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Abstract

Fungi are a key component of tropical biodiversity. Due to their inconspicuous and largely subterranean nature, they are however

usually neglected in biodiversity inventories. The goal of this study was to identify the key determinants of fungal richness,

community composition, and turnover in tropical rainforests. We tested specifically for the effect of soil properties, habitat,

and locality in Amazonia. For these analyses, we used high-throughput sequencing data of short and long reads of fungal DNA

present in soil and organic litter samples, combining existing and novel genomic data. Habitat type (phytophysiognomies)

emerges as the strongest factor in explaining fungal community composition. Naturally open areas – campinas – are the richest

habitat overall. Soil properties have different effects depending on the soil layer (litter or mineral soil) and the choice of genetic

marker. We suggest that campinas could be a neglected hotspot of fungal diversity. An underlying cause for their rich diversity

may be the overall low soil fertility, which increases the reliance on biotic interactions essential for nutrient absorption in these

environments, notably ectomycorrhizal fungi–plant associations. Our results highlight the advantages of using both short and

long DNA reads produced through high-throughput sequencing to characterize fungal diversity. While short-reads can suffice for

diversity and community comparison, long-reads add taxonomic precision and have the potential to reveal population diversity.

Introduction

Fungi are inconspicuous organisms, only a proportion of which sporadically reveal their presence through
the formation of tangible morphological structures such as fruiting bodies1. The scientific study of fungi has
therefore benefited immensely from the development of molecular (DNA) sequencing tools during the last
30 years. However, even with the use of molecular tools, studies involving the tropics have neglected fungi
despite the fact that the majority of the undescribed fungi are thought to occur in the tropics2, 3, 4. Among
all tropical biomes, rainforests provide the widest range of ecosystem services through high above- and below-
ground biodiversity5, including water cycling and carbon storage6, 7. The largest and most diverse of those
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forests is Amazonia8,9, which comprises approximately 40% of the area occupied by rainforest habitats around
the world. Amazonian ecosystem services can only be maintained through abiotic and biotic processes, many
of which are mediated by fungi.

To better characterize fungal communities in Amazonia, short-read High-Throughput Sequencing (HTS)
platforms such as Illumina are being increasingly used10 ,11 ,12 ,13 ,14. These approaches are often used
together with PCR techniques to amplify individual markers. In particular, the nuclear ribosomal Internal
Transcribed Spacer (ITS) region has been selected as the best DNA region to identify the widest possible
range of fungal groups and is therefore commonly used as a universal DNA barcode for fungi15. However,
this region is typically 500–600 bases long, preventing it from being sequenced under some sequencing
technologies. The use of partial sequencing (targeting only a sub-region such as ITS1 or ITS2) has at times
limited the taxonomic coverage and identification of fungi by not providing enough variation to tell species
apart16. Furthermore, even though HTS approaches produce hundreds of thousands or millions of sequences
per sample, the limited length of these sequences can introduce critical biases to the precise taxonomic
identification of the underlying lineages17, 18.

Long-read HTS has the potential to overcome some of these limitations, but they have rarely been used
in environmental studies18,19. One of the most well-developed platforms is the single-molecule real-time
sequencing platform of Pacific Biosciences (PacBio)20. Although the PacBio platform had a high error rate
at the time it was launched, the error rate is currently less than 1%21. Recent studies have shown that the
potential of the PacBio platform for the identification of fungal communities using environmental samples is
high18, 19, but so far they have not been widely applied to any ecosystems.

Taken together, the use of short- and long-sequence HTS techniques offers the potential to overcome the
challenges of characterizing fungal diversity in species-rich ecosystems, such as Amazonia in northern South
America. Amazonia is a heterogeneous biome, and its biodiversity has been shown to vary considerably across
geographical ranges. On a large scale, a west (more diverse) to east (less diverse) diversity gradient has been
observed in many animal and plant groups22, 23, 24 and also in micro-organisms, including fungi10, 25. Another
source of heterogeneity in Amazonia is the presence of distinct habitats types. Each phytophysiognomy
comprises a largely distinct biota and own soil characteristics, flooding regimes, and nutrient availability11, 26.
Four widespread and important habitats, here given in the order of decreasing plant and animal diversity25, 26,
are: unflooded tropical forests (terra-firme); forests seasonally flooded by fertile white-water rivers (várzeas);
forests seasonally flooded by unfertile black water rivers (igapós); and naturally open areas associated with
white-sand soils (campinas). The richness gradient for micro-organisms has been found to differ from this
general trend, as campinas harbour the highest microbial richness10, 25.

