Special Associated Curves in Euclidean 3-Space

Sezai KIZILTU
Д $\ensuremath{\mathbbmm{Z}}^1$ and Gokhan MUMCU²

¹Erzincan University ²Erzincan Universitesi Fen Edebiyat Fakultesi

April 28, 2020

Abstract

First, we study a new tip of unit speed associated curves in the E3 like a normal-direction curve and normal-donor curve. Then we achieve qualification for these curves. Moreover, we confer applications of normal-direction to some special curves such as helix, slant helix, plane curve or normal-direction (ND)-normal curves in E3. And, we show that slant helices and rectifying curves might be assemble by using normal-direction curves.

Abstract

First, we study a new tip of unit speed associated curves in the E^3 like a normal-direction curve and normal-donor curve. Then we achieve qualification for these curves. Moreover, we confer applications of normal-direction to some special curves such as helix, slant helix, plane curve or normal-direction (ND)-normal curves in E^3 . And, we show that slant helices and rectifying curves might be assemble by using normal-direction curves.

MSC: 53A04.

Key words: Incorporated curve; normal-direction curve; normal-donor curve.

1. Introduction

In the curve theory of Euclidean space, the momentous question is achieve a characterization in order to a regular curve. The specification may be dedicated for a single curve or for a curve pair. Helix, slant helix, plane curve, spherical curve, etc. are well-known instance of single special curves [1,9,10,13,18] and these curves, exclusively the helices, are used in many applications [2,7,8,15]. Additionally, special curves can be defined by careful Frenet planes. Providing the position vector of a curve always lies on its rectifying, osculating or normal planes, then the curve is called rectifying curve, osculating curve or normal curve, seriatim [4]. Exclusively, therein obtain a basic correlation among rectifying curves and Darboux vectors, which trick some momentous parts in mechanics, kinematics as well as in differential geometry in describing the curves of constant motion [5,12].

Besides, special curve pairs are characterized by some relationships between their Frenet vectors or curvatures. Involute-evolute curves, Bertrand curves, Mannheim curves are admitted sample of curve pairs and studious by some mathematicians [3,11-13,16,17].

Hereabout, a new curve pair in the Euclidean 3-space E^3 has been defined by Choi and Kim [6]. They have considered an integral curve γ of a unit vector field X defined in the Frenet basis of a Frenet curve α and they have given the definitions and characterizations of principal-directional curve and principal-donor curve in E^3 . They have also given some applications of these curves to some special curves. In the current paper, we consider a new type of associated curve and define a new curve pair such as normaldirection curve and normal-donor curve in E^3 . We obtain some characterizations for these curves and show that normal-direction curve is an evolute of normal-donor curve. Moreover, we give some applications of normal-direction curve to some special curves such as helix, slant helix or plane curve.

2. Preliminaries

This section includes a brief summary of space curves and definitions of general helix and slant helix in the Euclidean 3-space E^3 .

A unit speed curve $\alpha : I \to E^3$ is called a general helix if there is a constant vector u, so that $\langle T, u \rangle = \cos \theta$ is constant along the curve, where $\theta \neq \pi/2$ and $T(s) = \alpha'(s)$ is unit tangent vector of α at s. The curvature (or first curvature) of α is defined by $\kappa(s) = ||\alpha''(s)||$. Then, the curve α is called Frenet curve, if $\kappa(s) \neq 0$, and the unit principal normal vector N(s) of the curve α at s is given by $\alpha''(s) = \kappa(s)N(s)$. The unit vector $B(s) = T(s) \times N(s)$ is called the unit binormal vector of α at s. Then $\{T, N, B\}$ is called the Frenet frame of α . For the derivatives of the Frenet frame, the following Frenet-Serret formulae hold:

