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Abstract

Space–time fractional forms of the modified Korteweg-de Vries equation, the modified Equal Width equation and Benney-Luke

equations are solved by using simple hyperbolic tangent ansatz approach. A simple compatible wave transformation in one

dimension is employed to reduce the governing equations to integer–ordered ODEs. Then, the hyperbolic tangent ansatz is used

to derive exact solutions. Some illustrative examples are presented for some particular choices of parameters and derivative

orders.
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Introduction

Fractional calculus has been used in almost all fields of engineering, mathematics and other natural sciences
especially in fluid mechanics, plasma waves, plasma physics etc.. Recently, several mathematical methods
have been applied to PDEs. Two-dimensional differential transform method was implemented to obtain
approximate analytical solutions of fractional modified Korteweg-de Vries(fmKdV) equation (Kuralay &
Bayram, 2010). Homotopy analysis method and its modification were used to solve fmKdV equation (Ab-
dulaziz et al., 2009). Similarly the homotopy-perturbation method was also capable of getting approximate
analytical solution of fmKdV equation (Abdulaziz et al., 2009). In (Wang et al., 2008), the travelling wave so-
lutions were expressed in terms of hyperbolic, trigonometric and rational functions. Then (G′/G)-expansion
method was applied for the analytical solutions of the fmKdV equations. Exact solutions of the fmKdV
equation were investigated by the generalized Kudryashov method by Bulut et al. (Bulut et al., 2014). In
that paper, soliton solutions and hyperbolic function solutions were constructed by using the properties of
exponential functions.

The conformable fractional mKdV equation

Dα
t u(x, t) + pu2(x, t)Dβ

xu(x, t) + qD3β
x u(x, t) = 0, (1)

where u is defined for x > 0, t > 0 and the coefficients p, q ∈ R − {0}, is considered. In this equation, the
conformal derivative operators Dβ

x and Dα
t represent the β.th and α.th order derivatives (β, α ∈ (0, 1]).
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The fractional modified Equal Width (fmEW) equation in conformable fractional form as

Dα
t u(x, t) + ru2(x, t)Dβ

xu(x, t) + sDββα
xxt u(x, t) = 0 (2)

is also regarded as the second equation to be solved exactly for x > 0, t > 0 and r, s are parameters. The bright
soliton solutions and singular solutions were obtained using ansatz method when the derivatives are in sense
of modified Riemann-Lioville derivative(Hosseini & Ayati, 2016). Hosseini and Ayati derived exact solutions
of fmEW equation via the Kudryashov method. For this purpose, they introduced fractional complex
transformation to reduce it into the integer ordered ordinary differential equation. Korkmaz introduced
some more exact solutions in forms of various hyperbolic functions (Korkmaz, 2017).

The space-time fractional Benney-Luke (fBL) equation in conformable fractional form can be interpreted as

D2α
t u(x, t)−D2β

x u(x, t) + µD4β
x u(x, t)

−ηD2β2α
xt u(x, t) +Dα

t u(x, t)D2β
x u(x, t)

+2Dβ
xu(x, t)Dβα

xt u(x, t) = 0 (3)

is considered as the last equation to be solved exactly, where x > 0, t > 0 and µ and η are positive
parameters, linked to the inverse bond number, whose characteristics is to capture the effects of surface
tension and the gravity forces (U. et al., 2017). This equation describes two-way water wave propogation
in the presence of surface tension (Quintero & Grajales, 2008). The existence and analyticicity of lump
solutions for generalized Benney-Luke equations was proved by (Quintero, 2002). In (Travelling Wave,
2012), some travelling wave solutions of two well-known BL equations were derived via tanh-coth method
analytically. An expansion method was applied to the BL equation for travelling wave solutions expressed
by the trigonometric, hyperbolic and rational functions in (Islam, 2015). Also, Kudryashov method and the
modified extended tanh expansion were also applied for Benney-Luke equation (Ali & Nuruddeen, 2017).