Soil physicochemical characteristics are often considered crucial for biotic dynamics, vegetation, and diversity
patterns at local to regional scales across Amazonia14, 27, 28, 29. Although several studies have reported on
the importance of soil characteristics in shaping community structure, no unified pattern has emerged. In a
recent study using HTS with short reads from environmental samples in Amazonia, members of our team
showed a mixed effect of soil properties on the microorganism richness and community turnover11. In that
study, we used general primers to target all eukaryotes, and we did not address specifically these effects on
Fungi.

This study seeks to characterize fungal communities across Amazonia using environmental samples of soil
and litter. For the first time (to our knowledge) in an Amazonian context, we use a long-read approach to
sequence the full fungal ITS region on the PacBio platform. In addition, we combine our novel long-read data
with our previously released short-read HTS data of the nuclear ribosomal 18S rRNA small subunit (18S)
gene and the mitochondrial cytochrome c oxidase subunit I (COI) gene produced in a Illumina sequencing
platform. We discuss the patterns of fungal richness and community turnover across Amazonia and compare
the results obtained from different genes and platforms.
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Methods

Study area and sampling design

We sampled four localities across Brazilian Amazonia (Fig. 1) following the sampling design described by
Tedersoo et al.12. Detailed locality descriptions are available in Ritter et al.10. Briefly, we sampled all depths
of the litter layer above the mineral soil (all organic matter, including leaves, roots, and animal debris) and
the top 5 cm of the mineral soil in a total of 39 circular plots, each with a radius of 28 m. We chose 20
random trees inside each plot and collected litter and soil on both sides of each tree. We then pooled the
samples by substrate to produce one litter sample and one soil sample per plot. The soil physicochemical
properties were determined by a Brazilian company (EMBRAPA); additional details of the soil analysis can
be found in Ritter et al.11.

Data generation

For the nuclear ribosomal small subunit (SSU) 18S rRNA (18S) and the mitochondrial cytochrome c oxidase
subunit I (COI) genes, we used the OTU table produced in Ritter et al.25. We selected the OTUs assigned
to the fungal kingdom based on SILVA30 for 18S and GenBank31 for COI datasets, respectively, for all our
analyses. We present here the results of both markers in light of the fact that the previous publication did
not analyse fungi separately, which imposed limits on the fungal richness and community structure analyses
employed at the time.

For the ITS, we used the approach described in Tedersoo et al.18. We used the forward primers ITS9MUNngs
(5’-TACACACCGCCCGTCG-3’32) and ITS4ngsUni (5’-CCTSCSCTTANTDATATGC-3’32) to target the
full ITS region (ITS1 - 5.8S - ITS2)”. For amplification, we used a PCR mixture comprised 5 ul of FirePol
DNA polymerase master mix (Solis Biodyne, Tartu, Estonia), 0.5 ul of each forward and reverse primer (20
mM), 1 ul of DNA extract and 18 μl ddH2O. Thermal cycling included an initial denaturation at 95 °C for 15
min; cycles of denaturation for 30 s at 95 °C, annealing for 30 s, elongation at 72 °C for 1min; final elongation
at 72 °C for 10 min and storage at 4 °C. The duplicate PCR samples were pooled; their relative quantity was
estimated by running 5 μl DNA on 1% agarose gel stained with ethidium bromide (Sigma-Aldrich, St Louis,
MO, USA). We used negative (for DNA extraction and PCR) controls throughout the experiment. The
amplicons were purified with FavorPrep PCR Clean Kit (FavorGen Biotech Corporation, Vienna, Austria).
The libraries were prepared using PacBio amplicon library preparation protocol (Pacific Biosciences, Inc,
Menlo Park, Ca, USA) and loaded to seven SMRT cells using the MagBead method. The libraries were
sequenced using the PacBio RS II instrument using P6-C4 chemistry following the manufacturer´s protocol.

