively inherited disease, intronic variants underwent prioritization to detect variants that may lead to
pseudoexon activation (Lee et al., 2017). Of 41 candidate intronic variants predicted to create either donor
or acceptor sequences using CryptSplice, only three donor sequences were additionally predicted to activate
pseudoexons by manual evaluation of the surrounding sequence for a splice site of opposite polarity (Lee
et al., 2017). Two variants were shown to lead to pseudoexon insertion resulting in transcript loss due to
nonsense-mediated decay; and the other, with a weakly predicted upstream acceptor, did not lead to aberrant
splicing. In the same study, CryptSplice analysis of 4,685 DKC1 unique variants present in six individuals
identified five candidate donor sequences and 12 candidate acceptor sequences (Lee et al., 2017). Only one of
the five candidate donors was predicted to activate a pseudoexon; while mRNA analysis provided evidence
for pseudoexonization, the donor activated by this DKC1 variant did not pair with the CryptSplice predicted
acceptor, but rather with another acceptor 14 nucleotides upstream (Lee et al., 2017).

The Information Theory and CryptSplice prioritization methods for pseudoexon-activating variants did not
comprehensively take into account the role of SREs, which can influence the expression of pseudoexons. To
illustrate, the Information Theory model predicted that MLH1LRG 216t1:c.1559-1732A>T creates a new
acceptor and activates a 239-bp pseudoexon due to the presence of a downstream pre-existing cryptic donor
(Caminsky et al., 2016). However, our analysis of the pseudoexon sequence using HSF revealed a cluster
of putative ESS octamers ((X. H.-F. Zhang & Chasin, 2004), with high relative activity and located within
30 nucleotides upstream of the cryptic donor that potentially inactivates this cryptic donor (Supplementary
Figure 2). Therefore, a prediction model that incorporates both splice site motifs and the distribution of
SREs within candidate pseudoexons and their flanking regions is likely to improve the accuracy of pseudoexon
activation predictions.

Conclusions
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In this paper, we have presented functional evidence for spliceogenic variants that are generally overlooked in
clinical genetic testing and/or reporting, including: variants that affect SREs, abrogate BP sites, or activate
pseudoexons. Bioinformatic analysis considering variant effects at the mRNA level may help prioritize
likely functional variants currently annotated as (likely) benign or VUS for additional functional and clinical
analyses. Further, clinical diagnostic laboratories may need to consider expanding their sequencing coverage
and/or variant annotation to include BP window and deep intronic regions to detect additional pathogenic
intronic variants, particularly when strongly indicated by patient presentation. However, improving the low
performance of current predictors is a challenge due to the limited size of experimentally validated training
data. Clearly, experimental studies that assess variants outside of the donor and acceptor splice site motifs
for splicing mechanisms are needed to further calibrate algorithms, and to improve prediction of variant
effect. We have shown that results from a published large-scale saturation genome editing experiment can
be used to map SREs, to assess the performance of bioinformatic predictors, and inform development of
a prioritization workflow to detect variants that impact SREs. As more such data become available, we
anticipate that the expansion of training datasets will lead to improvements in approaches to predict variant
effect/s. Such advances will be critical to improve the sensitivity and specificity of bioinformatic prediction
of variant effect/s on SREs, BP sites, and pseudoexon usage, and thereby improve assessment of variant
pathogenicity.
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Hnilicova, J., & Staněk, D. (2011). Where splicing joins chromatin.Nucleus, 2 (3), 182-188.
doi:10.4161/nucl.2.3.15876

Houdayer, C., Caux-Moncoutier, V., Krieger, S., Barrois, M., Bonnet, F., Bourdon, V., . . . Stoppa-
Lyonnet, D. (2012). Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 com-

11



P
os

te
d

on
A

u
th

or
ea

10
M

ar
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

38
55

69
.9

14
48

00
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

bined in silico/in vitro studies on BRCA1 and BRCA2 variants. Human Mutation, 33 (8), 1228-1238.
doi:10.1002/humu.22101

Houdayer, C., Dehainault, C., Mattler, C., Michaux, D., Caux-Moncoutier, V., Pagès-Berhouet, S., . . .
Stoppa-Lyonnet, D. (2008). Evaluation of in silico splice tools for decision-making in molecular diagno-
sis.Human Mutation, 29 (7), 975-982. doi:10.1002/humu.20765

Ke, S., Shang, S., Kalachikov, S. M., Morozova, I., Yu, L., Russo, J. J., . . . Chasin, L. A. (2011). Quantitative
evaluation of all hexamers as exonic splicing elements. Genome Research, 21 (8), 1360-1374.

