
P
os

te
d

on
A

ut
ho

re
a

28
M

ar
20

20
|C

C
B

Y
4.

0
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

58
54

07
40

.0
68

63
60

7
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Special Associated Curves in Euclidean 3-Space

Sezai KIZILTUД¤1 and Gokhan MUMCU2

1Erzincan University
2Erzincan Universitesi Fen Edebiyat Fakultesi

April 28, 2020

Abstract

First, we study a new tip of unit speed associated curves in the E3 like a normal-direction curve and normal-donor curve. Then
we achieve qualification for these curves. Moreover, we confer applications of normal-direction to some special curves such as
helix, slant helix, plane curve or normal-direction (ND)-normal curves in E3. And, we show that slant helices and rectifying
curves might be assemble by using normal-direction curves.

Abstract

First, we study a new tip of unit speed associated curves in the E3 like a normal-direction curve and
normal-donor curve. Then we achieve qualification for these curves. Moreover, we confer applications of
normal-direction to some special curves such as helix, slant helix, plane curve or normal-direction (ND
)-normal curves in E3. And, we show that slant helices and rectifying curves might be assemble by using
normal-direction curves.
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1. Introduction

In the curve theory of Euclidean space, the momentous question is achieve a characterization in order to a
regular curve. The specification may be dedicated for a single curve or for a curve pair. Helix, slant helix,
plane curve, spherical curve, etc. are well-known instance of single special curves [1,9,10,13,18] and these
curves, exclusively the helices, are used in many applications [2,7,8,15]. Additionally, special curves can
be defined by careful Frenet planes. Providing the position vector of a curve always lies on its rectifying,
osculating or normal planes, then the curve is called rectifying curve, osculating curve or normal curve,
seriatim [4]. Exclusively, therein obtain a basic correlation among rectifying curves and Darboux vectors,
which trick some momentous parts in mechanics, kinematics as well as in differential geometry in describing
the curves of constant motion [5,12].

Besides, special curve pairs are characterized by some relationships between their Frenet vectors or curva-
tures. Involute-evolute curves, Bertrand curves, Mannheim curves are admitted sample of curve pairs and
studious by some mathematicians [3,11-13,16,17].

Hereabout, a new curve pair in the Euclidean 3-space E3 has been defined by Choi and Kim [6]. They have
considered an integral curve γ of a unit vector field X defined in the Frenet basis of a Frenet curve α and
they have given the definitions and characterizations of principal-directional curve and principal-donor curve
in E3.They have also given some applications of these curves to some special curves.
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In the current paper, we consider a new type of associated curve and define a new curve pair such as normal-
direction curve and normal-donor curve in E3. We obtain some characterizations for these curves and show
that normal-direction curve is an evolute of normal-donor curve. Moreover, we give some applications of
normal-direction curve to some special curves such as helix, slant helix or plane curve.

2. Preliminaries

This section includes a brief summary of space curves and definitions of general helix and slant helix in the
Euclidean 3-space E3.

A unit speed curve α : I → E3 is called a general helix if there is a constant vector u, so that 〈T, u〉 = cos θ
is constant along the curve, where θ 6= π/2 and T (s) = α′(s) is unit tangent vector of α at s. The curvature
(or first curvature) of α is defined by κ(s) = ‖α′′(s)‖. Then, the curve α is called Frenet curve, if κ(s) 6= 0,
and the unit principal normal vector N(s) of the curve α at s is given by α′′(s) = κ(s)N(s). The unit vector
B(s) = T (s)×N(s) is called the unit binormal vector of α at s. Then {T,N,B} is called the Frenet frame
of α. For the derivatives of the Frenet frame, the following Frenet-Serret formulae hold:

[

T ′

N ′

B′
= [

0 κ 0
−κ 0 τ
0 −τ 0

[

T
N
B

(1)

where τ(s) is the torsion (or second curvature) of α at s. It is well-known that the curve α is a general helix
if and only if τκ (s) = constant [17]. If both κ(s) 6= 0 and τ(s) are constants, we call α as a circular helix. A
curve α with κ(s) 6= 0 is called a slant helix if the principal normal lines of α make a constant angle with
a fixed direction. Also, a slant helix α in E3 is characterized by the differential equation of its curvature κ
and its torsion τ given by

κ2

(κ2 + τ2)
3/2

( τ
κ

)′

= constant.