Bioinformatics analyses were performed using the PipeCraft platform33. PacBio circular consensus reads
(CCS, reads of insert) were quality filtered with vsearch34 (maxee = 2, maxns = 0, minlen = 150). Filtered
reads were demultiplexed based on the unique sequence identifiers using mothur35 (bdiffs = 1). Putative
chimeric reads were filtered using denovo and reference-database-based methods in vsearch. Additionally,
sequences where the full PCR primer was found anywhere in the read were filtered out using the PipeCraft
built-in module, as these reads represent additional chimeras not detected by the vsearch method. The full
ITS region was extracted using ITSx36 and clustered using the UPARSE algorithm37 with a 98% similarity
threshold. Additionally, the post-clustering curation method LULU38 was applied (minimum ratio type =
“min”, minimum match = 98) to merge consistently co-occurring ‘daughter’ OTUs. Taxonomy annotation
was performed using BLASTn39against the UNITE40, 41 and INSDC42databases.

Statistical analysis

We performed all statistical analyses in R v.3.6.043. Two samples (SCUICAMP3 and LCUITFP3) had a
very low number of reads in the ITS results, and were excluded from subsequent analyses of all markers.
We use as a diversity estimative the effective number of OTUs, calculated with the unrarefied read counts
as OTU abundance, using the exponential of the Shannon entropy diversity of order q = 144. This measure
is more robust against biases arising from uneven sampling depth than the simple number of OTUs45. For
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the abundance-based community matrices, we transformed read counts using the “varianceStabilizingTrans-
formation” function in DESeq246 as suggested by McMurdie and Holmes45. This transformation normalizes
the count data with respect to sample size (number of reads in each sample) and variances, based on fitted
dispersion-mean relationships46.

We tested the correlation between diversity of each marker through a Pearson correlation between each pair
of markers. To test between the community composition correlation, we performed a Mantel test with the
Jaccard dissimilarity matrices, using the Pearson correlation and 999 permutations for significance. Both
analyses were performed using the vegan v.2.5.5 R package47.

For soil physicochemical analysis, we first normalized all variables to mean = 0 and variance = 1. We
then performed two principal component analyses (PCA), one for soil grain size and the other for chemical
compounds, using the vegan package. We used the first axis of each PCA (explaining 56% and 69% of the
total variation, respectively) in the subsequent linear models and multiple regressions analysis. Given the
expected importance of soil organic carbon content11,48 and pH11, 49, we used these as independent variables.

/

To test the effect of soil properties on fungal OTU richness, we performed a Bayesian general linear model
(GLM) analysis, as implemented in the R-INLA v.17.6.20 R package50. The response variables were the OTU
diversity by soil layer (litter and soils) and marker (18S, ITS and COI), giving a total of six models. In each
case, the soil properties (PC1 for the physical, PC1 for the chemical, organic carbon content, and pH both
standardized to mean = 0 and variance = 1) were used as explanatory variables. We tested the effect of
spatial autocorrelation by comparing analyses of standard GLMs with GLM analysis using stochastic partial
differential equations (SPDE) that explicitly consider spatial correlation.

To test the effect of soil properties on fungal community turnover, we used multiple regressions on dissimila-
rity matrices (MRM) with the R package ecodist v.2.0.151. The response variables were dissimilarity matrices
calculated using the Jaccard dissimilarity. In each case, the explanatory variables were the distance matrices
based on soil properties (physical PC1, chemical PC1, organic carbon, and pH) and one geographical distance
matrix (all calculated using Euclidean distances). Statistical significance of the regression coefficients was
determined using 10,000 permutations.

For the analysis of differences of community composition by locality and habitat, we performed a non-metric
multi-dimensional scaling (NMDS) analysis using the Jaccard dissimilarity matrix and tested the significance
of groups using the envfit test, which fits vectors of continuous variables - in this case the NMDS axes - and
centroids of levels of class variables (locality, habitat, and soil layer) using the vegan package. Additionally,
we performed a permutational analysis of variance (PERMANOVA) to test the significance of each factor
(locality, habitat, soil layer, first PC of both PCAs, pH, and carbon) in the community composition of each
dataset (18S, COI, and ITS) using the vegan package. We furthermore performed an analysis of indicator
OTUs of each locality, habitat, and soil layer using the R package indicspecies v.1.7.652 using the matrix
of relative abundance. This analysis identifies the species, in our case the OTUs, that are associated with a
determined group. We performed the analysis three times with each dataset (18S, COI, and ITS): the first
grouping the OTUs by locality, the second by habitat, and the third by soil layer. We tested the significance
with 9,999 permutations, from which we quantified the number of indicator OTUs for each group with an
alpha < 0.05. Following this, based on literature and experience, V.X.L. classified all possible indicator OTUs
in their functional guild group, such as mycorrhizae, phytopathogen, and saprobe based in their assigned
taxonomy (Table S3). We calculated the mean number of OTUs by each factor (locality, habitat, and soil
layer) in each dataset (18S, COI, and ITS) using the vegan R package. We produced a Venn diagram for
visualization of the number and proportion of exclusive and shared OTUs for each factor (locality, habitat,
and soil layer) in each dataset (18S, COI, and ITS) using the online tool Venny 2.053. Additional R packages
used for data curation were tidyverse v.1.2.154 and ggplot2 v.3.1.155. All scripts and data used in the analyses
are available as supplementary material.
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Results