Khan, S. G., Metin, A., Gozukara, E., Inui, H., Shahlavi, T., Muniz-Medina, V., . . . Kraemer, K. H. (2004).
Two essential splice lariat branchpoint sequences in one intron in a xeroderma pigmentosum DNA repair
gene: mutations result in reduced XPC mRNA levels that correlate with cancer risk. Human Molecular
Genetics, 13 (3), 343-352. doi:10.1093/hmg/ddh026

Khan, S. G., Yamanegi, K., Zheng, Z.-M., Boyle, J., Imoto, K., Oh, K.-S., . . . Kraemer, K. H. (2010). XPC
branch-point sequence mutations disrupt U2 snRNP binding, resulting in abnormal pre-mRNA splicing in
xeroderma pigmentosum patients. Human Mutation, 31 (2), 167-175. doi:10.1002/humu.21166

Lee, M., Roos, P., Sharma, N., Atalar, M., Evans, T. A., Pellicore, M. J., . . . Cutting, G. R. (2017). Syste-
matic Computational Identification of Variants That Activate Exonic and Intronic Cryptic Splice Sites.The
American Journal of Human Genetics, 100 (5), 751-765. doi:10.1016/j.ajhg.2017.04.001

Leman, R., Gaildrat, P., Gac, G. L., Ka, C., Fichou, Y., Audrezet, M.-P., . . . Houdayer, C. (2018).
Novel diagnostic tool for prediction of variant spliceogenicity derived from a set of 395 combined in
silico/in vitro studies: an international collaborative effort.Nucleic Acids Research, 46 (15), 7913-7923.
doi:10.1093/nar/gky372

Leman, R., Tubeuf, H., Raad, S., Tournier, I., Derambure, C., Lanos, R., . . . Krieger, S. (2020). Assessment
of branch point prediction tools to predict physiological branch points and their alteration by variants.BMC
Genomics, 21 (1), 86. doi:10.1186/s12864-020-6484-5

Li, J. L., Wang, L. F., Wang, H. Y., Bai, L. Y., & Yuan, Z. M. (2012). High-accuracy splice si-
te prediction based on sequence component and position features. Genet Mol Res, 11 (3), 3432-3451.
doi:10.4238/2012.September.25.12

Li, M., & Pritchard, P. H. (2000). Characterization of the Effects of Mutations in the Putative Branchpoint
Sequence of Intron 4 on the Splicing within the Human Lecithin:cholesterol Acyltransferase Gene.Journal of
Biological Chemistry, 275 (24), 18079-18084.

Mazoyer, S., Puget, N., Perrin-Vidoz, L., Lynch, H. T., Serova-Sinilnikova, O. M., & Lenoir, G. M. (1998).
A BRCA1 Nonsense Mutation Causes Exon Skipping. The American Journal of Human Genetics, 62 (3),
713-715. doi:10.1086/301768

McConville, C. M., Stankovic, T., Byrd, P. J., McGuire, G. M., Yao, Q. Y., Lennox, G. G., & Taylor, M. R.
(1996). Mutations associated with variant phenotypes in ataxia-telangiectasia. American journal of human
genetics, 59 (2), 320-330.

