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Abstract

First, we study a new tip of unit speed associated curves in the E3 like a normal-direction curve and normal-donor curve. Then
we achieve qualification for these curves. Moreover, we confer applications of normal-direction to some special curves such as
helix, slant helix, plane curve or normal-direction (ND)-normal curves in E3. And, we show that slant helices and rectifying

curves might be assemble by using normal-direction curves.
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1. Introduction

In the curve theory of Euclidean space, the momentous question is achieve a characterization in order to a
regular curve. The specification may be dedicated for a single curve or for a curve pair. Helix, slant helix,
plane curve, spherical curve, etc. are well-known instance of single special curves [1,9,10,13,18] and these
curves, exclusively the helices, are used in many applications [2,7,8,15]. Additionally, special curves can
be defined by careful Frenet planes. Providing the position vector of a curve always lies on its rectifying,
osculating or normal planes, then the curve is called rectifying curve, osculating curve or normal curve,
seriatim [4]. Exclusively, therein obtain a basic correlation among rectifying curves and Darboux vectors,
which trick some momentous parts in mechanics, kinematics as well as in differential geometry in describing
the curves of constant motion [5,12].

Besides, special curve pairs are characterized by some relationships between their Frenet vectors or curva-
tures. Involute-evolute curves, Bertrand curves, Mannheim curves are admitted sample of curve pairs and
studious by some mathematicians [3,11-13,16,17].

Hereabout, a new curve pair in the Euclidean 3-space E? has been defined by Choi and Kim [6]. They have
considered an integral curve v of a unit vector field X defined in the Frenet basis of a Frenet curve a and
they have given the definitions and characterizations of principal-directional curve and principal-donor curve
in E3.They have also given some applications of these curves to some special curves.



In the current paper, we consider a new type of associated curve and define a new curve pair such as normal-
direction curve and normal-donor curve in E3. We obtain some characterizations for these curves and show
that normal-direction curve is an evolute of normal-donor curve. Moreover, we give some applications of
normal-direction curve to some special curves such as helix, slant helix or plane curve.

2. Preliminaries

This section includes a brief summary of space curves and definitions of general helix and slant helix in the
Euclidean 3-space E3.

A unit speed curve a : I — E? is called a general helix if there is a constant vector u, so that (T, u) = cos
is constant along the curve, where 6 # 7/2 and T'(s) = &/(s) is unit tangent vector of a at s. The curvature
(or first curvature) of « is defined by x(s) = ||a”(s)||. Then, the curve « is called Frenet curve, if x(s) # 0,
and the unit principal normal vector N (s) of the curve «v at s is given by o’/ (s) = k(s)N(s). The unit vector
B(s) = T(s) x N(s) is called the unit binormal vector of a at s. Then {T, N, B} is called the Frenet frame
of a.. For the derivatives of the Frenet frame, the following Frenet-Serret formulae hold:
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where 7(s) is the torsion (or second curvature) of « at s. It is well-known that the curve « is a general helix
if and only if Z(s) = constant [17]. If both x(s) # 0 and 7(s) are constants, we call a as a circular helix. A
curve o with s(s) # 0 is called a slant helix if the principal normal lines of a make a constant angle with
a fixed direction. Also, a slant helix « in E? is characterized by the differential equation of its curvature &
and its torsion 7 given by
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(See [11]).

Now, we give the definitions of some associated curves defined by Choi and Kim [6]. Let I C R be an open
interval. For a Frenet curve ¢ : I — E2, consider a vector field X given by

x(s) = (s)T(s) + v(s)N(s) +w(s)B(s),
(2)



where ¥ , v and w are arbitrary differentiable functions of s which is the arc length parameter of ¢. Let

92(s) +v%(s) + w?(s) = 1,
3)

holds. Then the definitions of y-direction curve and y-donor curve in E? are given as follows.

Definition 2.1. ([6]) Let ¢ be a Frenet curve in Euclidean 3-space E® and x be a unit vector field satisfying
the equations (2) and (3). The integral curve § : I — E3 of x is called an x-direction curve of ¢. The curve
¢ whose y-direction curve is § is called the ¢-donor curve of § in E3.

Definition 2.2. (|6]) An integral curve of principal normal vector N(s) (resp. binormal vector B(s)) of ¢
in (2) is called the principal-direction curve (resp. binormal-direction curve) of ¢ in E3.

Remark 2.1. ([6]) A principal-direction (resp. the binormal-direction) curve is an integral curve of ¢(s)
with ¥(s) = w(s) =0, v(s) =1 (resp. ¥(s) =v(s) =0, w(s) =1) for all sin (2).

3. Normal-direction curve and normal-donor curve in E3
In this section, we will give definitions of normal-direction curve and normal donor curve in E2. We obtain

some theorems and results characterizing these curves. First, we give the following definition.

Definition 3.1. Let o be a Frenet curve in E2 and X be a unit vector field lying on the normal plane of o
and defined by

X(s) = 0(s)N(s) +w(s) B(s), v(s) # 0, w(s) #0,
(4)

and satisfying that the vectors X'(s) and T(s) are linearly dependent. The integral curve v : I — E3 of
X(s) is called a normal-direction curve of a. The curve o whose normal -direction curve is 7 is called the
normal-donor curve in E3.