OTU classification and marker correlation

After sequencing, processing, and filtering of short-read (Illumina) reads, we found a total of 10,745 OTUs,
of which 2,212 (20%) were identified as fungi for the 18S dataset. For COI we found a total of 6,227 OTUs,
of which 2,161 (35%) were fungal. For the long-read (PacBio) reads of ITS, we obtained a total of 3,711
OTUs, of which 3,039 (82%) were fungal. The majority of the fungal OTUs were found to belong to the
phylum Ascomycota, followed by Basidiomycota (Fig. 2). The 18S dataset was found to contain a higher
proportion of non-Dikarya (Ascomycota plus Basidiomycota) than did the other datasets (Fig. 2). All the
following results are based only on OTUs classified as Fungi.

The Effective number of OTU showed a weak correlation across datasets, with COI being more correlated
with 18S (r = 0.36). The ITS was non-correlated with either 18S (r = -0.08) or COI (r = -0.02). The Mantel
tests showed a significant (p = 0.001) correlation in all matrices of similarity, with the strongest correlation
between 18S and COI (r = 0.52) and a weaker correlation with the ITS datasets (ITS and COI r = 0.30,
ITS and 18S r = 0.17).

Soil characteristics and their effect on fungal diversity and composition

The principal component analysis (PCA) recovered more than 56% of data variability in the first principal
component axis (PC1) in both physical and chemical properties. The PC1 of each PCA was used in further
analyses (Fig. 3). In our PCA for physical characteristics, the negative values represent fine texture soils
(silt and clay), which are predominantly present in seasonally flooded forests – igapós and várzeas (Fig. 3A).
The campinas had plots at both extremes of PC1, having the plots in Jaú and Cuieras localities with fine
texture and the others plots localized in Caxiuanã with coarse soil textures (Fig. 3A). Terra-firme was more
spread across different gradients of the soil texture (Fig. 3A). In the PCA for chemical compounds, positive
values in PC1 represent low-fertility soils. Campina and terra-firme were more associated with low-fertility
soils, while várzea forests showed different fertility levels (Fig. 3B). Plots in igapó forests also showed low
soil fertility except for the plots in Benjamin Constant (Fig. 3B). For details of soil characteristics see Ritter
et al11.

Only the mineral soil had some soil properties with significant effect on the OTU Shannon diversity, an effect
that varied by marker (Table 1). For 18S, only the organic carbon (C) content was significant, with a negative
effect. Organic carbon was also significant and negative for soil ITS diversity. Chemical PC1 was significant
for COI and ITS soil diversity, with a higher effective number of OTUs increase following decreasing soil
fertility. The pH and soil texture had no significant effect on OTU diversity.

Geographical distance was significant for all datasets. However, since juxtaposed localities are usually similar
in many respects, we cannot differentiate the level of spatial correlation from the effect of soil properties
in our analysis of community turnover (Table 2). For community turnover, organic carbon and pH were
significant for all soil communities (18S, COI and ITS), as was pH for all litter communities. Organic carbon
was also significant for the COI litter dataset. Soil texture was significant in all communities except for
the ITS soil dataset (Table 2). The PC1 for chemical properties was significant for the 18S and COI litter
communities. In the PERMANOVA analysis, the soil properties were all significant with a weak effect on all
datasets (Table S3).

The soil layer, organic litter, and mineral soil had a weak but significant effect on the number of OTUs
(PERMANOVA results: p < 0.001 for all datasets, 18S – R2 = 0.05, COI – R2 = 0.04, and ITS – R2 = 0.03).
There were small differences between the soil and litter communities in the two axes of non-metric multi-
dimensional scaling (NMDS) in all datasets (Fig. 4). The litter COI and ITS datasets had a higher mean
number of OTUs, where a higher number of OTUs is considered litter indicators (OTUs with a significantly
higher probability to be found in litter than soil; Table 3), and a high number of exclusive OTUs than 18S
(Fig. 5). For 18S, the results contrast with those of the other markers, showing soil as the most diverse
substrate, with the highest number of exclusive and indicator OTUs (Table 3, Fig. 5C). The majority of
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indicator OTUs for both layers are saprotrophs (Table S2).