Mercer, T. R., Clark, M. B., Andersen, S. B., Brunck, M. E., Haerty, W., Crawford, J., . . . Mattick,
J. S. (2015). Genome-wide discovery of human splicing branchpoints. Genome Research, 25 (2), 290-303.
doi:10.1101/gr.182899.114

Messiaen, L., Callens, T., De Paepe, A., Craen, M., & Mortier, G. (1997). Characterisation of two different
nonsense mutations, C6792A and C6792G, causing skipping of exon 37 in the NF1 gene. Human Genetics,
101 (1), 75-80. doi:10.1007/s004390050590

Millevoi, S., Bernat, S., Telly, D., Fouque, F., Gladieff, L., Favre, G., . . . Toulas, C. (2010). The c.5242C>A

12



P
os

te
d

on
A

u
th

or
ea

10
M

ar
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

38
55

69
.9

14
48

00
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

BRCA1 missense variant induces exon skipping by increasing splicing repressors binding.Breast Cancer Re-
search and Treatment, 120 (2), 391-399. doi:10.1007/s10549-009-0392-3

Montalban, G., Bonache, S., Moles-Fernández, A., Gisbert-Beamud, A., Tenés, A., Bach, V., . . . Gutiérrez-
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TABLES

Table 1. In silico predictors of variant spliceogenicity

Examples of splice site, SRE, and BP prediction tools Examples of splice site, SRE, and BP prediction tools Examples of splice site, SRE, and BP prediction tools Examples of splice site, SRE, and BP prediction tools

Tool Motifs References Web User Interface
Human Splicing Finder (HSF) 5’ and 3’ splice site motifs, SRE, BP Desmet et al. (2009) http://www.umd.be/HSF/
MaxEntScan (MES) 5’ and 3’ splice site motifs Yeo and Burge (2004) http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan scoreseq.html
Splice Site Finder 5’ and 3’ splice site motifs Shapiro and Senapathy (1987) N/A
SPiCE 5’ and 3’ splice site motifs Leman et al. (2018) N/A
MES-based VEP plugin 5’ and 3’ splice site motifs Shamsani et al. (2018) N/A
ΔtESRseq SRE Di Giacomo et al. (2013) N/A
ΔHZEI SRE Erkelenz et al. (2014) https://www2.hhu.de/rna/html/hexplorer score.php
ΔΨ SRE Xiong et al. (2015) N/A
EX-SKIP SRE Raponi et al. (2011) http://ex-skip.img.cas.cz/
HOT-SKIP SRE Raponi et al. (2011) https://hot-skip.img.cas.cz/
Branchpointer BP Signal et al. (2018) N/A
LaBranchoR BP Paggi and Bejerano (2018) http://bejerano.stanford.edu/labranchor/
SVM-BPfinder BP Corvelo et al. (2010) http://regulatorygenomics.upf.edu/Software/SVM BP/
Branch Point Prediction (BPP) BP Q. Zhang et al. (2017) N/A
RNA Branch Point Selection (RNABPS) BP Nazari, Tayara, and Chong (2019) https://home.jbnu.ac.kr/NSCL/rnabps.htm
SRE algorithms in Human Splicing Finder v3.1 SRE algorithms in Human Splicing Finder v3.1 SRE algorithms in Human Splicing Finder v3.1 SRE algorithms in Human Splicing Finder v3.1
Type of Signal Prediction Algorithm Prediction Algorithm References
ESE HSF: 9G8, Tra2-β HSF: 9G8, Tra2-β Desmet et al. (2009)

ESEfinder: SF2/ASF, SF2/ASF(IgM), SC35, SRp40, SRp55 ESEfinder: SF2/ASF, SF2/ASF(IgM), SC35, SRp40, SRp55 Cartegni, Wang, Zhu, Zhang, and Krainer (2003)
RESCUE ESE hexamers RESCUE ESE hexamers Fairbrother, Yeh, Sharp, and Burge (2002)

ESS HSF hnRNP-A1 HSF hnRNP-A1 Desmet et al. (2009)
Sironi motifs Sironi motifs Sironi et al. (2004)
ESS decamers ESS decamers Z. Wang et al. (2004)

ESE and ESS PESX Octamers PESX Octamers X. H.-F. Zhang and Chasin (2004)
ESR Sequences ESR Sequences Goren et al. (2006)
EIEs & IIEs Hexamers EIEs & IIEs Hexamers C. Zhang, Li, Krainer, and Zhang (2008)

