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Abstract

In the paper, we consider a three-dimensional model of fluid-solid interaction when a thermo-electro-magneto-elastic body

occupying a bounded region Ω+ is embedded in an inviscid fluid occupying an unbounded domain Ω− = R3 \ Ω+. In this

case, we have a six-dimensional thermo-electro-magneto-elastic field (the displacement vector with three components, electric

potential, magnetic potential, and temperature distribution function) in the domain Ω+, while we have a scalar acoustic pressure

field in the unbounded domain Ω−. The physical kinematic and dynamic relations are described mathematically by appropriate

boundary and transmission conditions. With the help of the potential method and theory of pseudodifferential equations, we

prove the uniqueness and existence theorems for the corresponding boundary-transmission problems in appropriate Sobolev-

Slobodetskii and Hölder continuous function spaces.
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Introduction

The surge of interest in multiferroic materials over the past 15 years has been driven by their fascinat-
ing physical properties and huge potential for technological applications. Multiferroics belong to a newer
class of thermo-electro-magneto-elastic materials in which ferromagnetic and ferroelectric properties occur
simultaneously. Consequently, mathematical modeling related to multiferroic complex composite structures
and the corresponding fluid-solid interaction problems became very important from the theoretical and
practical points of view. Mathematically this type of interaction problems are described by non-standard
boundary-transmission problems for different dimensional physical fields acting in adjacent domains. This
type of interaction problems involving different dimensional physical fields appear in mathematical models
of electro-magneto transducers, sensors, actuators, energy harvesters, servomechanisms, phased array micro-
phones, ultrasound equipment, inkjet droplet actuators, sonar transducers, bioimaging, immunochemistry,
and acousto-biotherapeutics (see, e.g., Neugschwandtner et al(Journal of Applied Physics 89(8):4503–4511,
2001), Safari et al(Safari A, 2008), Vopson(of Multiferroic Materials & Critical Reviews in Solid State and
Materials Sciences 2015;40(4):223–250, 2015) and the references therein).

In this paper, we analyze a three-dimensional model of fluid-solid interaction, when a thermo-electro-
magneto-elastic body occupying a bounded region Ω+ is embedded in an inviscid fluid occupying an un-
bounded domain Ω− = R3 \ Ω+. In the solid region we consider Green–Lindsay’s generalized thermo-
electro-magneto-elastic model. The essential feature of this model is that heat propagation has a finite
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speed in contrast to the classical model. In the case under consideration, we have a six-dimensional thermo-
electro-magneto-elastic field in the solid region (the displacement vector with three components, electric
potential, magnetic potential, and temperature distribution function), while in the fluid region we have a
scalar acoustic pressure field. The physical kinematic and dynamic relations are described mathematically
by appropriate boundary and transmission conditions. We consider the interaction problems for the so-called
pseudo-oscillation equations, which are obtained form the corresponding dynamical equations by the Laplace
transform. With the help of the potential method and theory of pseudodifferential equations, we prove the
uniqueness and existence theorems for the corresponding boundary-transmission problems in appropriate
Sobolev-Slobodetskii and Hölder continuous function spaces. We derive explicit representation formulas of
solutions in the form of single layer potentials.

Many papers are devoted to the similar interaction problems, when in the solid region simpler mathematical
models are considered. The Dirichlet type, Neumann type and mixed type steady state oscillation interaction
problems of acoustic waves and piezoelectric structures are studied in the papers Chkadua(problems of
interaction of different dimensional physical fields. Journal of Physics: Conference Series 2013;451:01,
2013), Chkadua et al(Chkadua G & piezoelectric structures. Math. Meth. Appl. Sci. 2015;38(11):2149-,
2015), Chkadua(Chkadua G. Solvability et al., 2017).

Similar interaction problems with the classical model of elasticity have been investigated by a number of
authors. An exhaustive information concerning theoretical and numerical results, for the case when the
both interacting media are isotropic, can be found in the references Bielak et al(Bielak J & boundary in-
tegral coupling methods for fluid-solid interaction. Quart. Appl. Math. 1991;49:107–119, 1991), Bielak et
al(1991), Boström(of stationary acoustic waves by an elastic obstacle immersed, n.d.),(Boström A. Scattering
of acoustic waves by a layered elastic obstacle in a fluid - an improved null field approach, 1984), Goswami
et al(J. Nondestruct. Eval. 9:101–112, 1990), Hsiao et al(Hsiao GC & Hayes M. A. (eds): Elastic Wave
Propagation. IUTAM Symposium on Elastic Wave Propagation. North-Holland, 1989), Hsiao(missing cita-
tion), Hsiao et al(Hsiao GC, 1917), Junger et al(1986), Kagawa et al(Kagawa Y, 1979), Luke et al(Luke CJ,
1995), Natroshvili et al(Natroshvili D & inverse fuid-structure interaction problems. Rediconti di Matem-
atica, Serie VII 2000;20:57–92, 2000), Natroshvili et al(Natroshvili D & scalar fields. Math. Meth. Appl.
Sci. 1996;19:1445–, 1996), Natroshvili et al(2005). Interaction problems of steady state oscillations for ho-
mogeneous and anisotropic elastic solids are analysed in the references Jentsch et al(1998; 1999), where the
generalized Sommerfeld-Kupradze type radiation conditions for anisotropic solids are derived.

The present paper is organized as follows. In Section 2, we describe basic field equations in fluid and
solid regions, introduce the partial differential operators of the generalized thermo-electro-magneto-elasticity
theory (GTEME theory) in the solid region, formulate two type boundary-transmission problems, and prove
the uniqueness theorems. It should be mentioned that in contrast to the classical case, the second order
partial differential 6 × 6 matrix operators of the GTEME theory is neither positive definite nor formally
self-adjoint. In Section 3, we introduce the scalar and vector layer potential operators associated with the
corresponding differential operators in fluid and solid domains. We describe the jump properties of the
layer potentials and introduce the corresponding boundary integral operators which play a crucial role in
our further analysis. In Sections 4, we investigate the boundary-transmission problem (ID) formulated in
Section 2 containing the Dirichlet type conditions on the interface surface for the electric potential, magnetic
potential, and temperature function. Using the potential method, this problem is reduced to the equivalent
system of pseudodifferential equations. It is shown that the corresponding pseudodifferential operator is
strongly elliptic Fredholm operator with zero index and trivial null space. Therefore the pseudodifferential
operator is invertible and the corresponding interaction problem (ID) is unconditionally solvable. In section
5, we investigate the boundary-transmission problem (IN) formulated in Section 2 containing the Neumann
type conditions on the interface surface for the electric displacement vector, magnetic induction vector,
and heat flux vector. In this case, the corresponding strongly elliptic pseudodifferential operator is again
Fredholm operator with zero index and two dimensional null space. The explicit solutions of the adjoint
pseudodifferential equation is found and the necessary and sufficient conditions for the problem (IN) to be
solvable is written explicitly. Finally, in Appendix, for the readers convenience, we present some known
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results about the jump and mapping properties of scalar and vector potential operators employed in the
main text of the paper.