The effect of localities

Regarding locality, Benjamin Constant had the most differentiated community in all datasets (Fig. 4). The
effect of localities was significant (p < 0.001) and had a higher effect than the soil layer factor in explaining
the community composition in all datasets (18S – R2 = 0.10, COI – R2 = 0.12, and ITS – R2 = 0.11). In
general, the pattern of highest mean, number of exclusive, and number of indicator OTUs by locality varied
between markers (Table 3, Fig. 5). For 18S and ITS, Benjamin Constant had the highest mean number
of OTUs (Table 3) and the highest number of exclusive OTUs (Fig. 5). Benjamin Constant also had the
highest number of OTUs considered indicators of this locality for the 18S dataset (Table 3). Cuieras had the
lowest number of exclusive OTUs for COI and 18S, but had the highest number of indicator OTUs for the
COI datasets (Fig. 5). The majority of indicator OTUs at all localities were saprotrophs, followed by a high
proportion of OTUs that could not be classified by their functional group (Table S2).

The effect of habitats

Habitat type was the strongest factor (p < 0.002) in explaining community composition in the PERMANOVA
analysis (18S – R2 = 0.12, COI – R2 = 0.18, and ITS – R2 = 0.08), with the exception of the ITS dataset. In
NMDS, the seasonally flooded forests, igapós, and várzeas were more similar to each other than to campinas
and terra-firmes, which were the most similar to each other (Fig. 5). Campinas had the highest mean number
of OTUs and the highest number of OTUs considered indicators of this habitat for all datasets (Table 3).
Regarding the number of exclusive OTUs, campinas had the highest number of OTUs in the COI datasets
(Fig. 5E). Terra-firme was the habitat with the highest number of exclusive OTUs for the 18S and ITS
datasets (Figs. 5B and 5H). In all habitats, the majority of indicator OTUs were saprotrophs, followed by a
high proportion of OTUs that could not be classified by their functional group (Table S2). Campinas have
a moderate proportion of phytopathogen indicator OTUs and terra-firme a moderate proportion of parasite
indicator OTUs (Table S2).

Discussion

Our results highlight the importance of habitat type for fungal community composition in Amazonia and
suggest that Amazonian fungi have different diversity patterns for habitat and locality variables, with the
importance of each predictor varying between markers. By contrast, community turnover shows a consistent
pattern, with habitat being a strong factor explaining community similarity between plots. This is likely to be
because different areas can have similar species richness but different species composition due to historical,
geographic, and environmental factors. For instance, in a study of leaf litter fungi in Central Amazonia,
the abundance and richness of fungal morphospecies did not change between low and high rainfall periods,
but there was a low proportion of shared morphospecies between periods56. Our results also showed a low
proportion of shared OTUs when compared with a HTS study of micro-organisms in general in the same
area10 (Fig. 5).

Soil texture did not explain fungal diversity, while chemical soil characteristics was of importance for COI and
ITS soil communities, indicating a high diversity in less fertile soil (Table 1). Although it appears counter-
intuitive, the habitat with lowest soil fertility was the one with highest fungal and other microbial diversity:
the campinas10, 25. These results suggest that factors other than soil properties explain a habitat’s fungal
diversity and community composition.

The soil diversity of the 18S dataset was negatively related with carbon, while the specifics of the other
datasets were not related to carbon. This could be explained by taxonomic coverage of the 18S dataset,
which included the Chytridiomycota and Mucoromycota, which are mostly saprobe groups57, 58. Saprobes
decompose matter into various constituent components, making the nutrients available to other organisms.
Saprobes are, in other words, important agents in carbon cycling59. Hence, a high fungal richness may lead
to a faster carbon decomposition in soil as well as a faster carbon assimilation in the above-ground biomass.
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This is in agreement with Liu et al.60, who found that phylotype richness and phylogenetic diversity of black
soil fungi responded negatively to total carbon content in China. Experiments controlling the variables and
quantifying the above-ground biomass are necessary to further verify these observations.