(See [11]).

Now, we give the definitions of some associated curves defined by Choi and Kim [6]. Let I ⊂ R be an open
interval. For a Frenet curve φ : I → E3, consider a vector field X given by

χ(s) = ϑ(s)T(s) + υ(s)N(s) + ω(s)B(s),

(2)

2
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where ϑ , υ and ω are arbitrary differentiable functions of s which is the arc length parameter of φ. Let

ϑ2(s) + υ2(s) + ω2(s) = 1,

(3)

holds. Then the definitions of χ-direction curve and χ-donor curve in E3 are given as follows.

Definition 2.1. ([6]) Let φ be a Frenet curve in Euclidean 3-space E3 and χ be a unit vector field satisfying
the equations (2) and (3). The integral curve δ : I → E3 of χ is called an χ-direction curve of φ. The curve
φ whose χ-direction curve is δ is called the φ-donor curve of δ in E3.

Definition 2.2. ([6]) An integral curve of principal normal vector N(s) (resp. binormal vector B(s)) of φ
in (2) is called the principal-direction curve (resp. binormal-direction curve) of φ in E3.

Remark 2.1. ([6]) A principal-direction (resp. the binormal-direction) curve is an integral curve of φ(s)
with ϑ(s) = ω(s) = 0, υ(s) = 1 (resp. ϑ(s) = υ(s) = 0, ω(s) = 1) for all s in (2).

3. Normal-direction curve and normal-donor curve in E3

In this section, we will give definitions of normal-direction curve and normal donor curve in E3. We obtain
some theorems and results characterizing these curves. First, we give the following definition.

Definition 3.1. Let α be a Frenet curve in E3 and X be a unit vector field lying on the normal plane of α
and defined by

X(s) = v(s)N(s) + w(s)B(s), v(s) 6= 0, w(s) 6= 0,

(4)

and satisfying that the vectors X ′(s) and T (s) are linearly dependent. The integral curve γ : I → E3 of
X(s) is called a normal-direction curve of α. The curve α whose normal -direction curve is γ is called the
normal-donor curve in E3.

The Frenet frame is a rotation-minimizing with respect to the principal normal N [9]. If we consider a new
frame given by {T,X,M} where M = T × X, we have that this new frame is rotation-minimizing with
respect to T , i.e., the unit vector X belongs to a rotation-minimizing frame.

Since, X(s) is a unit vector and γ : I → E3 is an integral curve of X(s), without loss of generality we can
take s as the arc length parameter of γ and we can give the following characterizations in the view of these
information.

3
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Theorem 3.1. Let α : I → E3 be a Frenet curve and an integral curve of X(s) = v(s)N(s) + w(s)B(s) be
the curve γ : I → E3. Then, γ is a normal-direction curve of α if and only if the following equalities hold,

v(s) = sin

(∫
τds

)
6= 0, w(s) = cos

(∫
τds

)
6= 0.

(5)

Proof: Since γ is a normal-direction curve of α, from Definition 3.1, we have

X(s) = v(s)N(s) + w(s)B(s),

(6)

and

v2(s) + w2(s) = 1.

(7)

Differentiating (6) with respect to s and by using the Frenet formulas, it follows

X ′(s) = −vκT + (v′ − wτ)N + (w′ + vτ)B.

(8)

Since we have that X ′ and T are linearly dependent. Then from (8) we can write

{

−vκ 6= 0,
v′ − wτ = 0,
w′ + vτ = 0.

(9)

The solutions of second and third differential equations are

v(s) = sin

(∫
τds

)
6= 0, w(s) = cos

(∫
τds

)
6= 0,

4
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respectively, which completes the proof.