Table 2. Variants prioritized as likely to disrupt exonic SREs in BRCA1 +

Variant
Predicted amino
acid change

Splicing assay in
literature

Mean RNA score
(Findlay et al.,
2018)

ClinVar
Classification
(28-Feb-2020)

c.196A>T p.(Asn66Tyr) No record -3.836201203 N/A
c.253G>A p.(Glu85Lys) No record -2.588684303 N/A
c.257T>G p.(Leu86Arg) No record -2.109971236 N/A
c.261G>T p.(Leu87Phe) No record -2.338647117 N/A
c.4938C>A p.(Val1646=) No record -2.200191231 N/A
c.5007C>T p.(Ala1669=) No record -2.172296931 Likely benign
c.5044G>A p.(Glu1682Lys) No record -3.922769452 Benign
c.5044G>C p.(Glu1682Gln) No record -2.077097565 Uncertain

significance
c.5045A>T p.(Glu1682Val) No record -3.19611471 Uncertain

significance
c.5046A>T p.(Glu1682Asp) No record -2.279964014 N/A
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Variant
Predicted amino
acid change

Splicing assay in
literature

Mean RNA score
(Findlay et al.,
2018)

ClinVar
Classification
(28-Feb-2020)

c.5047G>A p.(Glu1683Lys) No record -2.845610337 N/A
c.5047G>C p.(Glu1683Gln) No record -2.665637918 N/A
c.5048A>G p.(Glu1683Gly) No record -2.717632186 N/A
c.5051C>T p.(Thr1684Ile) No record -2.256440077 N/A
c.5054C>A p.(Thr1685Asn) No record -2.926076348 N/A
c.5054C>G p.(Thr1685Ser) No record -3.51332298 N/A
c.5066T>G p.(Met1689Arg) No record -2.582200979 Pathogenic/Likely

pathogenic
c.5078C>T p.(Ala1693Val) No record -2.19424566 Uncertain

significance
c.5080G>A p.(Glu1694Lys) YES (Houdayer

et al., 2012);
co-located
variants
c.5080G>T++

(Goina, Skoko, &
Pagani, 2008;
Mazoyer et al.,
1998) and
c.5078 5080del
(Campos et al.,
2003) lead to
exon skipping

-2.93457224 Uncertain
significance

c.5123C>G p.(Ala1708Gly) No record;
co-located variant
c.5123C>A§ leads
to minor exon
skipping (Millevoi
et al., 2010; Sanz
et al., 2010)

-3.080698027 N/A

c.5127A>G p.(Gly1709=) No record -2.143205298 N/A
c.5130A>G p.(Gly1710=) No record -2.826582097 N/A
c.5137G>T p.(Val1713Leu) No record -4.026139955 N/A
c.5430G>C p.(Val1810=) No record -4.027269569 N/A
c.5434C>G p.(Pro1812Ala) YES (Gaildrat et

al., 2010; Théry
et al., 2011)

-4.854622646 Pathogenic/Likely
pathogenic

c.5441C>G p.(Ala1814Gly) No record -5.847427008 N/A
c.5444G>C p.(Trp1815Ser) No record -2.530289371 Uncertain

significance
c.5445G>C p.(Trp1815Cys) No record -5.45381894 N/A
c.5453A>G p.(Asp1818Gly) YES (Rouleau et

al., 2010)
-4.429910618 Conflicting:

Likely
pathogenic(2);
Pathogenic(3);
Uncertain
significance(2)

c.5472T>G p.(Ile1824Met) No record -2.325563519 N/A
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Variant
Predicted amino
acid change

Splicing assay in
literature

Mean RNA score
(Findlay et al.,
2018)

ClinVar
Classification
(28-Feb-2020)

c.5528C>A p.(Ala1843Glu) No record -2.158302832 Uncertain
significance

c.5546A>C p.(Glu1849Ala) No record -2.541769038 N/A
c.5546A>T p.(Glu1849Val) No record -2.880877731 N/A

+ See Figure 2 for overview of prioritization process. cDNA numbering is based on NM 007294.3 transcript.