This paper is organized as follows: In Section 2, preliminaries and essential tools are given. In section 3,
the ansatz method is mentioned briefly. Then, in Sections 4,5,6 the ansatz method is given for space–time
fmKdV, fmEW and Benney–Luke equations, respectively. In the last sections,the findings are summerized.

Conformable Fractional Derivative and its Properties

Conformable fractional derivative of order αth (similarly βth) u is described as

Dα
t (u(t)) = lim

τ→0

u(t+ τt1−α)− u(t)

τ
, α ∈ (0, 1] (4)

in the positive half space for a function u : [0,∞)→ R(Khalil et al., n.d.). The αth conformable derivative
supports several properties given below.

Let α ∈ (0, 1], and assume that u and v are α-differentiable in the positive half plane (interval) t > 0. Then,

• Dα
t (au+ bv) = aDα

t (u) + bDα
t (v)

• Dα
t (tp) = ptp−α,∀p ∈ R

• Dα
t (λ) = 0, for all constant function u(t) = λ

• Dα
t (uv) = uDα

t (v) + vDα
t (u)

• Dα
t (uv ) =

vDα
t (u)− uDα

t (v)

v2

2
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• Dα
t (u)(t) = t1−α dudt

for ∀a, b ∈ R(Atangana et al., 2015; enesiz et al., 2016; Abdeljawad, 2015).

The conformable fractional derivative supports many significant properties like Laplace transform, Gronwall’s
inequality, chain rule, various integration rules, exponential function, and Taylor series expansion(Abdeljawad,
2015).

Let u be an α-differentiable function in conformable sense. Also suppose that v is differentiable in classical
sense and is defined in the range of u. Then,

Dα
t (u ◦ v)(t) = t1−αv′(t)u′(v(t))

(5)

Method of Solution

The implementation of the ansatz method can be achieved after reducing the fractional PDE

P1(u,Dα
t u,D

β
xu,D

αα
tt u,D

ββ
xxu,D

αβ
tx u, ...) = 0 (6)

to an ODE of the form

P2(U,U ′, U ′′, . . .) = 0 (7)

by using a compatible wave transformation. In the present study, we choose the wave transformation

u(x, t) = U(ξ), ξ = a(
xβ

β
− ν t

α

α
) (8)

to satisfy the compatibility of the conformable derivative. The next step is determination of the power B of
the ansatz in the predicted solution

U(ξ) = A tanhB ξ, A 6= 0, B 6= 0 (9)

by substituting it into (7). Substituting the ansatz with determined the balance between the non linear term
and the derivative term with highest order, B, into (7) leads an algebraic system of equations to specify the
relation among the parameters. The particular goal is to determine the parameters A, a and ν in terms of
the others. Once the relations between the parameters are determined, the solution to (7) can be expressed
explicitly. The particular goal is to determine the parameters in PDEs in terms of the original variables.

The solutions of the conformable fmKdV Equation

The wave transformation (8) reduces the fmKdV equation (1)

−aν d

dξ
U (ξ) + paU (ξ)

2 d

dξ
U (ξ) + qa3

d3

dξ3
U (ξ) = 0 (10)

3
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Integrating this equation once gives

−aνU (ξ) +
1

3
paU (ξ)

3
+ qa3

d2

dξ2
U (ξ) = K

(11)

where K is the constant of integration. Substituting the predicted solution (9) into (11) results in

−avA (tanh (ξ))
B

+ 1/3 paA3
(

(tanh (ξ))
B
)3

+
qa3A (tanh (ξ))

B
B2
(

1− (tanh (ξ))
2
)2

(tanh (ξ))
2

−2 qa3A (tanh (ξ))
B
B
(

1− (tanh (ξ))
2
)
−
qa3A (tanh (ξ))

B
B
(

1− (tanh (ξ))
2
)2

(tanh (ξ))
2 = K

B is determined as 1 by balancing U3 and U
′′
. Thus, the predicted solution is set as