[

 $\begin{array}{cccc}
T' \\
N' \\
B' \\
0 \\
-\kappa & 0 \\
-\kappa & 0 \\
\tau \\
0 \\
-\tau & 0 \\
T \\
N \\
B \\
(1)
\end{array}$

where $\tau(s)$ is the torsion (or second curvature) of α at s. It is well-known that the curve α is a general helix if and only if $\frac{\tau}{\kappa}(s) = \text{constant}$ [17]. If both $\kappa(s) \neq 0$ and $\tau(s)$ are constants, we call α as a circular helix. A curve α with $\kappa(s) \neq 0$ is called a slant helix if the principal normal lines of α make a constant angle with a fixed direction. Also, a slant helix α in E^3 is characterized by the differential equation of its curvature κ and its torsion τ given by

$$\frac{\kappa^2}{\left(\kappa^2+\tau^2\right)^{3/2}}\left(\frac{\tau}{\kappa}\right)' = \text{constant}.$$

(See [11]).

Now, we give the definitions of some associated curves defined by Choi and Kim [6]. Let $I \subset \mathbb{R}$ be an open interval. For a Frenet curve $\phi : I \to E^3$, consider a vector field X given by

$$\chi(s) = \vartheta(s)\mathbf{T}(\mathbf{s}) + \upsilon(s)\mathbf{N}(\mathbf{s}) + \omega(s)\mathbf{B}(\mathbf{s}),$$

(2)

where ϑ , v and ω are arbitrary differentiable functions of s which is the arc length parameter of ϕ . Let

$$\vartheta^2(s) + \upsilon^2(s) + \omega^2(s) = 1,$$

(3)

holds. Then the definitions of χ -direction curve and χ -donor curve in E^3 are given as follows.

Definition 2.1. ([6]) Let ϕ be a Frenet curve in Euclidean 3-space E^3 and χ be a unit vector field satisfying the equations (2) and (3). The integral curve $\delta : I \to E^3$ of χ is called an χ -direction curve of ϕ . The curve ϕ whose χ -direction curve is δ is called the ϕ -donor curve of δ in E^3 .

Definition 2.2. ([6]) An integral curve of principal normal vector $\mathbf{N}(\mathbf{s})$ (resp. binormal vector $\mathbf{B}(\mathbf{s})$) of ϕ in (2) is called the principal-direction curve (resp. binormal-direction curve) of ϕ in E^3 .

Remark 2.1. ([6]) A principal-direction (resp. the binormal-direction) curve is an integral curve of $\phi(s)$ with $\vartheta(s) = \omega(s) = 0$, $\upsilon(s) = 1$ (resp. $\vartheta(s) = \upsilon(s) = 0$, $\omega(s) = 1$) for all s in (2).

3. Normal-direction curve and normal-donor curve in E^3

In this section, we will give definitions of normal-direction curve and normal donor curve in E^3 . We obtain some theorems and results characterizing these curves. First, we give the following definition.

Definition 3.1. Let α be a Frenet curve in E^3 and X be a unit vector field lying on the normal plane of α and defined by

$$X(s) = v(s)N(s) + w(s)B(s), v(s) \neq 0, \ w(s) \neq 0,$$

(•	4)

and satisfying that the vectors X'(s) and T(s) are linearly dependent. The integral curve $\gamma : I \to E^3$ of X(s) is called a normal-direction curve of α . The curve α whose normal -direction curve is γ is called the normal-donor curve in E^3 .

The Frenet frame is a rotation-minimizing with respect to the principal normal N[9]. If we consider a new frame given by $\{T, X, M\}$ where $M = T \times X$, we have that this new frame is rotation-minimizing with respect to T, i.e., the unit vector X belongs to a rotation-minimizing frame.

Since, X(s) is a unit vector and $\gamma : I \to E^3$ is an integral curve of X(s), without loss of generality we can take s as the arc length parameter of γ and we can give the following characterizations in the view of these information.