Theorem 3.2. Let α : I → E3 be a Frenet curve. If γ is the normal-direction curve of α, then γ is a space
evolute of α.

Proof: Since γ is an integral curve of X, we have γ′ = X. Denote the Frenet frame of γ by{
T̄ , N̄ , B̄

}
. Differentiating γ′ = X with respect to s and by using Frenet formulas we get

X ′ = T̄ ′ = κ̄N̄ .

(10)

Furthermore, we know that X ′ and T are linearly dependent. Then from (10) we get N̄ and T are linearly
dependent, i.e, γ is a space evolute of α.

Theorem 3.3. Let α : I → E3 be a Frenet curve. If γ is the normal direction curve of α, then the
curvature κ̄ and the torsion τ̄ of γ are given as follows,

κ̄ = κ

∣∣∣∣sin(∫ τds

)∣∣∣∣ , τ̄ = κ cos

(∫
τds

)
.

(11)

Proof: From (8), (9) and (10), we have

κ̄N̄ = −vκT.

(12)

By considering (12) and (5) we obtain

κ̄N̄ = −κ sin

(∫
τds

)
T,

(13)

which gives us

κ̄ = κ

∣∣∣∣sin(∫ τds

)∣∣∣∣ .
(14)

5
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Moreover, from (13) and (14), we can write

N̄ = T.

(15)

Then, we have

B̄ = T̄ × N̄ = cos

(∫
τds

)
N − sin

(∫
τds

)
B.

(16)

Differentiating (16) with respect to s gives

B̄′ = −κ cos

(∫
τds

)
T.

(17)

Since τ̄ = −
〈
B̄′, N̄

〉
= −

〈
B̄′, T

〉
, from (17) it follows

τ̄ = κ cos

(∫
τds

)
,

(18)

that finishes the proof.

Corollary 3.1. Letγ be a normal-direction curve of the curve α. Then the relationships between the Frenet
frames of curves are given as follows,

X = T̄ = sin

(∫
τds

)
N + cos

(∫
τds

)
B, N̄ = T, B̄ = cos

(∫
τds

)
N − sin

(∫
τds

)
B.

Proof: The proof is clear from Theorem 3.3.

Theorem 3.4. Let γ be a normal-direction curve of α with curvature κ̄ and torsion τ̄ . Then curvature κ
and torsion τ of α are given by

κ =
√
κ̄2 + τ̄2, τ =

τ̄2

κ̄2 + τ̄2

( κ̄
τ̄

)′

.

6
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Proof: From (14) and (18), we easily get

κ =
√
κ̄2 + τ̄2.

(19)

Substituting (19) into (14) and (18), it follows

∣∣∣∣sin(∫ τds

)∣∣∣∣ =
κ̄√

κ̄2 + τ̄2
,

(20)

cos

(∫
τds

)
=

τ̄√
κ̄2 + τ̄2

,

(21)

respectively. Differentiating (20) with respect to s, we have

τ cos

(∫
τds

)
=

τ̄(κ̄′τ̄ − κ̄ τ̄ ′)

(κ̄2 + τ̄2)3/2
.

(22)

From (21) and (22), it follows

τ =
κ̄′ τ̄ − κ̄ τ̄ ′

κ̄2 + τ̄2
,

or equivalently,

τ =
τ̄2

κ̄2 + τ̄2

( κ̄
τ̄

)′

.

(23)

7
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Theorem 3.4 leads us to give the following corollary whose proof is clear.

Corollary 3.2. Let γ with the curvature κ̄ and the torsion τ̄ be a normal-direction curve of α. Then

τ

κ
= − κ̄2

(κ̄2 + τ̄2)
3/2

( τ̄
κ̄

)′

,

(24)

is satisfied, where κ and τ are curvature and torsion of α, respectively.

4. Applications of normal-direction curves

In this section, we focus on relations between normal-direction curves and some special curves such as general
helix, slant helix, plane curve or rectifying curve in E3 .

4.1. General helices, slant helices and plane curves

Considering Corollary 3.2, we have the following theorems which gives a way to construct the examples of
slant helices by using general helices.