Contrary to our expectations, pH had no effect on fungal richness. This finding was surprising, since soils
with more neutral pH generally have a higher richness of micro-organisms11,61,62,63. Our soil samples were all
acidic, with the pH varying between 3.5 and 5.14. Soil fungi studied by Liu et al.60 showed a similar pattern
as reported in this study – a higher relative influence of soil carbon content than of soil pH. They also noted
that fungi often have a wider tolerance to pH variation than other micro-organisms, suggesting that in soils
with low pH variation such as presented here, the acidity impact should be less striking60. On the other
hand, pH was important to explain community turnover for all datasets (Table 2). Furthermore, in tropical
areas the relationship between fungal communities and soil pH is affected by the fungal trophic guilds64. It
may indicate that in a highly diverse area, such as Amazonia, fungal diversity will not be impacted by pH
variation but there will be a turnover of fungal species related with the pH range.

Spatial differences

Different Amazonian habitats varied considerably in their biotic composition10, 65. Habitat was the most
significant factor explaining community turnover in the 18S and COI datasets. Although habitat was also
significant for ITS, community turnover was better explained by locality for this dataset. In the ITS data, we
found that campinas and igapós are dissimilar in their communities (Fig. 4A). This can be explained by the
physicochemical soil properties (Fig. 3). When it comes to chemical properties, campinas and igapós were
placed at opposite extremes of PC1 and PC2 (Fig. 3B). With respect to the physical properties, campinas
have plots in both extremes of PC1, but igapós were better explained by clay content (Fig. 3A). Clay
content was an important factor in explaining leaf litter in central Amazon fungi56. For the 18S and COI,
the similarity between habitats is better explained by comparing seasonally flooded and non-flooded habitats
(Fig. 4). In both communities, igapós and várzeas are similar to each other and distinct from terra-firme
and campinas. This is in agreement with results from studies of micro-organisms in general in the same
areas10. These results were expected as the flooded period is a powerful factor that selects for a very specific
vegetation type 66, 67, 68,26. Igapós and várzeas are more restricted to a fine soil texture, while in terra-firme
and campinas the soil texture varies more (Fig. 3A). However, regarding the chemical properties, terra-firme
and campinas have almost exclusively poor soils, while igapós and várzeas present different gradients of soil
fertility (Fig. 3B). These distinct patterns among markers might be explained by the differences in taxonomic
coverage of each marker, since different species of fungi have distinct habitat preferences12.

We were surprised to find that Campinas were, on average, the richest habitat for fungi. This stands in con-
trast to patterns observed for animals and plants69, 70, and fungi in Colombian Amazonia14. One explanation
for the campinas being the richest environment may be the need for plants to associate with micro-organisms
that fix nutrients in the poor soil habitats. For instance, some studies of campinas in Amazonia address the
diversity of ectomycorrhizal fungi71, 72, 73, 74, 75. The general pattern is that the diversity of ectomycorrhi-
zal fungal diversity is the highest in temperate zones12,76,77, but due to the poor soil in Campinas, the
ectomycorrhizal fungi will be more diverse.

The origin of the campinas in Amazonia is a debated topic70, but the nature of their soil, caused by high
drainage and high acidity, is considered one of the poorest in the world78. In this context, Singer et al.73

hypothesized that the ectomycorrhizal fungi increase the ability of their host plant to acquire nutrients and
water in these very stressful habitats. We found a high richness and number of indicator OTUs in campinas
(Fig. 5, Table 3), adding more evidence that the campinas may be hotspots for the diversity of fungi and
other micro-organisms. However, we registered very few ectomycorrhizal indicator OTUs, although these
results could be biased by the lack of representative DNA sequences from tropical areas79. It is interesting
that várzea areas have on average 43 to 53% fewer OTUs of known mycorrhizal species for the three markers.
Of the four habitats analysed, várzea soils are of higher fertility as they are flooded by nutrient-rich waters,
decreasing the necessity for plants to associate with mycorrhizal fungi, in accordance with the hypothesis
proposed by Singer et al.73.
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Comparison between short and long reads

Our results showed a similar pattern for the habitat diversity of long and short-reads, corroborating the
patterns previous reported10, 11, 25. These similarities support the view that our findings are real and inde-
pendent of any possible methodological biases introduced by the different markers and platforms.