(
1

3
paA3 + 2 qa3A

)
(tanh ξ)

3
+
(
−avA− 2 qa3A

)
tanh (ξ) = K

Since the predicted solution is different from zero, the last equation is satisfied if only the coefficients of
powers of the hyperbolic tangent function are zero. Thus,

1

3
paA3 + 2 qa3A = 0 (12)

−avA− 2 qa3A = 0 (13)

K = 0

(14)

Solution of this algebraic system for A, a and ν gives

A = ±
√
−6

q

p

v = −2qa2

for nonzero p, q and arbitrarily chosen a. Using these data, one can write the solution of (7) as

4



P
os

te
d

on
A

u
th

or
ea

27
M

ar
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

53
20

26
.6

64
74

83
3

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

u1,2(ξ) = ±
√
−6

q

p
tanh (ξ)

Returning the original variables gives the solution to the fmKdV(1) as

u1,2(x, t) = ±
√
−6

q

p
tanh

(
a

(
xβ

β
+ 2

qa2tα

α

))
(15)

for nonzero p, q. This solution is the general form of hyperbolic tangent function type solution family.
Choosing the parameters properly, many solutions in different characteristics covering complex ones can be
generated.

Some real solutions are illustrated for particular choices of the parameters. The effect of the derivative order
α and β to the solution is indicated in the following figures. The solution (15) is chosen to demonstrate a
particular solution by choosing the parameters as p = 2, q = −1 and a = 1. The solutions are plotted on
xtu−space for various values of α and β. Thus, the solution is reduced to

u(x, t) =
√

6 tanh

(
xβ

β
− 2

tα

α

)
(16)

When the derivative order α and β are both chosen as 0.5, the wave profile determined in the solution (16)
moves towards to the left with a variable velocity depending on time variable t, Fig 1(a). The increase the
β value to 1, makes the shape of the wave sharper slightly, Fig 1(b). Moreover, the velocity of the wave also
increases. In the plot Fig 2(a) and Fig 2(b), the order parameters are chosen as α = 1 while β = 0.5 and
β = 0.1 respectively. The wave profile travels to the left along the x-axis with a constant velocity as time
proceeds. When β is chosen as 1, the wave becomes sharper besides its velocity increases but still constant.

5
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figures/Fig1/Fig1-eps-converted-to.pdf

Figure 1: (a) α = 0.5, β = 0.5 (b) α = 0.5, β = 1

6
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figures/Fig3/Fig3-eps-converted-to.pdf

Figure 2: (a) α = 1, β = 0.5 (b) α = 1, β = 1

The solutions of the conformable fmEW Equation

The solution algorithm starts by transforming the fmEW to an ODE by using the compatible wave trans-
formation (8) . Thus, u(x, t)→ U(ξ). This transformation reduces the fmEW (2) to

−aν d

dξ
U (ξ) + raU (ξ)

2 d

dξ
U (ξ)− sa3v d3

dξ3
U (ξ) = 0

(17)

Integrating both sides of the equation gives

−avU (ξ) +
1

3
ra (U (ξ))

3 − sa3v d
2

dξ2
U (ξ) = K

(18)

7
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where K is the constant of integration. Assume that (18) has a solution of the form (9) where A is a nonzero
real and B is positive integer. Substituting the predicted solution and its derivatives into the equation (18)
gives

−avA (tanh (ξ))
B

+
1

3
raA3

(
(tanh (ξ))

B
)3
−
sa3vA (tanh (ξ))

B
B2
(

1− (tanh (ξ))
2
)2

(tanh (ξ))
2

+2 sa3vA (tanh (ξ))
B
B
(

1− (tanh (ξ))
2
)

+
sa3vA (tanh (ξ))

B
B
(

1− (tanh (ξ))
2
)2

(tanh (ξ))
2 = K

(19)

B is obtained as 1 by balancing U3 and U
′′
. Thus, the following solution is determined as

(
1

3
raA3 − 2 sa3vA

)
(tanh (ξ))