Theorem 4.1. Let α : I → E3 be a Frenet curve in E3and γ be a normal-direction curve of α. Then the
followings are equivalent,

i) A Frenet curve α is a general helix in E3.

ii) α is a normal-donor curve of a slant helix.

iii) A normal-direction curve of α is a slant helix.

Theorem 4.2. Let α : I → E3 be a Frenet curve in E3and γ be a normal-direction curve of α. Then the
followings are equivalent,

i) A Frenet curve α is a plane curve in E3.

ii) α is a normal-donor curve of a general helix.

iii) A normal-direction curve of α is a general helix.

Example 4.1. Let consider the general helix given by the parametrization α(s) =
(

cos s√
2
, sin s√

2
, s√

2

)
in E3 (Fig. 1). The Frenet vectors and curvatures of α are obtained as follows,

T (s) =

(
− 1√

2
sin

s√
2
,

1√
2

cos
s√
2
,

1√
2

)
,

N(s) =

(
− cos

s√
2
, sin

s√
2
, 0

)
,

8
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B(s) =

(
1√
2

sin
s√
2
, − 1√

2
cos

s√
2
,

1√
2

)
,

κ = τ =
1

2
.

Then we have X(s) = (x1(s), x2(s), x3(s)) where

x1(s) = − sin
(
s
2 + c

)
cos s√

2
+ 1√

2
cos
(
s
2 + c

)
sin s√

2
,

x2(s) = sin
(
s
2 + c

)
sin s√

2
− 1√

2
cos
(
s
2 + c

)
cos s√

2
,

x3(s) = 1√
2

cos
(
s
2 + c

)
.

and c is integration constant. Now, we can construct a slant helix γ which is also a normal-direction curve
of α (Fig. 2):

γ =

∫ s

0

γ′(s)ds =

∫ s

0

X(s)ds = (γ1(s), γ2(s), γ3(s)) ,

where

γ1(s) =
∫ s

0

[
− sin

(
s
2 + c

)
cos s√

2
+ 1√

2
cos
(
s
2 + c

)
sin s√

2

]
ds,

γ2(s) =
∫ s

0

[
sin
(
s
2 + c

)
sin s√

2
− 1√

2
cos
(
s
2 + c

)
cos s√

2

]
ds,

γ3(s) =
∫ s

0
1√
2

cos
(
s
2 + c

)
ds.

[ width=3in, height=3in, keepaspectratio,]1 [width=2.96in, height=2.96in, keepaspectratio=false]2

Fig. 1. General helix α. Fig. 2. Slant helix γ constructed by α.

4.2. ND-normal Curves

In this subsection we define normal-direction (ND )-normal curves in E3 and give the relationships between
normal-direction curves and ND -normal curves.

A space curve whose position vector always lies in its normal plane is called normal curve [5]. Moreover,
if the Frenet frame and curvatures of a space curve are given by {T,N,B} and κ, τ , respectively, then the
vector D̃(s) = τ

κ (s)T (s) +B(s) is called modified Darboux vector of the curve [11].

9
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Let now α be a Frenet curve with Frenet frame {T,N,B} and γ a normal-direction curve of α. The curve γ
is called normal-direction normal curve (or ND -normal curve) of α, if the position vector of γ always lies
on the normal plane of its normal-donor curve α.

The definition of ND-normal curve allows us to write the following equality,

γ(s) = m(s)N(s) + n(s)B(s),

(25)

where m(s), n(s) are non-zero differentiable functions of s. Since γ is normal-direction curve of α, from
Corollary 3.1, we have

{

N = sin
(∫
τds
)
T̄ + cos

(∫
τds
)
B̄,

B = cos
(∫
τds
)
T̄ − sin

(∫
τds
)
B̄.

(26)

Substituting (26) in (25) gives

γ(s) =

[
m sin

(∫
τds

)
+ n cos

(∫
τds

)]
T̄ +

[
m cos

(∫
τds

)
− n sin

(∫
τds

)]
B̄.