Theorem 3.1. Let $\alpha : I \to E^3$ be a Frenet curve and an integral curve of X(s) = v(s)N(s) + w(s)B(s) be the curve $\gamma : I \to E^3$. Then, γ is a normal-direction curve of α if and only if the following equalities hold,

$$v(s) = \sin\left(\int \tau ds\right) \neq 0, \quad w(s) = \cos\left(\int \tau ds\right) \neq 0.$$

(5)

Proof: Since γ is a normal-direction curve of α , from Definition 3.1, we have

$$X(s) = v(s)N(s) + w(s)B(s),$$

(6)

and

(7)

 $v^2(s) + w^2(s) = 1.$

Differentiating (6) with respect to s and by using the Frenet formulas, it follows

$$X'(s) = -v\kappa T + (v' - w\tau)N + (w' + v\tau)B.$$

(8)

Since we have that X' and T are linearly dependent. Then from (8) we can write

 $\begin{aligned} & -v\kappa \neq 0, \\ & v' - w\tau = 0, \\ & w' + v\tau = 0. \end{aligned}$

The solutions of second and third differential equations are

$$v(s) = \sin\left(\int \tau ds\right) \neq 0, \quad w(s) = \cos\left(\int \tau ds\right) \neq 0,$$

{

respectively, which completes the proof.

Theorem 3.2. Let $\alpha : I \to E^3$ be a Frenet curve. If γ is the normal-direction curve of α , then γ is a space evolute of α .

Proof: Since γ is an integral curve of X, we have $\gamma' = X$. Denote the Frenet frame of γ by

 $\{\bar{T}, \bar{N}, \bar{B}\}$. Differentiating $\gamma' = X$ with respect to s and by using Frenet formulas we get

$$X' = \bar{T}' = \bar{\kappa}\bar{N}.$$

(10)

Furthermore, we know that X' and T are linearly dependent. Then from (10) we get \bar{N} and T are linearly dependent, i.e, γ is a space evolute of α .

Theorem 3.3. Let $\alpha : I \to E^3$ be a Frenet curve. If γ is the normal direction curve of α , then the curvature $\bar{\kappa}$ and the torsion $\bar{\tau}$ of γ are given as follows,

$$\bar{\kappa} = \kappa \left| \sin \left(\int \tau ds \right) \right|, \bar{\tau} = \kappa \cos \left(\int \tau ds \right).$$

(11)

Proof: From (8), (9) and (10), we have

 $\bar{\kappa}\bar{N} = -v\kappa T.$

(12)

By considering (12) and (5) we obtain

 $\bar{\kappa}\bar{N} = -\kappa\sin\left(\int\tau ds\right)T,$

(13)

which gives us

 $\bar{\kappa} = \kappa \left| \sin \left(\int \tau ds \right) \right|.$

(14)

Moreover, from (13) and (14), we can write

 $\bar{N} = T.$

(15)

Then, we have

$$\bar{B} = \bar{T} \times \bar{N} = \cos\left(\int \tau ds\right) N - \sin\left(\int \tau ds\right) B.$$

(16)

Differentiating (16) with respect to s gives

$$\bar{B}' = -\kappa \cos\left(\int \tau ds\right) T.$$

(17)

Since $\bar{\tau} = -\langle \bar{B}', \bar{N} \rangle = -\langle \bar{B}', T \rangle$, from (17) it follows

$$\bar{\tau} = \kappa \cos\left(\int \tau ds\right),\,$$

(18)

that finishes the proof.

Corollary 3.1. Let γ be a normal-direction curve of the curve α . Then the relationships between the Frenet frames of curves are given as follows,

$$X = \bar{T} = \sin\left(\int \tau ds\right)N + \cos\left(\int \tau ds\right)B, \bar{N} = T, \bar{B} = \cos\left(\int \tau ds\right)N - \sin\left(\int \tau ds\right)B$$

Proof: The proof is clear from Theorem 3.3.