3
+
(
−avA+ 2 sa3vA

)
tanh (ξ) = K

(20)

Collecting the coefficients of powers of the tanh function yields to a system of algebraic equations in
r, s, A, v, a,K of the form

1

3
raA3 − 2 sa3vA = 0 (21)

−avA+ 2 sa3vA = 0 (22)

K = 0

(23)

is obtained. Solving the resultant system (21-23) for {A, a, v,K}, the relation among these parameters are
stated as

a = ± 1√
2s

(24)

v =
1

3
rA2

(25)

8
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for arbitrarily chosen r, s. Thus, the solution to the equation (7) is determined as

u3,4(ξ) = A tanh (ξ)

(26)

Returning the original variables (x, t) from ξ gives the solution to the EW(2) as

u3,4(x, t) = ±A tanh

(
1√
2s

(
xβ

β
− rA2tα

3α

))
(27)

The plots of the solutions for some fixed values of the parameters (A = 5, r = 1, s = 1)

U(x, t) = tanh

(
1

2

√
2

√
1

s

(
x− 25

3
rt

))
(28)

The particular solutions determined by choosing some the independent parameters as A = 1 and r = s = 1
are depicted for some selections of derivative orders. This solution represents a classical front wave profile
propagating to the left, Fig 3 (a),(b) - Fig 4(a),(b) for all choices of order parameters α and β. When both
order parameters are 0.5, the wave has a slightly bending shape, Fig 3(a). Fixing α = 0.5 but increasing β
to 1 causes the shape of the wave to become sharper and the velocity becomes larger, but still non linear
Fig 3 (b). To fix the velocity order parameter α = 1 causes a linear propagation of the wave. Increasing β
from 0.5 to 1, its shape becomes sharper and its velocity also increases Fig 4(a),(b).

9
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figures/Fig5/Fig5-eps-converted-to.pdf

Figure 3: (a) α = 0.5, β = 0.5 (b) α = 0.5, β = 1

10
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figures/Fig7/Fig7-eps-converted-to.pdf

Figure 4: (a) α = 1, β = 0.5 (b) α = 1, β = 1

The solutions of the conformable fBL Equation

The wave transformation (8) reduces the fBL equation (3)

a2(ν2 − 1)
d2

dξ2
U (ξ) + a4(µ− ηv2)

d4

dξ4
U (ξ)− 3a3v

d

dξ
U (ξ)

d2

dξ2
U (ξ) = 0 (29)

Integrating this equation once gives

a2(ν2 − 1)
d

dξ
U (ξ) + a4(µ− ηv2)

d3

dξ3
U (ξ)− 3

2
a3v(

d

dξ
U (ξ))2 = K

where K is the constant of integration. Substituting the predicted solution (9) into (3) results in

11
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a2A tanh(ξ)BBv2

tanh(ξ)
− a2v tanh(ξ)BB tanh(ξ)v2 − a2A tanh(ξ)BB

tanh(ξ)

+a2A tanh(ξ)BB tanh(ξ) +
a4µA tanh(ξ)BB3(1− tanh(ξ)2)3

tanh(ξ)3

−6a4µA tanh(ξ)BB2(1− tanh(ξ)2)2

tanh(ξ)
− 3a4µA tanh(ξ)BB2(1− tanh(ξ)2)3

tanh(ξ)3

+4a4µA tanh(ξ)BB tanh(ξ)(1− tanh(ξ)2) +
4a4µA tanh(ξ)BB(1− tanh(ξ)2)2

tanh(ξ)

+
2a4µA tanh(ξ)BB(1− tanh(ξ)2)3

tanh(ξ)3
− a4ηv2A tanh(ξ)BB3(1− tanh(ξ)2)3

tanh(ξ)

+
6a4ηv2A tanh(ξ)BB2(1− tanh(ξ)2)2

tanh(ξ)
+

3a4ηv2A tanh(ξ)BB2(1− tanh(ξ)2)3

tanh(ξ)3

−4a4ηv2A tanh(ξ)BB tanh(ξ)(1− tanh(ξ)2)