++ c.5080G>T was assayed in Findlay et al. (2018): non-functional, depleted in mRNA (RNA score = -2.5);
predicted nonsense thus excluded from list.

§ c.5123C>A was assayed in Findlay et al. (2018): non-functional, not depleted in mRNA (RNA score =
-0.55); aberrant transcript was observed as faint band in splicing assay of Sanz et. al (2010).

Table 3. MaxEntScan scores of native splice sites ofBRCA1 exons assessed by functional assays of Findlay
et al. (2018)

Exon Acceptor Donor Splice site strength (acceptor-donor)+ Mapped exonic SRE

2 4.9 10.65 LOW-HIGH No
3 7.05 10.08 MOD-HIGH No
5 8.19 7.84 MOD-MOD Yes
6 4.84 8.46 LOW-MOD Yes
16 10.02 5.91 HIGH-LOW Yes
17 6.69 7.48 MOD-MOD Yes
18 8.96 7.96 HIGH-MOD Yes
19 8.78 11.08 HIGH-HIGH No
20 9.36 9.06 HIGH-HIGH No
21 13.07 10.77 HIGH-HIGH No
22 8.67 9.49 HIGH-HIGH No
23 4.86 9.33 LOW-HIGH Yes
24 9.53 - HIGH- Yes

+ LOW: score < 6.2, MODERATE: 6.2 [?] score < 8.5, HIGH: score [?] 8.5

Table 4. Evaluation of ΔtESRseq, ΔHZEI, and HOT-SKIP performance in predicting putative SRE-
disrupting spliceogenic variants+

Bioinformatic
tools
(cut-off
score)

Positive
controls

Positive
controls

Negative
controls

Negative
controls

Negative
controls
(sec-
ondary
analysis)
++

Negative
controls
(sec-
ondary
analysis)
++ Sensitivity Specificity

Specificity
(sec-
ondary
analysis)++

True
Positive

False
Negative

False
Positive

True
Negative

False
Positive

True
Negative

ΔτΕΣΡσεχ

( <
-0.75)

24 9 51 199 30 220 73% 80% 88%
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Bioinformatic
tools
(cut-off
score)

Positive
controls

Positive
controls

Negative
controls

Negative
controls

Negative
controls
(sec-
ondary
analysis)
++

Negative
controls
(sec-
ondary
analysis)
++ Sensitivity Specificity

Specificity
(sec-
ondary
analysis)++

ΔΗΖΕΙ

( [;]

-5)

25 8 45 205 23 227 76% 82% 91%

HOT-
SKIP
(alt/wt
> 1)

15 18 56 194 37 213 45% 78% 85%

+ See Figure 2 for overview of prioritization process to detect 33 putative SRE-disrupting variants, and 250
non-spliceogenic negative control variants; and Supplementary Table 3 for detailed scores and cut-offs.

++ For secondary analysis, false positive variants located in exons with no mapped SREs were designated
as true negatives.

Table 5. Spliceogenic variants in hereditary cancer genes reported to abrogate a BP site or activate a
pseudoexon

Gene HGVS Reference

Spliceogenic variants experimentally validated or inferred to abrogate a BP site+ Spliceogenic variants experimentally validated or inferred to abrogate a BP site+ Spliceogenic variants experimentally validated or inferred to abrogate a BP site+