Theorem 3.4. Let γ be a normal-direction curve of α with curvature $\bar{\kappa}$ and torsion $\bar{\tau}$. Then curvature κ and torsion τ of α are given by

$$\kappa = \sqrt{\bar{\kappa}^2 + \bar{\tau}^2}, \tau = \frac{\bar{\tau}^2}{\bar{\kappa}^2 + \bar{\tau}^2} \left(\frac{\bar{\kappa}}{\bar{\tau}}\right)'.$$

Proof: From (14) and (18), we easily get

$$\kappa = \sqrt{\bar{\kappa}^2 + \bar{\tau}^2}.$$

(19)

Substituting (19) into (14) and (18), it follows

$$\left|\sin\left(\int \tau ds\right)\right| = \frac{\bar{\kappa}}{\sqrt{\bar{\kappa}^2 + \bar{\tau}^2}},$$
(20)

respectively. Differentiating (20) with respect to s, we have

$$\tau \cos\left(\int \tau ds\right) = \frac{\bar{\tau}(\bar{\kappa}'\bar{\tau} - \bar{\kappa}\,\bar{\tau}')}{(\bar{\kappa}^2 + \bar{\tau}^2)^{3/2}}.$$

 $\cos\left(\int \tau ds\right) = \frac{\bar{\tau}}{\sqrt{\bar{\kappa}^2 + \bar{\tau}^2}},$

(22)

(21)

From (21) and (22), it follows

$$\tau = \frac{\bar{\kappa}'\,\bar{\tau} - \bar{\kappa}\,\bar{\tau}'}{\bar{\kappa}^2 + \bar{\tau}^2},$$

or equivalently,

$$\tau = \frac{\bar{\tau}^2}{\bar{\kappa}^2 + \bar{\tau}^2} \left(\frac{\bar{\kappa}}{\bar{\tau}}\right)'.$$

(23)

Theorem 3.4 leads us to give the following corollary whose proof is clear.

Corollary 3.2. Let γ with the curvature $\bar{\kappa}$ and the torsion $\bar{\tau}$ be a normal-direction curve of α . Then

$$\frac{\tau}{\kappa} = -\frac{\bar{\kappa}^2}{\left(\bar{\kappa}^2 + \bar{\tau}^2\right)^{3/2}} \left(\frac{\bar{\tau}}{\bar{\kappa}}\right)',$$

(24)

is satisfied, where κ and τ are curvature and torsion of α , respectively.

4. Applications of normal-direction curves

In this section, we focus on relations between normal-direction curves and some special curves such as general helix, slant helix, plane curve or rectifying curve in E^3 .

4.1. General helices, slant helices and plane curves

Considering Corollary 3.2, we have the following theorems which gives a way to construct the examples of slant helices by using general helices.

Theorem 4.1. Let $\alpha : I \to E^3$ be a Frenet curve in E^3 and γ be a normal-direction curve of α . Then the followings are equivalent,

- i) A Frenet curve α is a general helix in E^3 .
- ii) α is a normal-donor curve of a slant helix.
- iii) A normal-direction curve of α is a slant helix.

Theorem 4.2. Let $\alpha : I \to E^3$ be a Frenet curve in E^3 and γ be a normal-direction curve of α . Then the followings are equivalent,

- i) A Frenet curve α is a plane curve in E^3 .
- ii) α is a normal-donor curve of a general helix.
- iii) A normal-direction curve of α is a general helix.

Example 4.1. Let consider the general helix given by the parametrization $\alpha(s) = \left(\cos \frac{s}{\sqrt{2}}, \sin \frac{s}{\sqrt{2}}, \frac{s}{\sqrt{2}}\right)$ in E^3 (Fig. 1). The Frenet vectors and curvatures of α are obtained as follows,

$$T(s) = \left(-\frac{1}{\sqrt{2}}\sin\frac{s}{\sqrt{2}}, \ \frac{1}{\sqrt{2}}\cos\frac{s}{\sqrt{2}}, \ \frac{1}{\sqrt{2}}\right),$$

$$N(s) = \left(-\cos\frac{s}{\sqrt{2}}, \sin\frac{s}{\sqrt{2}}, 0\right),$$

$$B(s) = \left(\frac{1}{\sqrt{2}}\sin\frac{s}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\cos\frac{s}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),$$
$$\kappa = \tau = \frac{1}{2}.$$