(27)

Writing

{

ρ(s) = m sin
(∫
τds
)

+ n cos
(∫
τds
)
,

σ(s) = m cos
(∫
τds
)
− n sin

(∫
τds
)
,

(28)

in (27) and differentiating the obtained equality we obtain

T̄ = ρ′T̄ + (ρκ̄− στ̄)N̄ + σ′B̄.

(29)

10
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Then we have

σ = a = constant, ρ = s+ b =
τ̄

κ̄
a,

(30)

where a, b are non-zero integration constants. From (30), it follows that

γ(s) = a
( τ̄
κ̄
T̄ + B̄

)
(s) = a ˜̄D(s),

(31)

where ˜̄D is the modified Darboux vector of γ.

Now we can give the followings which characterize ND-normal curves.

Theorem 4.3. Let α : I → E3 be a Frenet curve in E3and γ be a normal-direction curve of α. If γ is a
ND-normal curve in E3, then we have the followings,

i) γ is a rectifying curve in E3 whose curvatures satisfy τ̄
κ̄ = s+b

a where a, b are non-zero constants .

ii) The position vector and modified Darboux vector ˜̄D of γ are linearly dependent.

Theorem 4.3 gives a way to construct a rectifying curve by using normal-donor curve as follows:

Corollary 4.1. Let α : I → E3 be a Frenet curve in E3and γ a ND-normal curve of α in E3. Then the
position vector of γ is obtained as follows,

γ(s) =

[
(s+ b) sin

(∫
τds

)
+ a cos

(∫
τds

)]
N(s) +

[
(s+ b) cos

(∫
τds

)
− a sin

(∫
τds

)]
B(s)

(32)

where a, b are non-zero integration constants.

Proof. The proof is clear from (25), (28) and (30).

Example 4.2. Let consider the general helix given by the parametrization

α(s) =
(√

1 + s2, s, ln(s+
√

1 + s2)
)
,

and drawn in Fig. 3. Frenet vectors and curvatures of the curve are

11



P
os

te
d

on
A

ut
ho

re
a

28
M

ar
20

20
|C

C
B

Y
4.

0
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

58
54

07
40

.0
68

63
60

7
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

T (s) =
1√

2
√

1 + s2

(
s,
√

1 + s2, 1
)
,

N(s) =
1√

1 + s2
(1, 0,−s) ,

B(s) =
1√

2
√

1 + s2

(
−s,

√
1 + s2,−1

)
,

κ = τ =
1 + s2

2
,

respectively. Then from Corollary 4.1, a ND-normal curve γ is obtained as follows,

γ(s) =
(

1√
1+s2

[
(s+ b) sin

(
s
2 + s3

6 + c
)

+ a cos
(
s
2 + s3

6 + c
)]

− s√
2(1+s2)

[
(s+ b) cos

(
s
2 + s3

6 + c
)
− a sin

(
s
2 + s3

6 + c
)]
,

− 1√
2

[
(s+ b) cos

(
s
2 + s3

6 + c
)
− a sin

(
s
2 + s3

6 + c
)]
,

− s√
1+s2

[
(s+ b) sin

(
s
2 + s3

6 + c
)

+ a cos
(
s
2 + s3

6 + c
)]

− 1√
2(1+s2)

[
(s+ b) cos

(
s
2 + s3

6 + c
)
− a sin

(
s
2 + s3

6 + c
)])

which is also a rectifying curve in the view of Theroem 4.3 and drawn in Figures 4,5,6 by choosing a = b =
1, c = 0.

[width=2.92in, height=2.92in, keepaspectratio=false]3 [width=2.92in, height=2.92in, keepaspectratio=false]4

Fig. 3. General helix α. Fig 4. ND-normal curve γ for −π ≤ s ≤ π.

[width=3.00in, height=3.00in, keepaspectratio=false]5 [width=3.00in, height=3.00in, keepaspectratio=false]6

Fig 5. ND-normal curve γ for −3π
2 ≤ s ≤ 3π

2 . Fig 6. ND-normal curve γ for −2π ≤ s ≤ 2π.
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