BRCA1 LRG 292t1:c.135-18T>G Wappenschmidt et al. (2012)
BRCA1 LRG 292t1:c.135-27T>A Leman et al. (2020)
BRCA1 LRG 292t1:c.4358-31 4358-27del Leman et al. (2020)
BRCA1 LRG 292t1:c.4358-33T>G Leman et al. (2020)
BRCA1 LRG 292t1:c.5153-26A>G Leman et al. (2020)
BRCA1 LRG 292t1:c.5153-26A>T Leman et al. (2020)
BRCA1 LRG 292t1:c.5153-27 5153-23del Leman et al. (2020)
BRCA1 LRG 292t1:c.5407-25T>A Leman et al. (2020)
MLH1 LRG 216t1:c.1732-19T>A Leman et al. (2020)
RAD51C LRG 314t1:c.572-23 572-20del Leman et al. (2020)
RB1 LRG 517t1:c.2326-26A>C Houdayer et al. (2008), K. Zhang et al. (2008)
RB1 LRG 517t1:c.2326-26A>G Houdayer et al. (2008)
XPC LRG 472t1:c.413-9T>A Khan et al. (2004), Khan et al. (2010)
XPC LRG 472t1:c.413-24A>G Khan et al. (2004), Khan et al. (2010)
Deep intronic variants that activate a pseudoexon++ Deep intronic variants that activate a pseudoexon++ Deep intronic variants that activate a pseudoexon++

APC LRG 130t1:c.532-941G>A Spier et al. (2012)
APC LRG 130t1:c.1408+731C>T Spier et al. (2012)
APC LRG 130t1:c.1408+735A>T Spier et al. (2012)
ATM U82828.1(ATM v001):c.1236-405C>T§ Cavalieri, Pozzi, Gatti, and Brusco (2013)
ATM LRG 135t1:c.2839-581 2839-578del¶ Pagani et al. (2002)
ATM U82828.1(ATM v001):c.3994-159A>G++ Coutinho et al. (2005)
ATM LRG 135t1:c.5763-1050A>G++++ McConville et al. (1996); Sutton et al. (2004)
BRCA1 LRG 292t1:c.4185+4105C>T Montalban et al. (2019)
BRCA2 LRG 293t1:c.6937+594T>G Anczukow et al. (2012)
MSH2 LRG 218t1:c.212-478T>G Clendenning et al. (2011)
NF1 LRG 214t1:c.288+1137C>T Svaasand, Engebretsen, Ludvigsen, Brechan, and Sjursen (2015)
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Gene HGVS Reference

NF2 LRG 511t1:c.1447-233T>A§§ Castellanos et al. (2013)
RB1 LRG 517t1:c.2490-1398A>G¶¶ Dehainault et al. (2007)

+Only two XPC variants were experimentally validated to affect actual BP sites. The remaining spliceogenic
variants were inferred to abrogate a BP site due to nucleotide position, i.e. located within the -18 to -44
nucleotide BP window, and/or positive BP site prediction.

++All deep intronic variants listed here create a new 5’ splice site or activate a cryptic 5’ splice site except
LRG 135t1:c.2839-581 2839-578del, which introduces an intron-splicing processing element.

§Reported as c.1236-405C>T, in intron 11, with NM 000051.3 as reference transcript. However, the first base
of exon 12 in the NM 000051.3 transcript is c.1803. Mutalyzer (https://mutalyzer.nl/) maps c.1236-405C>T
in intron 11 of U82828.1 reference sequence.

¶Authors did not indicate the reference sequence and HGVS nomenclature. The published pseudoexon
sequence maps to intron 18 of LRG 135. This variant was described as ATM IVS20-579 IVS20-576delGTAA
by Coutinho et al. (2005).

++Reported as U82828.1:g.75117A>G, IVS28-159A>G

++++Reported as 5762ins137 caused by A>G variant. Published pseudoexon sequence maps to intron 38 of
LRG 135. This variant was described as ATM IVS40-1126G>A by Coutinho et al. (2005).

SSSSReported as NG 009057.1:g.74409T>A, NM 000268.3:c.1447-240T>A. However, inspection of the NG -
009057.1 sequence (16-NOV-2019 version) revealed two sequence errors in the published illustration of the
pseudoexon with flanking intronic regions: G deletion (+1 position) and A insertion (+4 position). Based
on the publication’s illustration of variant location and reported sequence of pseudoexon boundaries, the
variant is located at g.74408 in NG 009057.1, 233 bp upstream of exon 14.