Basic Equations and Operators, Statement of Problems, and
Uniqueness Theorems

Generalized thermo-electro-magneto elastic field

The basic linear system of pseudo-oscillation equations for the thermo-electro-magneto-elasticity theory under
Green–Lindsay’s model is obtained from the corresponding dynamical equations by the Laplace transform
and in matrix form reads as follows (see Straughan (missing citation), Aouadi (missing citation), Green et
al (missing citation) and the references therein)

A(∂, τ)U(x, τ) = Φ(x, τ),

where U = (u, ϕ, ψ, θ)> = (u1, · · · , u6)>, u = (u1, u2, u3)> is the displacement vector, ϕ = u4 is the electric
potential, ψ = u5 is the magnetic potential, θ = u6 is the temperature distribution, Φ = (Φ1, · · · ,Φ6)> is a
given vector-function, and A(∂, τ) is the matrix differential operator

A(∂x, τ) = [Apq(∂x, τ)]6×6 :=
[crjkl∂j∂l − ρ1τ

2δrk]3×3 [elrj∂j∂l]3×1 [qlrj∂j∂l]3×1 [−(1 + ν0τ)λrj∂j ]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l −(1 + ν0τ)pj∂j
[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l −(1 + ν0τ)mj∂j
[−τλkl∂l]1×3 τpl∂l τml∂l ηjl∂j∂l − τ2h0 − τd0

 6×6 .

(1)

where τ = σ + iω is a complex parameter with σ > σ0 ≥ 0 and ω ∈ R), δjk is the Kronecker symbol,
and summation over repeated indices is meant from 1 to 3, if not stated otherwise. Here and in what
follows we employ the following notation for the material parameters: ρ1 – the mass density, crjkl – the
elastic constants, ejkl – the piezoelectric constants, qjkl – the piezomagnetic constants, κjk – the dielectric
(permittivity) constants, µjk – the magnetic permeability constants, ajk – the electromagnetic coupling
coefficients, pj , mj , and λrj – coupling coefficients connecting dissimilar fields, ηjk – the heat conductivity
coefficients, ν0 and h0 – two relaxation times, a0 and d0 – constitutive coefficients.
The constants involved in the above equations satisfy the symmetry conditions:

crjkl = cjrkl = cklrj , eklj = ekjl, qklj = qkjl,

κkj = κjk, λkj = λjk, µkj = µjk, akj = ajk, ηkj = ηjk, r, j, k, l = 1, 2, 3.
(2)

3
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Some authors require more extended symmetry conditions for piezoelectric and piezomagnetic constants:
eklj = ekjl = eljk, qklj = qkjl = qljk (see, e.g., Li (missing citation), (missing citation), Aouadi (missing
citation), (missing citation)). However in our further analysis we will require only the symmetry properties
described in (2). From physical considerations it follows that (see, e.g., Nowacki(missing citation), Li(missing
citation), Aouadi (missing citation), Straughan (missing citation), Green et al(missing citation)):

crjklξrjξkl ≥ δ0ξkl ξkl, κkjξkξj ≥ δ1|ξ|2, µkjξkξj ≥ δ2|ξ|2, ηkjξkξj ≥ δ3|ξ|2,
for all ξkj = ξjk ∈ R and for all ξ = (ξ1, ξ2, ξ3) ∈ R3,

ν0 > 0, h0 > 0, d0ν0 − h0 > 0,

where δ0, δ1, δ2, and δ3 are positive constants depending on material parameters.

Due to the symmetry conditions (2), with the help of (??) we easily derive

crjklζrjζkl ≥ δ0ζklζkl, κkjζkζj ≥ δ1|ζ|2, µkjζkζj ≥ δ2|ζ|2, ηkjζkζj ≥ δ3| ζ|2,
for all ζkj = ζjk ∈ C and for all ζ = (ζ1, ζ2, ζ3) ∈ C3.

(3)

More careful analysis related to the positive definiteness of the potential energy and the thermodynamical
laws insure that the following 8× 8 matrix

M = [Mkj ]8×8 :=
[κjl]3×3 [ajl]3×3 [pj ]3×1 [ν0pj ]3×1

[ajl]3×3 [µjl]3×3 [mj ]3×1 [ν0mj ]3×1

[pj ]1×3 [mj ]1×3 d0 h0

[ν0pj ]1×3 [ν0mj ]1×3 h0 ν0h0

 8×8

(4)

is positive definite. Note that the positive definiteness of M remains valid if the parameters pj and mj in
(4) are replaced by the opposite ones, −pj and −mj . Moreover, it follows that the matrices

Λ(1) :=[
[κkj ]3×3 [akj ]3×3

[akj ]3×3 [µkj ]3×3

]
6×6, Λ(2) :=

4
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[
d0 h0

h0 ν0h0

]
2×2

(5)

are positive definite as well, i.e.,

with some positive constants κ1 and κ2 depending on the material parameters involved in (5).
The principal homogeneous symbol matrix of the operator A(∂x, τ) is

A(0)(−iξ) = −A(0)(ξ) =
[−crjklξjξl]3×3 [−elrjξjξl]3×1 [−qlrjξjξl]3×1 [0]3×1

[ejklξjξl]1×3 −κjlξjξl −ajlξjξl 0
[qjklξjξl]1×3 −ajlξjξl −µjlξjξl 0

[0]1×3 0 0 −ηjlξjξl

 6×6.

(6)

From the symmetry conditions (2), inequalities (??), and positive definiteness of the matrix Λ(1) defined in
(5) it follows that there is a positive constant C0 depending only on the material parameters, such that

Therefore, −A(∂x, τ) is a non-selfadjoint strongly elliptic differential operator. The over bar denotes complex
conjugation and the central dot denotes the scalar product in the respective complex-valued vector space.
Further, let us introduce the generalized stress operator T (∂x, n, τ) associated with the pseudo-oscillation
operator A(∂x, τ)

T = T (∂x, n, τ) =
[
Tpq(∂x, n, τ)

]
6×6

:=
[crjklnj∂l]3×3 [elrjnj∂l]3×1 [qlrjnj∂l]3×1 [−(1 + ν0τ)λrjnj ]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l −(1 + ν0τ)pjnj
[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l −(1 + ν0τ)mjnj

[0]1×3 0 0 ηjlnj∂l

 6×6 .

(7)

5
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Evidently, for a smooth six vector U := (u, ϕ, ψ, ϑ)> we have

T (∂x, n, ∂t)U = (σ1jnj , σ2jnj , σ3jnj ,−Djnj ,−Bjnj ,−T−1
0 qjnj)

>.