−4a4ηv2A tanh(ξ)BB(1− tanh(ξ)2)

tanh(ξ)
− 2a4ηv2A tanh(ξ)BB(1− tanh(ξ)2)3

tanh(ξ)3

−3

2

a3vA2(tanh(ξ)B)2B2(1− tanh(ξ)2)2

tanh(ξ)2

= K

B is obtained as 1 by balancing U3 and U
′′
. Thus, the following solution is determined as

(
−6a4µA+ 6a4ηv2A− 3

2
a3vA2

)
tanh(ξ)4

+
(
a2A− 8a4ηv2A+ 8a4µA− a2Av2 + 3a3vA2

)
tanh(ξ)2

+a2Av2 − 3

2
a3vA2 − a2A− 2a4µA+ 2a4ηv2A

= K

Since the predicted solution is different from zero, the last equation is satisfied if only the coefficients of
powers of the hyperbolic tangent function are zero. Thus,

(
−6a4µA+ 6a4ηv2A− 3

2
a3vA2

)
= 0 (30)(

a2A− 8a4ηv2A+ 8a4µA− a2Av2 + 3a3vA2
)

= 0 (31)

a2Av2 − 3

2
a3vA2 − a2A− 2a4µA+ 2a4ηv2A−K = 0
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(32)

Solution of this algebraic system for A, a and ν gives

A = ± 4(−µ+ η)a

(4a2η − 1)
√
− 1−4a2µ

4a2η−1

(33)

v = ±

√
−1− 4a2µ

4a2η − 1

(34)

for nonzero µ, η and arbitrarily chosen a. Using these data, one can write the solution of (7) as

u5,6,7,8(ξ) = ± 4(−µ+ η)a

(4a2η − 1)
√
− 1−4a2µ

4a2η−1

tanh(ξ)

Returning the original variables gives the solution to the space-time fractional BL equation (3) ) as

u5,6,7,8(x, t) = ±
4(−µ+ η)a tanh(a

(
xβ

β ±
√
− 1−4a2µ

4a2η−1
tα

α

)
)

(4a2η − 1)
√
− 1−4a2µ

4a2η−1

(35)

This solution is the general form of hyperbolic tangent function type solution family. Choosing the parameters
properly, many solutions in different characteristics covering complex ones can be generated.

u(x, t) = −
4(−µ+ η) tanh

(
x−

√
− 1−4µ

4η−1 t
)

(4η − 1)
√
− 1−4µ

4η−1

(36)

The plots of the solutions to xt plane for some fixed values of the parameters (µ = 5, η = 1
2 ,a = 1) . These

particular solutions models a one dimensional wave propagation along the space axis. When α and β both
are 0.5, the shape of the wave is slightly soft, Fig 5 (a). When α = 0.5 and β = 1, the wave becomes sharper
and faster, Fig 5 (b). When α = 1, the wave is soft and slow for β = 0.5, Fig 6 (a) but it becomes sharper
and faster when β = 1, Fig 6 (b).
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figures/Fig9/Fig9-eps-converted-to.pdf

Figure 5: (a) α = 0.5, β = 0.5 (b) α = 0.5, β = 1
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figures/Fig11/Fig11-eps-converted-to.pdf

Figure 6: (a) α = 1, β = 0.5 (b) α = 1, β = 1

Conclusion

Some conformable space–time fractional PDEs are solved by taking hyperbolic tangent ansatz. FmKdV,
fmEW and fBL equations are reduced to some nonlinear ODEs of integer order by using compatible wave
transformations. Substituting the solution into the resultant ODEs and finding relations between the pa-
rameters of the equations give the exact solutions of PDEs. The exact solutions are successfully found for
particular choices of the α and β and the other parameters.As a conclusion, the method is applicable to
PDEs in the theory of fractional calculus.
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