The Frenet frame is a rotation-minimizing with respect to the principal normal N[9]. If we consider a new
frame given by {T, X, M} where M = T x X, we have that this new frame is rotation-minimizing with
respect to T, i.e., the unit vector X belongs to a rotation-minimizing frame.

Since, X (s) is a unit vector and v : I — E® is an integral curve of X (s), without loss of generality we can
take s as the arc length parameter of v and we can give the following characterizations in the view of these
information.



Theorem 3.1. Let a: I — E? be a Frenet curve and an integral curve of X (s) = v(s)N(s) +w(s)B(s) be
the curve v : I — E3. Then, v is a normal-direction curve of « if and only if the following equalities hold,

o(s) = sin </ Tds> £0, w(s) = cos </ m) £0.

(5)

Proof: Since 7 is a normal-direction curve of «, from Definition 3.1, we have

X(s) = v(s)N(s) + w(s)B(s),
(6)

and

v (s) + w?(s) = 1.
(7)

Differentiating (6) with respect to s and by using the Frenet formulas, it follows

X'(s) = —vkT + (v —wr)N + (w' + v7)B.
(8)

Since we have that X’ and T are linearly dependent. Then from (8) we can write

—vK # 0,
v —wr =0,
w' +vr =0.

9)

The solutions of second and third differential equations are

oy =sin [ i) #0. wio = o [ i5) 0



respectively, which completes the proof.

Theorem 3.2. Let o : I — E3 be a Frenet curve. If 7y is the normal-direction curve of o, then 7 is a space
evolute of a.

Proof: Since v is an integral curve of X, we have 4/ = X. Denote the Frenet frame of v by

{T, N,B } Differentiating v/ = X with respect to s and by using Frenet formulas we get

X' =T =&N.
(10)

Furthermore, we know that X’ and T are linearly dependent. Then from (10) we get N and T are linearly
dependent, i.e, v is a space evolute of «.

Theorem 3.3. Let o : 1 — E> be a Frenet curve. If v is the normal direction curve of «, then the
curvature & and the torsion T of v are given as follows,
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Proof: From (8), (9) and (10), we have

N = —vkT.

X

(12)

By considering (12) and (5) we obtain

I
>
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which gives us

=
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Moreover, from (13) and (14), we can write

=
Il
N~

(15)

Then, we have

B:TxN:ccs(/rds)N—sin</7'ds>B.

(16)

Differentiating (16) with respect to s gives

B’ = —kcos </ 7ds> T.

(17)

Since 7 = — <B’,N> =— <B’,T>, from (17) it follows

fncos(/rds),

(18)

that finishes the proof.

Corollary 3.1. Lety be a normal-direction curve of the curve a. Then the relationships between the Frenet
frames of curves are given as follows,

XZTZSiD(/TdS)N+COS(/Tds)B,NZT,BZCOS(/Tds)N—Sin(/TdS)B.

Proof: The proof is clear from Theorem 3.3.

Theorem 3.4. Lety be a normal-direction curve of a with curvature & and torsion 7. Then curvature k
and torsion T of a are given by

_ _ ’
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Proof: From (14) and (18), we easily get

K= VR + 72

(19)

Substituting (19) into (14) and (18), it follows
sin (/ Tds>

R

VRS

(20)

([ 4) e
(21)

respectively. Differentiating (20) with respect to s, we have

(22)

From (21) and (22), it follows
RT—RT

T = —
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or equivalently,

\]
()
/N
S| =X
N—

T=
R2 + 72

(23)



Theorem 3.4 leads us to give the following corollary whose proof is clear.
Corollary 3.2. Let v with the curvature & and the torsion T be a normal-direction curve of a. Then

-9 /
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is satisfied, where k and T are curvature and torsion of «, respectively.

4. Applications of normal-direction curves

In this section, we focus on relations between normal-direction curves and some special curves such as general
helix, slant helix, plane curve or rectifying curve in E3 .

4.1. General helices, slant helices and plane curves

Considering Corollary 3.2, we have the following theorems which gives a way to construct the examples of
slant helices by using general helices.

Theorem 4.1. Let o : I — E3 be a Frenet curve in E3and v be a normal-direction curve of . Then the
followings are equivalent,

i) A Frenet curve o is a general heliz in E>.

1) « is a normal-donor curve of a slant helix.

iii) A normal-direction curve of « is a slant heliz.

Theorem 4.2. Let a: 1 — E3 be a Frenet curve in E3and vy be a normal-direction curve of . Then the
followings are equivalent,

i) A Frenet curve « is a plane curve in E3.

it) « is a normal-donor curve of a general helix.

i11) A normal-direction curve of « is a general helizx.