(8)

Recall that E = (E1, E2, E3)> = −ϕ and H = (H1, H2, H3)> = −ψ are electric and magnetic fields,
respectively, D = (D1, D2, D3)> is the electric displacement vector and B = (B1, B2, B3)> is the magnetic
induction vector, ϕ and ψ stand for the electric and magnetic potentials and ϑ is the temperature change
to a reference temperature T0, q = (q1, q2, q3)> is the heat flux vector, and S is the entropy density, and the
corresponding constitutive equations read as

σrj(x, τ) = crjklεkl(x, τ) + elrj∂lϕ(x, τ) + qlrj∂lψ(x, τ)− (1 + ν0τ)λrjϑ(x, τ),

Dj(x, τ) = ejklεkl(x, τ)− κjl∂lϕ(x, τ)− ajl∂lψ(x, τ) + (1 + ν0τ)pjϑ(x, τ),

Bj(x, τ) = qjklεkl(x, τ)− ajl∂lϕ(x, τ)− µjl∂lψ(x, τ) + (1 + ν0τ)mjϑ(x, τ),

qj(x, τ) = −T0ηjl∂lϑ(x, τ).

The components of the vector T U given by (8) have the following physical sense: the first three components
correspond to the mechanical stress vector in the theory of generalized thermo-electro-magneto-elasticity, the
forth and the fifth components correspond to the normal components of the electric displacement vector and
the magnetic induction vector, respectively, with opposite sign, and finally the sixth component is (−T−1

0 )
times the normal component of the heat flux vector.
In Green’s formulas there appears also the boundary operator P(∂x, n, τ) associated with the adjoint differ-
ential operator A∗(∂x, τ) := [A(−∂x, τ)]> = A>(−∂x, τ),

P = P(∂x, n, τ) =
[
Ppq(∂x, n, τ)

]
6×6

=
[crjklnj∂l]3×3 [−elrjnj∂l]3×1 [−qlrjnj∂l]3×1 [τλrjnj ]3×1

[ejklnj∂l]1×3 κjlnj∂l ajlnj∂l −τpjnj
[qjklnj∂l]1×3 ajlnj∂l µjlnj∂l −τmjnj

[0]1×3 0 0 ηjlnj∂l

 6×6 .

(9)

Scalar acoustic wave field

Let Ω+ be a bounded 3-dimensional domain in R3 with C∞-smooth boundary S = ∂Ω+ if not otherwise
stated, Ω+ = Ω+ ∪ S, and Ω− = R3 \ Ω+. We assume that the unbounded exterior domain Ω− is filled by
a homogeneous isotropic inviscid fluid medium with the constant density ρ2. Further, let the propagation

6
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of acoustic pressure wave in Ω− be described by a complex-valued scalar function (scalar field) w being a
solution of the homogeneous Helmholtz equation (cf. Colton et al(missing citation))

∆w(x, τ)− ρ2τ
2w(x, τ) = 0,

(10)

satisfying the following asymptotic condition at infinity

w(x) = O(|x|m) as |x| → ∞

(11)

with some natural number m ∈ N. Note that, if Reτ = σ > σ0 ≥ 0, due to relation (11), it then follows that

Dαw(x) = O(|x|−n) as |x| → ∞

(12)

for all multi-indices α and n ∈ N. Actually, w decays exponentially at infinity.

Formulation of interaction problems

By Ck(Ω±) we denote the subspace of functions from Ck(Ω±) whose derivatives up to the order k are
continuously extendable to S from Ω±. We denote by Hs(Ω±) and Hs(S) the well known L2-based Sobolev-
Slobodetski and Bessel potential spaces.
The symbols { · }+S and { · }−S denote one-sided limits (traces) on S from Ω+ and Ω−, respectively. We drop
the subscript S if it does not lead to misunderstanding.

Assume that the domain Ω+ is occupied by an anisotropic homogeneous material with the above described
generalized thermo-electro-magneto-elastic properties and it is immersed in an inviscid fluid occupying the
exterior domain Ω−.

The fluid-solid interaction in the case under consideration is described by the boundary-transmission prob-
lems for the equations of the generalized thermo-electro-magneto-elasticity theory and the Helmholtz equa-
tion. Throughout the paper we assume that

τ = σ + iω, σ > σ0 > 0, ω ∈ R,

(13)

if not otherwise stated.

7
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Interaction Dirichlet Type Problem (ID): Find a vector-function U = (u, u4, u5, u6)> ∈ [H1(Ω+)]6 and
scalar function w ∈ H1(Ω−) satisfying the differential equations

A(∂x, τ)U = 0 in Ω+, (14)

∆w − ρ2τ
2w = 0 in Ω−,

(15)

the transmission conditions

{u · n}+ = −(ρ2τ
2)−1{∂nw}− + g0 on S, (16)

{[T U ]j}+ = −{w}−nj + fj on S, j = 1, 2, 3,

(17)

and the Dirichlet type boundary conditions

{ur}+ = f (D)
r on S, r = 4, 5, 6,

(18)

where g0 ∈ H−1/2(S) , fj ∈ H−1/2(S), j = 1, 2, 3, f
(D)
r ∈ H1/2(S) r = 4, 5, 6.

Interaction Neumann Type Problem (IN): Find a vector-function U = (u, u4, u5, u6)> ∈ [H1(Ω+)]6

and scalar function w ∈ H1(Ω−) satisfying the differential equations (14) and (15) respectively, transmission
conditions (16), (17), and the Neumann boundary condition

{[T U ]r}+ = f (N)
r on S with f (N)

r ∈ H−1/2(S) r = 4, 5, 6.

(19)

In both boundary-transmission problems we require that the scalar pressure function w satisfies the decay
condition (12).

8
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Uniqueness theorems

Let τ = σ + iω with σ > σ0 > 0 and ω ∈ R. The homogeneous problem (ID) has only the trivial solution,
while the general solution of the homogeneous problem (IN) is the vector U = (0, 0, 0, b1, b2, 0) and w = 0,
where b1 and b2 are an arbitrary complex constants.

Let a pair (U,w) be a solution to the homogeneous problem (ID).
Let us write Green’s second formula for the Helmholtz equation (15) in the domain Ω−,

∫
Ω−

[(∆− ρ2τ
2)w w − w(∆− ρ2τ

2)w]dx = −〈{∂nw}−, {w}−〉S + 〈{∂nw}−, {w}−〉S .

(20)

Here and in what follows, the symbol 〈 ·, · 〉S denotes the duality between the mutually adjoint function
spaces H−1/2(S) and H1/2(S), which extends the usual L2 scalar product

〈f, g〉S =

∫
S

f g dS for f, g ∈ L2(S).

Therefore from (15) nd (20) we obtain

Im 〈{∂nw}− , {w}−〉S = 0.