The importance of soil properties on the diversity and community turnover varied among markers. We ack-
nowledge the different taxonomic coverages of each marker and the limitations of the available databases.
For instance, the diversity of the early-diverging fungal lineages Chytridiomycota, Cryptomycota, and Zoo-
pagomycota using 18S is higher and it is in stark contrast with the ITS and COI data. This difference may
be the result of either PCR biases or of shortages of the reference databases used. The COI is usually used
as barcode for metazoans80, with lower sequence available for fungi. Our COI data showed around 40% of
unidentified OTUs25, which could represent at least in part some fungal lineages without public reference
sequences. Uneven availability of reference sequences may have had impact on our diversity and community
composition results for the various markers used, with the highest effect for the COI results.

The use of short-read fragments (for both 18S and COI) resulted in a higher number of OTUs, for all
organisms, than did the long-read technique. Long-read ITS, on the other hand, registered more fungal
OTUs even though the total number of OTUs was smaller than for short reads. It is important to stress
here that, unlike for the ITS region, for short-reads we used general primers targeting all eukaryotes and not
just fungi, such that only a portion of reads belonged to fungi in the 18S and COI datasets. Although the
differences in primer design preclude us to reliably identify the “best” marker or sequencing platform choice
for fungal assessments in general, we highlight the main advantages and disadvantages of those used here.

On the one hand, we showed that the use of 18S under the Illumina platform provides the overall highest
taxonomic coverage. So for studies aiming to compare diversity and community turnover the use of short-
reads can be recommended. In economic terms, this is also the more cost-efficient option at the moment. On
the other hand, due to the short fragment size of Illumina reads, some OTUs could be potentially misidentified
or categorised only at, for example, the family or genus level. For instance, in an earlier study comparing
the taxonomic identification of short-read HTS, the choice of the ITS sub-region, ITS1 or ITS2, affected
51% of fungal identifications16. Long-read HTS methods have the potential to identify fungi with higher
accuracy, despite recording fewer sequences per sample18. In our data, PacBio registered the highest number
of OTUs classified as fungi but the lowest number of total OTUs. This is expected, since PacBio platforms
have a small number of reads in total81 and also will not sequence partially degraded DNA. Additionally,
long reads have the potential of combining population analysis with environmental data. This is limited with
short-reads, which provide a more limited genetic variation for environmental diversity analysis or require
the sequencing of several markers for a limited number of target individuals.

Conclusions

Tropical fungal diversity is surprisingly high and poorly understood. In our study, we found that the equi-
valent to a teaspoon of Amazonian soil can contain as many as 1 800 OTUs, which up to 400 were classified
as fungi. It might therefore not be an exaggeration to call fungal diversity the ‘dark matter’ of life on Earth,
alongside many other poorly studied groups. Our results highlight the importance of habitat type for fungal
community composition. We also show that the known general patterns found for macro-organisms in Ama-
zonia may not apply to fungi. It is important to improve our understanding of the patterns and drivers of
fungal diversity and community composition since this is one of the most diverse eukaryotic kingdoms, whose
members play key roles in nutrient cycling and biotic interactions in terrestrial ecosystems. Deforestation of
Amazonia is increasing rapidly83, and to protect this forest it is fundamental to understand the processes
underpinning ecosystem stability. For this, we have to focus on the distribution and diversity of organisms
essential for the ecosystem functionality, including fungi.
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TABLES:

Table 1. Soil effects on OTU Shannon diversity by marker. The table shows the coefficients of
each predictor in four Bayesian general multivariate regression models using stochastic partial differential
equations (SPDE) that explicitly consider spatial correlation, modelling OTU diversity dependent on soil
properties for Amazonian fungi in litter and soil. Since the organic carbon content and pH are considered
important variables for soil biota, we use them as independent variables. Bold indicates important predictor
variables (credible intervals not crossing zero). The importance of soil properties differed between markers
and were significant only for the soil diversity. Carbon content was important for 18S and ITS soil, and
chemical PC1 was important for COI and ITS.
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Marker Soil layer Variable Mean SD 0.025 0.5 0.975

18S Litter Intercept 3.871 11.000 -19.413 4.034 25.957
pH 0.067 0.061 -0.054 0.067 0.187
Carbon -0.057 0.077 -0.209 -0.056 0.089
Chemical 0.109 0.090 -0.069 0.109 0.278
Physical 0.017 0.043 -0.070 0.018 0.100

Soil Intercept 3.393 0.703 1.804 3.456 4.653
pH -0.019 0.045 -0.108 -0.019 0.070
Carbon -0.287 0.048 -0.384 -0.287 -0.194
Chemical 0.049 0.034 -0.011 0.048 0.122
Physical 0.029 0.031 -0.033 0.030 0.089

