Fog induced suppressed photosynthetic water demand and foliar water uptake help the tropical cloud forest escape from drought stress

Hui Zhang¹, Xuanru Li¹, Shree Pandey², Shidan Zhu³, Guangyu Wang⁴, Shurong Zhou⁵, and Wenxing Long¹

May 5, 2020

Abstract

The importance of fog for the survival and growth of tropical cloud forests is receiving increasing interest in the context of climate change. Current knowledge on this topic is almost entirely based on studies at the species level, which can hardly reflect the response of the whole ecosystem to climate change. We evaluated community-level responses of trees and epiphytes to seasonal drought in Hainan tropical cloud forest ecosystem. We found that fog induced suppressed photosynthetic water demand and foliar water uptake help these forests escape from drought. We infer that reduction in fog due to future climate change may result in high plant mortality in these ecosystems, and artificially simulating fog may help save tropical cloud forests from vanishing worldwide.

Hosted file

fog manuscript 3.21.doc available at https://authorea.com/users/305469/articles/436181-fog-induced-suppressed-photosynthetic-water-demand-and-foliar-water-uptake-help-the-tropical-cloud-forest-escape-from-drought-stress

¹Hainan University

²Affiliation not available

³Guangxi University

⁴The University of British Columbia Faculty of Forestry

⁵Fudan University