(21)

Now, let us write Green’s first formula for the Helmholtz equation (15) in the domain Ω−,

∫
Ω−

(∆− ρ2τ
2)w wdx+ ρ2τ

2

∫
Ω−
|w|2dx+

∫
Ω−
|∇w|2dx = −〈{∂nw}−, {w}−〉S .

(22)

Take into account (15) and separate the real and imaginary parts of (22) to obtain

2σω

∫
Ω−
|w|2dx = 0, (23)

(σ2 − ω2)

∫
Ω−
|w|2dx+

∫
Ω−
|∇w|2dx = −〈{∂nw}−, {w}−〉S .

9
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(24)

If ω 6= 0, from (23) we conclude that w = 0 in Ω−.
Now, let us write Green’s formula for the operator A(∂x, τ) in the domain Ω+ (see Subsection 2.7.3 in
Buchukuri et al (missing citation)),

∫
Ω+

[
[A(∂x, τ)U ]j uj + [A(∂x, τ)U ]4 u4 + [A(∂x, τ)U ]5 u5 + (25)

+
1 + ν0τ

τ
[A(∂x, τ)U ]6 u6 + E(U,U)

]
dx = 〈{T U}+j , {uj}

+〉S +

+〈{T U}+4 , {u4}+〉S + 〈{T U}+5 , {u5}+〉S +
1 + ν0τ

τ
〈{T U}+6 , {u6}+〉S ,

where

Since (U,w) is a solution of the homogeneous problem (ID), from (25) and we obtain

∫
Ω+

E(U,U)dx = 〈{T U}+j , {uj}
+〉S = −〈{w}− nj , {uj}+〉S = (ρ2 τ

2)−1〈{w}−, {∂nw}−〉S ,

i.e.

〈{w}−, {∂nw}−〉S = ρ2 τ
2

∫
Ω+

E(U,U)dx.

(26)

Substituting (26) into (24) for ω = 0 we get

σ2

∫
Ω−
|w|2dx+

∫
Ω−
|∇w|2dx+ ρ2 σ

2

∫
Ω+

E(U,U)dx = 0.

(27)

10
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Keeping in mind that for ω = 0, the following inequality∫
Ω+

E(U,U)dx ≥ 0

holds (see the proof of Theorem 2.25 in Buchukuri et al (missing citation)), from (27) we deduce that w = 0
in Ω−. Thus, w = 0 in Ω− for arbitrary ω ∈ R. Therefore from (26) we get

∫
Ω+

E(U,U)dx = 0

(28)

for σ > σ0 > 0 and ω ∈ R. Due to the relations (3) and the positive definiteness of the matrix Λ(1) defined
in (5), we find that

cijlk∂iuj∂luk ≥ 0, ηjl∂lϑ∂jϑ ≥ 0,[
κjl∂lϕ∂jϕ+ ajl(∂lψ∂jϕ+ ∂jϕ∂lψ) + µjl∂lψ∂jψ

]
≥ λ0

(
|∇ϕ|2 + |∇ψ|2

)
,

(29)

where λ0 is a positive constant.
Using inequalities (29), positive definiteness of the matrix M defined by (4), and the inequality σ(d0ν0−h0) >
0 (see ()) we obtain that (see proof of Theorem 2.25 in Buchukuri et al (missing citation))

u = 0, u4 = ϕ = b1, u5 = ψ = b2, u6 = ϑ = 0 in Ω+,

(30)

i.e.

U = (0, 0, 0, b1, b2, 0)>,

(31)

where b1 and b2 are arbitrary complex constants.
The homogeneous Dirichlet conditions on S then imply b1 = b2 = 0, i.e. U = 0 in Ω−.

11
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It is evident that b1 and b2 in (31) remain arbitrary complex constants in the case of the homogeneous
problem (IN), which completes the proof.

Let a pair (V,w) ∈ [H1(Ω+)]6 ×H1(Ω−) be a solution of the homogeneous boundary-transmission problem
associated with the adjoint differential operators:

A∗(∂x, τ)V = 0 in Ω+,

(∆− ρ2τ
2)w = 0 in Ω−,

{v · n}+ + (ρ2τ
2)−1{∂nw}− = 0 on S,

{[PV ]j}+ + {w}−nj = 0 on S, j = 1, 2, 3,

{[PV ]k}+ = 0 on S, k = 4, 5, 6,

where V = (v, v4, v5, v6)> with v = (v1, v2, v3)> and P is defined in (9). By the similar arguments applied
in the proof of Theorem , one can prove that w = 0 in Ω− and V = (0, 0, 0, b1, b2, 0)> in Ω+, where b1
and b2 are arbitrary complex constants.

Layer potentials

Potentials associated with the Helmholtz equation

Let us introduce the single and double layer potentials

Vτ (g)(x) : =

∫
S

γ(x− y, τ)g(y)dyS, (32)

Wτ (f)(x) : =

∫
S

∂n(y)γ(x− y, τ)f(y)dyS,

(33)

where

γ(x, τ) := −
exp

(
−√ρ2 τ |x|

)
4π|x|

, Reτ > 0,

is the fundamental solution of the Helmholtz equation (10). These potentials satisfy the decay condition
(12) at infinity.
For these potentials the following theorems are valid (see Colton et al (missing citation), McLean (missing
citation)).

Let g ∈ H−1/2(S), f ∈ H1/2(S). Then the following jump relations hold on the manifold S

{Vτ (g)}± = Hτ (g), {∂nVτ (g)}± = ∓ 2−1g +Kτ (g),

{Wτ (f)}± = ± 2−1f +Nτ (f), {∂nWτ (f)}+ = {∂nWτ (f)}− =: Lτ (f),

12
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(34)

where Hτ , Nτ , and Kτ are integral operators with weakly singular kernels

Hτ (g)(z) :=

∫
S

γ(z − y, τ)g(y)dyS, z ∈ S, (35)

Nτ (f)(z) :=

∫
S

∂n(y)γ(z − y, τ)f(y)dyS, z ∈ S, (36)

Kτ (g)(z) :=

∫
S

∂n(z)γ(z − y, τ)g(y)dyS, z ∈ S,

(37)

while Lτ is a singular integro-differential operator (a pseudodifferential operator of order 1).

Mapping properties of the above potentials and the boundary integral operators are described in Appendix
(see Theorems -).