PPReported as IVS23-1398A>G

FIGURE LEGENDS

Figure 1. Splicing motifs for exon recognition by the spliceosome. The acceptor (3’) and donor (5’)
splice site motifs are shown. The U1 and U2 small nuclear ribonucleoprotein complexes recognize the donor
splice site and the branchpoint (BP) site, respectively, while the U2AF proteins recognize the acceptor splice
site and polypyrimidine tract located between the BP and 3’ splice site. Diverse sets of splicing regulatory
elements refine exon recognition and regulate alternative splicing. Some exonic splicing enhancers (ESEs)
bind Serine/Arginine-rich (SR) proteins and stabilize the binding of U2AF to promote splice site usage.
Exonic splicing silencers (ESSs) bind heterogeneous nuclear ribonucleoproteins (hnRNPs) to inhibit splice
site usage. Intronic splicing regulatory elements are not shown. Donor and acceptor splice site motif figures
adapted from Cartegni, Chew, and Krainer (2002).

Figure 2. Flowchart of BRCA1 variant selection for exonic SRE mapping and evaluation of
SRE predictor performance.

+BRCA1 variants were from saturation genome editing experiments (SGE) of Findlay et al. (2018) covering
exons 2, 3, 5, 6 and 16-24. Cut-off scores selected for determining function class and mRNA depletion are
drawn from their Supplementary Table 1. For our selection of negative controls, we set a conservative RNA
score cut-off [?] 0 for variants not depleted in mRNA, as some variants experimentally confirmed to have
weak to moderate splicing effects (from literature and unpublished splicing assay data) were observed to
have RNA scores between -0.5 and -2 (data not shown).

Selection of variants outside donor and acceptor splice site motifs and prediction of de novo splice site gain
were done through MES-based Variant Effect Predictor plugin using the thresholds and decision flowchart
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described in Shamsani et al. (2018).

Figure 3. Map of putative exonic SREs (blue) in BRCA1 as inferred from analysis of published
functional data of Findlay et al. (2018) and Human Splicing Finder SRE predictions. Findlay et
al. (2018) assessed exons 2, 3, 5, 6 and 16-24. Exons 2, 3, and 19-22 did not harbor variants that passed the
selection criteria described in Figure 2. The cDNA positions are indicated in the map, and the locations of 33
putative SRE-disrupting variants are bolded and underlined. Longer blue regions reflect several overlapping
SRE sequences that extend across the exon. The grey area at the 5’ end of exon 16 represents a region
without functional data from Findlay et al. (2018).

Figure 4. Prioritization model to identify SRE-disrupting variants for splicing assay. For exonic
variants outside of the donor and acceptor splice site motifs, the first step is to filter out variants that are
predicted to lead to de novo splice site gain using the MES algorithm. Then MES is used to determine
the native splice site scores, to identify exons most likely to harbor ESEs. Variants in exons with low to
moderate donor score (< 8.5), or with high donor MES score ([?] 8.5) and low acceptor score (< 6.2), are
then selected as eligible for two-step SRE analysis. Positive calls in HSF are further analyzed using ΔHZEI

to minimize the number of false positives.

Supplementary Figure 1. Map of putative exonic SREs inBRCA1 exons 5, 6, 16-18, 23 and
24. The map is based on the combined analysis of results from the functional assay of Findlay et al. (2018),
and SRE predictions from the algorithms in Human Splicing Finder v3.1. Variants that passed the selection
criteria (see main text and Figure 2) are shown. Putative SRE locations are highlighted in blue. cDNA
positions in green font indicate locations of negative control variants outside of putative SREs with false
positive HSF SRE predictions. cDNA positions in red font indicate locations of negative control variants
within putative SREs but with false positive HSF SRE predictions.

Supplementary Figure 2. Snapshot of Human Splicing Finder results webpage for MLH1
LRG 216t1:c.1559-1732A>T.The Information Theory model of Caminsky et al. (2016) predicted that
LRG 216t1:c.1559-1732A>T creates a new acceptor and activates a pseudoexon due to the presence of a
downstream pre-existing cryptic donor, but our HSF analysis revealed a s trong putative exonic splicing
silencer (PESS) cluster within 30 nucleotides upstream of the donor site of the pseudoexon (encircled in
red), which potentially inactivates this cryptic donor.
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