Then we have $X(s) = (x_1(s), x_2(s), x_3(s))$ where

$$\begin{aligned} x_1(s) &= -\sin\left(\frac{s}{2} + c\right)\cos\frac{s}{\sqrt{2}} + \frac{1}{\sqrt{2}}\cos\left(\frac{s}{2} + c\right)\sin\frac{s}{\sqrt{2}}, \\ x_2(s) &= \sin\left(\frac{s}{2} + c\right)\sin\frac{s}{\sqrt{2}} - \frac{1}{\sqrt{2}}\cos\left(\frac{s}{2} + c\right)\cos\frac{s}{\sqrt{2}}, \\ x_3(s) &= \frac{1}{\sqrt{2}}\cos\left(\frac{s}{2} + c\right). \end{aligned}$$

and c is integration constant. Now, we can construct a slant helix γ which is also a normal-direction curve of α (Fig. 2):

$$\gamma = \int_0^s \gamma'(s) ds = \int_0^s X(s) ds = (\gamma_1(s), \ \gamma_2(s), \ \gamma_3(s)),$$

where

$$\begin{aligned} \gamma_1(s) &= \int_0^s \left[-\sin\left(\frac{s}{2} + c\right) \cos\frac{s}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cos\left(\frac{s}{2} + c\right) \sin\frac{s}{\sqrt{2}} \right] ds, \\ \gamma_2(s) &= \int_0^s \left[\sin\left(\frac{s}{2} + c\right) \sin\frac{s}{\sqrt{2}} - \frac{1}{\sqrt{2}} \cos\left(\frac{s}{2} + c\right) \cos\frac{s}{\sqrt{2}} \right] ds, \\ \gamma_3(s) &= \int_0^s \frac{1}{\sqrt{2}} \cos\left(\frac{s}{2} + c\right) ds. \end{aligned}$$

[width=3in, height=3in, keepaspectratio,]1 [width=2.96in, height=2.96in, keepaspectratio=false]2 Fig. 1. General helix α . Fig. 2. Slant helix γ constructed by α .

4.2. ND-normal Curves

In this subsection we define normal-direction (ND)-normal curves in E^3 and give the relationships between normal-direction curves and ND-normal curves.

A space curve whose position vector always lies in its normal plane is called normal curve [5]. Moreover, if the Frenet frame and curvatures of a space curve are given by $\{T, N, B\}$ and κ , τ , respectively, then the vector $\tilde{D}(s) = \frac{\tau}{\kappa}(s)T(s) + B(s)$ is called modified Darboux vector of the curve [11].

Let now α be a Frenet curve with Frenet frame $\{T, N, B\}$ and γ a normal-direction curve of α . The curve γ is called normal-direction normal curve (or ND -normal curve) of α , if the position vector of γ always lies on the normal plane of its normal-donor curve α .

The definition of ND-normal curve allows us to write the following equality,

$$\gamma(s) = m(s)N(s) + n(s)B(s),$$

(25)

where m(s), n(s) are non-zero differentiable functions of s. Since γ is normal-direction curve of α , from Corollary 3.1, we have

{

$$\begin{split} N &= \sin\left(\int \tau ds\right) \bar{T} + \cos\left(\int \tau ds\right) \bar{B}, \\ B &= \cos\left(\int \tau ds\right) \bar{T} - \sin\left(\int \tau ds\right) \bar{B}. \end{split}$$
(26)

Substituting (26) in (25) gives

$$\gamma(s) = \left[m \sin\left(\int \tau ds\right) + n \cos\left(\int \tau ds\right) \right] \bar{T} + \left[m \cos\left(\int \tau ds\right) - n \sin\left(\int \tau ds\right) \right] \bar{B}.$$
(27)