Fundamental solution and potentials associated with the pseudo-oscillation op-
erator of generalized thermo-electro-magneto-elasticity theory

The full symbol of the pseudo-oscillation operator A(∂x, τ) is elliptic provided Reτ 6= 0, i.e. (see Ch.3 in
Buchukuri et al(missing citation) ),

A (-iξ, τ) = −


[crjklξjξl + ρ1τ

2δrk]3×3 [elrjξjξl]3×1 [qlrjξjξl]3×1 [−i(1 + ν0τ)λrjξj ]3×1

[−ejklξjξl]1×3 κjlξjξl ajlξjξl −i(1 + ν0τ)pjξj
[−qjklξjξl]1×3 ajlξjξl µjlξjξl −i(1 + ν0τ)mjξj
[−iτλklξl]1×3 iτplξl iτmlξl ηjlξjξl + τ2h0 + τd0


6×6

.

detA(−iξ, τ) 6= 0, ∀ξ ∈ R3\{0},

where

Moreover, the entries of the inverse matrix A−1(−iξ, τ) are locally integrable functions decaying at infinity
as O(|ξ|−2). Therefore, one can construct the fundamental matrix Γ(x, τ) = [Γrk(x, τ)]6×6 of the operator
A(∂x, τ) by the distributional Fourier transform technique,

Γ(x, τ) = F−1
ξ→x[A−1(−iξ, τ)].

13
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(38)

The properties of the fundamental matrix Γ(x, τ) in a neighbourhood of the pole and at infinity are studied
in the reference Buchukuri et al(missing citation) (Ch. 3).

Let us introduce the single and double layer vector potentials associated with the pseudo-oscillation operator
A(∂, τ):

Vτ (h) =

∫
S

Γ(x− y, τ)h(y) dyS, (39)

Wτ (h) =

∫
S

[
P(∂y, n(y), τ)Γ>(x− y, τ)

]>
h(y) dyS,

(40)

where h = (h1, h2, h3, h4, h5, h6)> is a density vector-function and P is defined in (9).
These pseudo-oscillation potentials have the following jump properties (see Theorem 4.4 in Buchukuri et al
(missing citation)).

Let h(1) ∈ [H−1+s(S)]6, h(2) ∈ [Hs(S)]6, s > 0. Then the following jump relations hold on S

{Vτ (h(1))(z)}± =

∫
S

Γ(z − y, τ)h(1)(y) dyS, z ∈ S,

{Wτ (h(2))(z)}± = ±2−1h(2)(z) +

∫
S

[
P(∂y, n(y), τ)Γ>(z − y, τ)

]>
h(2)(y) dyS, z ∈ S,

{TVτ (h(1))(z)}± = ∓2−1h(1)(z) +

∫
S

T (∂z, n(z), τ)Γ(z − y, τ)h(1)(y) dyS, z ∈ S,

{TWτ (h(2))(z)}+ = {TWτ (h(2))(z)}−, z ∈ S.

Further we introduce the boundary pseudodifferential operators

Hτh(z) =

∫
S

Γ(z − y, τ)h(y) dyS, z ∈ S,

Kτh(z) =

∫
S

T (∂z, n(z), τ)Γ(z − y, τ)h(y) dyS, z ∈ S,

Nτh(z) =

∫
S

[
P(∂y, n(y), τ)Γ>(z − y, τ)

]>
h(y) dyS, z ∈ S,

Lτh(z) = {TWτh(z)}+ = {TWτ (h)(z)}−, z ∈ S.

14
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Note that Hτ is a weakly singular integral operator (pseudodifferential operator of order −1), Kτ and
Nτ are singular integral operators (pseudodifferential operator of order 0), and Lτ is a singular integro-
differential operator (pseudodifferential operator of order 1). Mapping properties of these potentials and the
corresponding boundary operators are described in Appendix (see Theorems -).

Existence of solutions to the interaction problem (ID)

By Theorems and (see Appendix) the operators

Hτ : [Hs(S)]6 → [Hs+1(S)]6, Hτ : Hs(S)→ Hs+1(S),

are invertible for all s ∈ R and we can look for a solution pair (U,w) of the problem (ID) in the form of
single layer potentials:

U = Vτ

(
H−1
τ g

)
in Ω+, w = Vτ

(
H−1
τ h

)
in Ω−,

(41)

where g = (g̃, g4, g5, g6)> ∈ [H1/2(S)]6, g̃ = (g1, g2, g3)>, h ∈ H1/2(S) are unknown densities. Theorems , ,
and imply the inclusion U ∈ [H1(Ω+)]6 and w ∈ H1(Ω−).
Transmission conditions (16), (17), and the Dirichlet type conditions (18) lead to the following system of
pseudodifferential equations with respect to the unknowns g̃, g4, g5, g6, and h:

g̃ · n+ (ρ2τ
2)−1

(
2−1I1 +Kτ

)
H−1
τ h = g0 on S, (42)[(

− 2−1I6 + Kτ

)
H−1
τ g

]
j

+ njh = fj on S, j = 1, 2, 3, (43)

gr = f (D)
r on S, r = 4, 5, 6.

(44)

Here and in what follows Im stands for the m×m unit matrix.
The matrix operator generated by the left hand side expressions in the system (42)-(44) reads as

Qτ,D =
[
Qlm
τ,D

]
7×7

:= [

[n]1×3 [0]1×3 (ρ2τ
2)−1Aτ

[Ajk
τ ]3×3 [Aj,k+3

τ ]3×3 [n]3×1

[0]3×3 I3 [0]3×1

7×7, j, k = 1, 2, 3,

where

15
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Aτ =
[
Ajk
τ

]
6×6

:=
(
− 2−1I6 + Kτ

)
H−1
τ , (45)

Aτ :=
(
2−1I1 +Kτ

)
H−1
τ

(46)

are the Steklov-Poincaré type operators on S associated with the operators A(∂x, τ) and the Helmholtz
operator respectively. These operators are strongly elliptic pseudodifferential operators of order 1 (for details
see Buchukuri et al (missing citation),(missing citation)).
System (42)-(44) can be rewritten in matrix form

Qτ,DΦ = F, Φ =
(
g, h
)>
, F =

(
g0, f1, f2, f3, f

(D)
4 , f

(D)
5 , f

(D)
6

)>
(47)

By Theorems and (see Appendix), the operator Qτ,D possesses the following mapping property

Qτ,D : [H1/2(S)]7 → [H−1/2(S)]4 × [H1/2(S)]3.

(48)

In view of (44) equations (42) and (43) can be rewritten in the following equivalent form as a system with
respect to g̃ = (g1, g2, g3)> and h:

g̃ · n+ (ρ2τ
2)−1Aτh = g0 on S, (49)[

Aτ (g̃, 0, 0, 0)>
]
j

+ njh = F̃j on S, j = 1, 2, 3,

(50)

where F̃j := fj − [Aτ (0, 0, 0, f
(D)
4 , f

(D)
5 , f

(D)
6 )>]j , j = 1, 2, 3.

Denote by Rτ,D the operator generated by the left hand side expression of system (49)-(50),

Rτ,D =
[
Rjk
τ,D

]
4×4

:= [

[n]1×3 (ρ2τ
2)−1Aτ

Ãτ [n]3×1
4×4,

16
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where Ãτ := [Ajk
τ ]3×3, j, k = 1, 2, 3.