COI Litter Intercept 3.871 11.000 -19.413 4.034 25.957
pH 0.067 0.061 -0.054 0.067 0.187
Carbon -0.057 0.077 -0.209 -0.056 0.089
Chemical 0.109 0.090 -0.069 0.109 0.278
Physical 0.017 0.043 -0.070 0.018 0.100

Soil Intercept -1.670 12.588 -26.767 -1.834 24.665
pH 0.085 0.055 -0.022 0.085 0.192
Carbon 0.109 0.074 -0.037 0.109 0.253
Chemical 0.620 0.082 0.460 0.619 0.782
Physical -0.019 0.035 -0.087 -0.019 0.050

ITS Litter Intercept 3.871 11.000 -19.413 4.034 25.957
pH 0.067 0.061 -0.054 0.067 0.187
Carbon -0.057 0.077 -0.209 -0.056 0.089
Chemical 0.109 0.090 -0.069 0.109 0.278
Physical 0.017 0.043 -0.070 0.018 0.100

Soil Intercept -1.400 10.548 -22.631 -1.470 20.545
pH -0.114 0.058 -0.229 -0.114 0.000
Carbon -0.389 0.085 -0.557 -0.388 -0.224
Chemical 0.319 0.081 0.161 0.319 0.480
Physical -0.046 0.037 -0.119 -0.046 0.027

Table 2. Association between environmental distance and community turnover. The multiple
regressions were based on the geographical distance, Euclidean distance matrices of soil properties, and
community Jaccard dissimilarity index values. Bold indicates significant results. Community dissimilarity is
significantly associated with geographical distance (Geo.Dist) for Amazonian fungal communities in soil and
litter. All community turnovers were significant using 10,000 permutations (p < 0.05) with the following R2:
18S litter = 0.18 (F = 31.6) and soil = 0.18 (F = 30.1), COI litter = 0.26 (F = 50.2) and soil = 0.28 (F =
54.5), ITS litter = 0.12 (F = 18.8) and soil = 0.18 (F = 30.1).

Litter Litter Soil Soil

Marker Predictor Coefficients p value Coefficients p value
18S Intercept 94.615 1.000 77.103 1.000

Geo.Dist 0.144 0.003 0.084 0.050
pH 0.193 0.002 0.143 0.026
Carbon 0.110 0.096 0.286 0.001
Chemical 0.168 0.015 0.109 0.162
Physical 0.115 0.035 0.160 0.017

COI Intercept 18.726 1.000 -1.402 1.000
Geo.Dist 0.114 0.007 0.192 0.000

14



P
os

te
d

on
A

u
th

or
ea

17
M

ar
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

44
79

22
.2

86
50

43
9

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Litter Litter Soil Soil

pH 0.175 0.008 0.130 0.030
Carbon 0.267 0.001 0.299 0.000
Chemical 0.177 0.023 0.137 0.069
Physical 0.215 0.002 0.246 0.000

ITS Intercept 157.504 1.000 110.212 1.000
Geo.Dist 0.116 0.015 0.094 0.033
pH 0.229 0.006 0.180 0.010
Carbon 0.111 0.223 0.362 0.000
Chemical -0.115 0.227 0.046 0.589
Physical 0.212 0.006 0.005 0.945

Table 3. Mean number of OTUs and number of indicator OTUs of Amazonian fungi by markers
in each locality, habitat, and soil layer.Localities are ordered west to east: BC = Benjamin Constant,
JAU = Jaú, CUI = Cuieras, and CXN = Caxiuanã. Habitats are ordered by plant and vertebrate diversity
gradient: TF = Terra-firme, VZ = Várzea, IG = Igapó, and CAM = Campina. The highest number in each
group is given in bold. Although the richest locality and soil layer varies depending on marker, for habitats
campinas are consistently the richest for all markers.

18S 18S COI COI ITS ITS

Mean Indicator Mean Indicator Mean Indicator
Locality BC 436 90 107 75 165 174

JAU 369 73 176 98 111 43
CUI 338 58 181 173 142 189
CXN 386 52 222 153 148 58

Habitat TF 376 36 179 108 139 58
VZ 399 101 145 184 127 118
IG 370 61 133 79 144 73
CAM 404 173 252 358 156 144

Soil layer Litter 375 42 209 169 176 98
Soil 393 106 142 29 109 12
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