Writing

/ \

. (C {

$$\rho(s) = m \sin\left(\int \tau ds\right) + n \cos\left(\int \tau ds\right), \sigma(s) = m \cos\left(\int \tau ds\right) - n \sin\left(\int \tau ds\right), (28)$$

in (27) and differentiating the obtained equality we obtain

(C

$$\bar{T} = \rho' \bar{T} + (\rho \bar{\kappa} - \sigma \bar{\tau}) \bar{N} + \sigma' \bar{B}.$$

(29)

Then we have

$$\sigma = a = ext{constant}, \ \rho = s + b = \frac{\tau}{\bar{\kappa}}a,$$

(30)

where a, b are non-zero integration constants. From (30), it follows that

$$\gamma(s) = a\left(\frac{\bar{\tau}}{\bar{\kappa}}\bar{T} + \bar{B}\right)(s) = a\tilde{\bar{D}}(s),$$

(31)

where \tilde{D} is the modified Darboux vector of γ .

Now we can give the followings which characterize ND-normal curves.

Theorem 4.3. Let $\alpha : I \to E^3$ be a Frenet curve in E^3 and γ be a normal-direction curve of α . If γ is a ND-normal curve in E^3 , then we have the followings,

i) γ is a rectifying curve in E^3 whose curvatures satisfy $\frac{\overline{\tau}}{\overline{\kappa}} = \frac{s+b}{a}$ where a, b are non-zero constants.

ii) The position vector and modified Darboux vector \tilde{D} of γ are linearly dependent.

Theorem 4.3 gives a way to construct a rectifying curve by using normal-donor curve as follows:

Corollary 4.1. Let $\alpha : I \to E^3$ be a Frenet curve in E^3 and γ a ND-normal curve of α in E^3 . Then the position vector of γ is obtained as follows,

$$\gamma(s) = \left[(s+b)\sin\left(\int \tau ds\right) + a\cos\left(\int \tau ds\right) \right] N(s) + \left[(s+b)\cos\left(\int \tau ds\right) - a\sin\left(\int \tau ds\right) \right] B(s)$$
(32)

where a, b are non-zero integration constants.

Proof. The proof is clear from (25), (28) and (30).

Example 4.2. Let consider the general helix given by the parametrization

$$\alpha(s) = \left(\sqrt{1+s^2}, s, \ln(s+\sqrt{1+s^2})\right),$$

and drawn in Fig. 3. Frenet vectors and curvatures of the curve are

$$T(s) = \frac{1}{\sqrt{2}\sqrt{1+s^2}} \left(s, \sqrt{1+s^2}, 1\right),$$

$$N(s) = \frac{1}{\sqrt{1+s^2}} (1, 0, -s)$$

$$B(s) = \frac{1}{\sqrt{2}\sqrt{1+s^2}} \left(-s, \sqrt{1+s^2}, -1\right),$$

$$\kappa = \tau = \frac{1+s^2}{2},$$

respectively. Then from Corollary 4.1, a ND-normal curve γ is obtained as follows,

$$\begin{split} \gamma(s) &= \left(\frac{1}{\sqrt{1+s^2}} \left[(s+b) \sin\left(\frac{s}{2} + \frac{s^3}{6} + c\right) + a \cos\left(\frac{s}{2} + \frac{s^3}{6} + c\right) \right] \\ &- \frac{s}{\sqrt{2(1+s^2)}} \left[(s+b) \cos\left(\frac{s}{2} + \frac{s^3}{6} + c\right) - a \sin\left(\frac{s}{2} + \frac{s^3}{6} + c\right) \right] , \\ &- \frac{1}{\sqrt{2}} \left[(s+b) \cos\left(\frac{s}{2} + \frac{s^3}{6} + c\right) - a \sin\left(\frac{s}{2} + \frac{s^3}{6} + c\right) \right] , \\ &- \frac{s}{\sqrt{1+s^2}} \left[(s+b) \sin\left(\frac{s}{2} + \frac{s^3}{6} + c\right) + a \cos\left(\frac{s}{2} + \frac{s^3}{6} + c\right) \right] \\ &- \frac{1}{\sqrt{2(1+s^2)}} \left[(s+b) \cos\left(\frac{s}{2} + \frac{s^3}{6} + c\right) - a \sin\left(\frac{s}{2} + \frac{s^3}{6} + c\right) \right] \end{split}$$

which is also a rectifying curve in the view of Theroem 4.3 and drawn in Figures 4,5,6 by choosing a = b = 1, c = 0.