Evidently the operator

Rτ,D : [H1/2(S)]4 → [H−1/2(S)]4

(51)

is bounded. Let

R
(0)
τ,D := [

[0]1×3 (ρ2τ
2)−1Aτ

Ãτ [0]3×1
4×4.

It can be easily verified that the operator

Rτ,D −R
(0)
τ,D : [H1/2(S)]4 → [H−1/2(S)]4

is compact.
The strong ellipticity property of the operators (45) and (46) implies that the operators

Ãτ : [H1/2(S)]3 → [H−1/2(S)]3, Aτ : H1/2(S)→ H−1/2(S)

are Fredholm operators with zero index (see Hörmander (missing citation), Hsiao et al (missing citation),
McLean (missing citation), Buchukuri et al(missing citation)).
Therefore operator (51) and consequently operator (48) are Fredholm with index zero.
Now, we show that the null space of the operator Rτ,D is trivial. Let (g̃, h)> with g̃ ∈ [H1/2(S)]3 and
h ∈ H1/2(S) be a solution of the homogeneous system

Rτ,D(g̃, h)> = 0,

(52)

17
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and set

Ũ = (ũ, ũ4, ũ5, ũ6)> = Vτ

(
H−1
τ (g̃, 0, 0, 0)

)
, w̃ = Vτ

(
H−1
τ h

)
.

With the help of equation (52) it can be easily checked that Ũ and w̃ solve the homogeneous problem (ID).

Therefore by the uniqueness theorem for the problem (ID) (see Theorem ), we deduce Ũ = 0 in Ω+ and

w̃ = 0 in Ω−. Then {Ũ}+ = (g̃, 0, 0, 0)> = 0 and {w̃}− = h = 0 on S. Consequently, the operators

Rτ,D : [H1/2(S)]4 → [H−1/2(S)]4,

Qτ,D : [H1/2(S)]7 → [H−1/2(S)]4 × [H1/2(S)]3

are invertible.
Therefore system (42)-(44) is uniquely solvable and the following assertion holds.

Let S ∈ C∞, τ = σ + iω, σ > σ0 > 0, ω ∈ R, and

g0 ∈ H−1/2(S), fj ∈ H−1/2(S), j = 1, 2, 3, f (D)
r ∈ H1/2(S), r = 4, 5, 6.

Then the interaction Dirichlet type problem (ID) has a unique solution (U,w) ∈ [H1(Ω+)]6×H1(Ω−), which
can be represented by the single layer potentials

U = Vτ

(
H−1
τ g

)
in Ω+, w = Vτ

(
H−1
τ h

)
in Ω−,

(53)

where the densities g ∈ [H1/2(S)]6 and h ∈ H1/2(S) are defined from the uniquely solvable system (42)-(44).

If the boundary-transmission data of the problem are smooth functions, then the solution pair (U,w) is
smooth as well and the following regularity result holds.

Let S ∈ Cm,α, 0 < β < α ≤ 1, m ≥ 2 m ∈ N, and

g0 ∈ Ck−1,β(S), fj ∈ Ck−1,β(S), j = 1, 2, 3, f (D)
r ∈ Ck,β(S), r = 4, 5, 6, 1 ≤ k ≤ m− 1, k ∈ N.

18
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Then the problem (ID) has a unique solution (U,w) ∈ [Ck,β(Ω+)]6 × Ck,β(Ω−), which can be represented
by the single layer potentials (53), where the densities g ∈ [Ck,β(S)]6 and h ∈ Ck,β(S) are defined from the
uniquely solvable system (42)-(44).

From Theorem it follows that the strongly elliptic pseudodifferential operators

Aτ : Ck,β(S)→ Ck−1,β(S), Aτ : [Ck,β(S)]6 → [Ck,β(S)]6

are Fredholm with zero index. Using the same arguments as above, with the help of the uniqueness theorem
for the problem (ID) it can be shown that the operator

Qτ,D : [Ck,β(S)]7 → [Ck−1,β(S)]4 × [Ck,β(S)]3

has the trivial null space and consequently it is invertible. Therefore system (42)-(44) is uniquely solvable
in the space [Ck,β(S)]7, i.e. g ∈ [Ck,β(S)]6, h ∈ Ck,β(S). The regularity result then follows from the
representation (53) and from Theorems and .

Existence of solutions to the interaction problem (IN)

As in the previous section, we can look for a solution of the problem (IN) in the form of single layer potentials

U = Vτ

(
H−1
τ g

)
in Ω+, w = Vτ

(
H−1
τ h

)
in Ω−,

(54)

where g = (g̃, g4, g5, g6)> ∈ [H1/2(S)]6 with g̃ = (g1, g2, g3)> and h ∈ H1/2(S) are unknown densities. From
Theorems , , and it follows that U ∈ [H1(Ω+)]6 and w ∈ H1(Ω−).
Transmission conditions (16), (17), and the Neumann type condition (19) lead to the following system of
pseudodifferential equations with respect to the unknowns g and h:

g̃ · n+ (ρ2τ
2)−1Aτh = g0 on S, (55)

[Aτg]j + njh = fj on S, j = 1, 2, 3, (56)

[Aτg]r = f (N)
r on S, r = 4, 5, 6,

(57)
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where Aτ and Aτ are Steklov-Poincaré type operators defined in (45) and (46).
Denote by Qτ,N the operator generated by the left hand side expressions of system (55)-(57):

Qτ,N := [

[(n, 0, 0, 0)]1×6 (ρ2τ
2)−1Aτ

[Aτ ]6×6 [n, 0, 0, 0]6×1
7×7, j = 1, 2, 3, k = 1, 6.

We can rewrite system (55)-(57) in matrix form

Qτ,NΦ = F, Φ = (g, h)>, F =
(
g0, f1, f2, f3, f

(N)
4 , f

(N)
5 , f

(N)
6

)>
.

(58)

The operator Qτ,N possesses the following mapping property

Qτ,N : [H1/2(S)]7 → [H−1/2(S)]7.

Since the Steklov-Poincaré type operators Aτ and Aτ are strongly elliptic pseudodifferential operators of
order 1, it follows that the operators Aτ : H1/2(S) → H−1/2(S) and Aτ : [H1/2(S)]6 → [H−1/2(S)]6 are
Fredholm operators with index zero. Hence, the operator

Qτ,N : [H1/2(S)]7 → [H−1/2(S)]7

is Fredholm with index zero.
Now, let us investigate the null spaces of the operator Qτ,N and its adjoint one. Let g ∈ [H1/2(S)]6 and
h ∈ H1/2(S) be solutions of the homogeneous system (55)-(57)

Qτ,N (g, h)> = 0,

(59)

and construct the potentials
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Ũ = (ũ, ũ4, ũ5, ũ6)> = Vτ

(
H−1
τ g

)
, w̃ = Vτ

(
H−1
τ h

)
.