Example 4.1. Let consider the general helix given by the parametrization a(s) = (cos \%, sin %, \%)

in E? (Fig. 1). The Frenet vectors and curvatures of a are obtained as follows,



Then we have X (s) = (z1(s), z2(s), z3(s)) where

T = —sin (£ + ;s 1 A in -,
1(5)7 _Slns(2 c?coiﬁ 1ﬁcoss(2 c)suiﬁ
.TQ(S)—Sln(§+c)slnﬁ7%COS(§+C)COSW,

x3(s) = % cos (5 +¢).

and c is integration constant. Now, we can construct a slant helix v which is also a normal-direction curve
of a (Fig. 2):

V= /OS 7’(S)ds — /OS X(s)ds = (’71(5)7 72(5)’ ’73(8)),

where
Y1(s) = [y |—sin (5 + ¢) cos % + % cos (5 +¢) sin = | ds,
Y2(s) = [; |sin (5 + ¢) sin o % cos (5 + ¢) cos =5 | ds,
v3(s) = [y %cos (5 +c¢) ds.

[ width=3in, height=3in, keepaspectratio,|1 [width=2.96in, height=2.96in, keepaspectratio—=false|2
Fig. 1. General helix a. Fig. 2. Slant helix v constructed by «.

4.2. ND-normal Curves

In this subsection we define normal-direction (N D )-normal curves in E® and give the relationships between
normal-direction curves and N D -normal curves.

A space curve whose position vector always lies in its normal plane is called normal curve [5]. Moreover,
if the Frenet frame and curvatures of a space curve are given by {T, N, B} and k, T, respectively, then the
vector D(s) = I(s)T(s) 4+ B(s) is called modified Darboux vector of the curve [11].



Let now « be a Frenet curve with Frenet frame {T, N, B} and v a normal-direction curve of a.. The curve =y
is called normal-direction normal curve (or ND -normal curve) of «, if the position vector of v always lies
on the normal plane of its normal-donor curve a.

The definition of N D-normal curve allows us to write the following equality,

V(s) = m(s)N(s) + n(s)B(s),
(25)

where m(s), n(s) are non-zero differentiable functions of s. Since v is normal-direction curve of «, from
Corollary 3.1, we have

N:singfrdng—FCOS(deS)B,
B =cos ([ ds) T —sin ([ 7ds) B.
(26)

Substituting (26) in (25) gives

1= i ) s ()14 [ ) - i )] 2

(27)

Writing

p(s) =msin ([ 7ds) + ncos ([ 7ds),
o(s) = mecos ([ 7ds) — nsin ([ 7ds),

(28

in (27) and differentiating the obtained equality we obtain

T=pT+ (pk —o7)N +0'B.
(29)
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Then we have

=
o = a = constant, p = s+ b= —a,
I

(30)

where a, b are non-zero integration constants. From (30), it follows that

1(8) = o (2T + B) (5) = aD(s),

(31)

where D is the modified Darboux vector of 5.
Now we can give the followings which characterize N D-normal curves.

Theorem 4.3. Let a: I — E3 be a Frenet curve in E3and v be a normal-direction curve of a. If v is a
ND-normal curve in E3, then we have the followings,

S

i) v is a rectifying curve in E® whose curvatures satisfy T = %b where a, b are non-zero constants .

AR

1) The position vector and modified Darbouz vector D of v are linearly dependent.
Theorem 4.3 gives a way to construct a rectifying curve by using normal-donor curve as follows:

Corollary 4.1. Let o : I — E3 be a Frenet curve in E3and v a ND-normal curve of o in E3. Then the
position vector of v is obtained as follows,

0= oy o) aces ([ 6+ [ o [ae) s [ 05 o

(32)

where a, b are non-zero integration constants.

Proof. The proof is clear from (25), (28) and (30).

Example 4.2. Let consider the general helix given by the parametrization

a(s) = (\/1 + 52, s,In(s+ 1 —|—52)) ,

and drawn in Fig. 3. Frenet vectors and curvatures of the curve are

11



1
T(s) = BATSE (s, 1+8271) ,
N(S) = \/11’782(1707_8)’

B(s) = ﬁ (—s, V1+ 82,—1) ,

1482

k=T 5

respectively. Then from Corollary 4.1, a N D-normal curve -y is obtained as follows,

7(5);( —— {(s+b)sin(§+%+c>+acos<§+%+c}
7% {(5+b)COS(§+%+c)fasin §+S3+c>],
*% {(SJFb)COS(%Jr%JrC)faSin R

\/11?{(5“‘17)511(1(%-#%—&-0)+acos(§+%+c}

o - [(s—i—b)cos <§+£—|—c) — asin §+£+c>}
2(1+s2) 2 6 2 6

which is also a rectifying curve in the view of Theroem 4.3 and drawn in Figures 4,5,6 by choosing a = b =
1, ¢=0.

[width=2.92in, height=2.92in, keepaspectratio=false|3 [width=2.92in, height=2.92in, keepaspectratio=false|4

Fig. 3. General helix a. Fig 4. ND-normal curve v for —7 < s < 7.

[width=3.00in, height=3.00in, keepaspectratio=false|5 [width=3.00in, height=3.00in, keepaspectratio=false|6

Fig 5. ND-normal curve ~ for _73” <s< 37” Fig 6. ND-normal curve « for —27 < s < 2.
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