[width=2.92in, height=2.92in, keepaspectratio=false]3 [width=2.92in, height=2.92in, keepaspectratio=false]4 Fig. 3. General helix α . Fig 4. ND-normal curve γ for $-\pi \leq s \leq \pi$.

[width=3.00in, height=3.00in, keepaspectratio=false]5 [width=3.00in, height=3.00in, keepaspectratio=false]6 Fig 5. ND-normal curve γ for $\frac{-3\pi}{2} \leq s \leq \frac{3\pi}{2}$. Fig 6. ND-normal curve γ for $-2\pi \leq s \leq 2\pi$.

References

[1] Barros, M., General helices and a theorem of Lancret, Proc. Amer. Math. Soc., 125 (5) (1997) 1503-1509.

[2] Beltran, J.V., Monterde, J., A characterization of quintic helices, J. Comput. Appl. Math., 206 (1) (2007) 116-121.

[3] Burke, J.F., Bertrand curves associated with a pair of curves. Mathematics Magazine, 34(1) (1960) 60-62.

[4] Chen, B.Y., When does the position vector of a space curve always lie in its normal plane?, Amer. Math. Monthly, 110 (2003) 147-152.

[5] Chen, B.Y., Dillen, F., Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica, 33 (2005) 77-90.

[6] Choi, J.H., Kim, Y.H., Associated curves of a Frenet curve and their applications, Applied Mathematics and Computation, 218 (2012) 9116-9124.

[7] Da Fonseca, A.F., Malta, C.P., Lancret helices, arXiv:physics/0507105v1 [physics.bio-ph].

[8] Farouki, R.T., Han, C.Y., Manni, C., Sestini, A., Characterization and construction of helical polynomial space curves, J. Comput. Appl. Math., 162 (2) (2004) 365-392.

[9] Farouki, R.T., Giannelli, G., Sampoli, M.C., Sestini, A., Rotation-minimizing osculating frames, Computer Aided Geometric Design, 31 (2014) 27-42.

[10] Hayden, H.A., On a generalized helix in a Riemannian *n*-space, Proc. Lond. Math. Soc., 32 (1931) 337-345.

[11] Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk. J. Math., 28 (2004) 153-163.

[12] Kahraman, T., Önder, M., Kazaz, M., Uğurlu, H.H., Some Characterizations of Mannheim Partner Curves in Minkowski 3-space, Proceedings of the Estonian Academy of Sciences, 60(4) (2011) 210-220.

[13] Hanif, M., Onder, M., Generalized quaternionic involute evolute curves in the Euclidean four-space E4, Mathematical Methods in the Applied Sciences, (2020).

[14] Otsuki, T., Differential Geometry, Asakura Publishing Co. Ltd., Tokyo, (in Japanese), (1961).

[15] Puig-Pey, J. Gálvez, A., Iglesias, A., Helical curves on surfaces for computer-aided geometric design and manufacturing, in: Computational Science and its Applications-ICCSA 2004. Part II, 771-778, in: Lecture Notes in Comput. Sci., vol. 3044, Springer, Berlin, (2004).

[16] Struik, D.J., Lectures on Classical Differential Geometry, 2nd ed. Addison Wesley, Dover, (1988).

[17] Wang, F., Liu, H., Mannheim partner curves in 3-Euclidean space, Mathematics in Practice and Theory, 37(1) (2007) 141-143.

[18] Whittemore, J.K., Bertrand curves and helices. Duke Math. J., 6(1) (1940) 235-245.