(60)

Evidently, Ũ and w̃ solve the homogeneous problem (IN) in view of representation (60) and equation (59).
From the structure of a solution to the homogeneous problem (IN) presented in Theorem , we have

Ũ = (0, 0, 0, b1, b2, 0)> in Ω+, w̃ = 0 in Ω−,

where b1 and b2 are arbitrary complex constants. These relations imply {Ũ}+ = (0, 0, 0, b1, b2, 0)> = g on
S, i.e. g1 = g2 = g3 = g6 = 0, g4 = b1, g5 = b2 and {w̃}− = h = 0 on S. Therefore the dimension of
the null space of the operator Qτ,N equals to 2, dim Ker Qτ,N = 2. Therefore dim Ker Q∗τ,N = 2, where

Q∗τ,N : [H1/2(S)]7 → [H−1/2(S)]7 is the operator adjoint to Qτ,N : [H1/2(S)]7 → [H−1/2(S)]7. Further, we
will describe the null space of the adjoint operator Q∗τ,N to formulate explicitly the necessary and sufficient
conditions for the problem (IN) to be solvable.

One can easily find that the operator adjoint to Qτ,N has the following form

Q∗τ,N := [

[n, 0, 0, 0]6×1 [A∗τ ]6×6

(ρ2τ
2)−1A∗τ [n, 0, 0, 0]1×6

7×7,

where

It is evident that A∗τ , H∗τ , K∗τ , A∗τ , H∗τ , and K∗τ are the adjoint operators respectively to the operators Aτ ,
Hτ , Kτ , Aτ , Hτ , and Kτ with respect to the corresponding duality relations.

Note that the fundamental matrix Γ∗(x, τ) of the adjoint operator A∗(∂, τ) reads as Γ∗(x, τ) = Γ>(−x, τ) =
Γ>(−x, τ), while the fundamental solution γ∗(x, τ) of the adjoint Helmholtz operator (∆ + %2 τ

2 ) reads as
γ∗(x, τ) = γ(−x, τ) = γ(−x, τ) = γ(x, τ).

Therefore operators (??)-(??) can be rewritten as
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It is evident that operators (??)-(??) are generated by the direct values on S of the single and double layer
potentials constructed by the fundamental matrix Γ∗(x, τ) and fundamental solution γ∗(x, τ) (cf. Buchukuri
et al(missing citation)):

It is easy to see that the potentials (??)-(??) have the same mapping properties as the potentials (32), (33),
(39), (40).

To find the basis of the null space of the operator Q∗τ,N we proceed as follows. Let Ψ := (ψ1, · · · , ψ7)> ∈
[H1/2(S)]7 be a solution of the homogeneous adjoint system

[
H∗τ [0]6×1

[0]1×6 −ρ2τ
2H∗τ

]
7×7

Q∗τ,NΨ = 0.

(61)

By applying the injective matrix operator

to equation (61), we obtain the following equivalent equation

Q̃τ,NΨ = 0,

(62)

where

H∗τ [0]6×1

[0]1×6 −ρ2τ
2H∗τ

7×7 [

[n, 0, 0, 0]6×1 [A∗τ ]6×6

(ρ2τ
2)−1A∗τ [n, 0, 0, 0]1×6

7×7

= [
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[(H∗τ )klnl]6×1

(
− 2−1I6 + K∗τ

)
−
(
2−1I1 +K∗τ

)
−ρ2τ

2H∗τ [n, 0, 0, 0]1×6
7×7.

Construct the following potentials

Ũ = V∗τ (Ψ(1)) + W∗
τ (Ψ(2)) in Ω−, (63)

w̃ = −W ∗τ (ψ1)− ρ2τ
2V ∗τ (Ψ′ · n) in Ω+,

(64)

where

Ψ(1) := (nψ1, 0, 0, 0)>, Ψ(2) := (Ψ′, ψ5, ψ6, ψ7)>, Ψ′ = (ψ2, ψ3, ψ4)>.

From (62)-(64) we easily deduce

{Ũ}− = [(H∗τ )klnl]6×1ψ1 +
(
− 2−1I6 + K∗τ

)
Ψ(2) = 0 on S,

{w̃}+ = −
(
2−1I1 +K∗τ

)
ψ1 − ρ2τ

2H∗τ [Ψ′ · n] = 0 on S.

Therefore the vector Ũ ∈ [H1(Ω−)]6 solves the exterior homogeneous Dirichlet problem

A∗(∂, τ)Ũ = 0 in Ω−,

{Ũ}− = 0 on S,

and from the corresponding uniqueness result it follows that Ũ = 0 in Ω− (see Theorem 2.30 in Buchukuri
et al(missing citation)).
On the other hand, the function w̃ ∈ H1(Ω+) solves the interior homogeneous Dirichlet problem:

(
∆− ρ2τ

2
)
w̃ = 0 in Ω+,

{w̃}+ = 0 on S.
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It can easily be shown that this problem possesses only the trivial solution, i.e. w̃ = 0 in Ω+ (see Colton et
al(missing citation)).
Using the jump formulae for potentials (63) and (64) (see Theorems and ) we derive that on the surface S
the following relations hold:

{w̃}− = ψ1, (65)

{∂nw̃}− = −ρ2τ
2 Ψ′ · n, (66)

{[PŨ ]j}+ = −njψ1, j = 1, 2, 3, (67)

{[PŨ ]k}+ = 0, k = 4, 5, 6, (68)

{Ũ}+ = Ψ(2),

(69)

Hence we deduce that Ũ = (Ũ1, Ũ2, Ũ3, Ũ4, Ũ5, Ũ6)> = (Ũ ′, Ũ4, Ũ5, Ũ6)> with Ũ ′ = (Ũ1, Ũ2, Ũ3, )
> and w̃

solve the following homogeneous transmission problem

A∗(∂x, τ)Ũ = 0 in Ω+,(
∆− ρ2τ

2
)
w̃ = 0 in Ω−,

{Ũ ′ · n}+ +
(
ρ2τ

2
)−1{∂nw̃}− = 0 on S,

{[PŨ ]j}+ + {w̃}−nj = 0 on S, j = 1, 2, 3,

{[PŨ ]k}+ = 0 on S, k = 4, 5, 6.

From the uniqueness result (see Remark ) it follows that w̃ = 0 in Ω− and Ũ = (0, 0, 0, b1, b2, 0)> in Ω+

with arbitrary complex constants b1 and b2. Then from (65)-(69) we obtain

ψj = 0, j = 1, 4, ψ5 = b1, ψ6 = b2, ψ7 = 0, i.e., Ψ = (0, 0, 0, 0, b1, b2, 0)>.

(70)

Since the operator Qτ,N : [H1/2(S)]7 → [H−1/2(S)]7 is Fredholm with zero index, from (70) we obtain that
the following orthogonality condition

〈F, Ψ〉S = 0

(71)
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is necessary and sufficient for matrix pseudodifferential equation (58) to be solvable. Therefore the boundary-
transmission problem(IN) is solvable if and only if

〈f (N)
4 , 1〉S = 0, 〈f (N)

5 , 1〉S = 0.

(72)

Now we can formulate the following existence theorem.

Let S ∈ C∞, τ = σ + iω, σ > σ0 > 0, ω ∈ R, and

g0 ∈ H−1/2(S), fj ∈ H−1/2(S), j = 1, 2, 3, f (N)
r ∈ H−1/2(S), r = 4, 5, 6.

Then the interaction Neumann type problem (IN) is solvable in the space (U,w) ∈ [H1(Ω+)]6 ×H1(Ω−), if
and only if the condition (72) is fulfilled. The solutions of the problem (IN) are represented by potentials

U = Vτ

(
H−1
τ g

)
in Ω+, w = Vτ

(
H−1
τ h

)
in Ω−,

where the densities g ∈ [H1/2(S)]6 and h ∈ H1/2(S) are defined from system (55)-(57), and they are defined
modulo the addend vector (0, 0, 0, b1, b2, 0)> with arbitrary comlex constants b1 and b2.

The following regularity result holds.

Let S ∈ Cm,α, 0 < β < α ≤ 1, m ≥ 2 m ∈ N, and

g0 ∈ Ck−1,β(S), fj ∈ Ck−1,β(S), j = 1, 2, 3, f (N)
r ∈ Ck−1,β(S), r = 4, 5, 6, 1 ≤ k ≤ m− 1, k ∈ N.

Then the problem (IN) is solvable in the space [Ck,β(Ω+)]6 × Ck,β(Ω−), if and only if the conditions

∫
S

f
(N)
4 dS = 0,

∫
S

f
(N)
5 dS = 0

are fulfilled. The solutions of the problem (IN) are represented by potentials (54) and they are defined
modulo the complex constant addend vector (0, 0, 0, b1, b2, 0)>.

Proof of this Theorem is similar to the proof of Theorem .
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Appendix: Mapping Properties of Potentials

For the readers convenience here we collect some results describing properties of the layer potentials. Here
we preserve the notation from the main text of the paper.

For the potentials associated with the Helmholtz equation the following theorems hold (see McLean (missing
citation), Colton et al(missing citation)).

Let s ∈ R, S ∈ C∞. Then the single and double layer scalar potentials can be extended to the following
continuous operators

Vτ : Hs(S)→ Hs+3/2(Ω+), Vτ : Hs(S)→ Hs+3/2(Ω−),

Wτ : Hs(S)→ Hs+1/2(Ω+), Wτ : Hs(S)→ Hs+1/2(Ω−).

Let s ∈ R, S ∈ C∞. Then the operators (see (34)-(37))

Hτ : Hs(S)→ Hs+1(S), ± 2−1I1 +Nτ : Hs(S)→ Hs(S),
Lτ : Hs+1(S)→ Hs(S), ± 2−1I1 +Kτ : Hs(S)→ Hs(S),

are continuous and invertible for Reτ > 0.

Let S ∈ Cm,α, 0 < β < α ≤ 1, and let k ≤ m−1, m ≥ 2 be nonnegative integers. Then the scalar potential
operators

Vτ : Ck,β(S)→ Ck+1,β(Ω±), Wτ : Ck,β(S)→ Ck,β(Ω±),

are continuous, while the scalar boundary operators

Hτ : Ck,β(S)→ Ck+1,β(S), ± 2−1I1 +Nτ , : Ck,β(S)→ Ck,β(S),
Lτ : Ck+1,β(S)→ Ck,β(S), ± 2−1I1 +Kτ : Ck,β(S)→ Ck,β(S),

are invertible.

For the vector potentials associated with the pseudo-oscillation operators A(∂, τ) and A∗(∂, τ) the following
theorems hold (see Buchukuri et al(missing citation), (missing citation)).
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Let s ∈ R, S ∈ C∞. Then the vector potentials Vτ and Wτ are continuous in the following spaces

Vτ : [Hs(S)]6 → [Hs+3/2(Ω+)]6, Vτ : [Hs(S)]6 → [H
s+3/2
loc (Ω−)]6,

Wτ : [Hs(S)]6 → [Hs+1/2(Ω+)]6, Wτ : [Hs(S)]6 → [H
s+1/2
loc (Ω−)]6.

Let s ∈ R, S ∈ C∞. Then the operators

Hτ : [Hs(S)]6 → [Hs+1(S)]6, Kτ ,Nτ : [Hs(S)]6 → [Hs(S)]6, Lτ : [Hs(S)]6 → [Hs−1(S)]6

are bounded. The operators Hτ and Lτ are strongly elliptic pseudodifferential operators of order −1 and 1
respectively, while the operators ±2−1I6 + Kτ and ±2−1I6 + Nτ are elliptic pseudodifferential operators of
order 0.
Moreover, the operators Hτ , 2−1I6 +Kτ , and 2−1I6 +Nτ are invertible, whereas the operators Lτ , −2−1I6 +
Nτ , and −2−1I6 + Kτ are Fredholm operators with zero index.

Let h(1) ∈ [H−1+s(S)]6, h(2) ∈ [Hs(S)]6, s > 0. Then the following jump relations hold on S (see (??)-(??))

{V∗τ (h(1))(z)}± =

∫
S

Γ∗(z − y, τ)h(1)(y) dyS,

{W∗
τ (h(2))(z)}± = ±2−1h(2)(z) +

∫
S

[
T (∂y, n(y), τ)[Γ∗(z − y, τ)]>

]>
h(2)(y) dyS,

{PV∗τ (h(1))(z)}± = ∓2−1h(1)(z) +

∫
S

P(∂z, n(z), τ)[Γ∗(z − y, τ)]h(1)(y) dyS,

{PW∗
τ (h(2))(z)}+ = {TW∗

τ (h(2))(z)}−.

Following theorems hold in the space of Hölder continuous functions (cf. Buchukuri et al(missing citation)).

Let S ∈ Cm,α, 0 < β < α ≤ 1, and let k ≤ m − 1, m ≥ 2 be nonnegative integers. Then the single and
double layer vector potential operators

Vτ : [Ck,β(S)]6 → [Ck+1,β(Ω±)]6, Wτ : [Ck,β(S)]6 → [Ck,β(Ω±)]6

are continuous.
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Let S ∈ Cm,α, 0 < β < α ≤ 1, and let k ≤ m − 1, m ≥ 2 be nonnegative integers. Then the following
boundary integral operators

are invertible, while the operators

are Fredholm with zero index.
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