Special Associated Curves in Euclidean 3-Space

Sezai KIZILTUД, ${ }^{1}$ and Gokhan MUMCU ${ }^{2}$
${ }^{1}$ Erzincan University
${ }^{2}$ Erzincan Universitesi Fen Edebiyat Fakultesi

April 28, 2020

Abstract

First, we study a new tip of unit speed associated curves in the E3 like a normal-direction curve and normal-donor curve. Then we achieve qualification for these curves. Moreover, we confer applications of normal-direction to some special curves such as helix, slant helix, plane curve or normal-direction (ND)-normal curves in E3. And, we show that slant helices and rectifying curves might be assemble by using normal-direction curves.

Abstract

First, we study a new tip of unit speed associated curves in the E^{3} like a normal-direction curve and normal-donor curve. Then we achieve qualification for these curves. Moreover, we confer applications of normal-direction to some special curves such as helix, slant helix, plane curve or normal-direction ($N D$)-normal curves in E^{3}. And, we show that slant helices and rectifying curves might be assemble by using normal-direction curves.

MSC: 53A04.
Key words: Incorporated curve; normal-direction curve; normal-donor curve.

1. Introduction

In the curve theory of Euclidean space, the momentous question is achieve a characterization in order to a regular curve. The specification may be dedicated for a single curve or for a curve pair. Helix, slant helix, plane curve, spherical curve, etc. are well-known instance of single special curves [1,9,10,13,18] and these curves, exclusively the helices, are used in many applications $[2,7,8,15]$. Additionally, special curves can be defined by careful Frenet planes. Providing the position vector of a curve always lies on its rectifying, osculating or normal planes, then the curve is called rectifying curve, osculating curve or normal curve, seriatim [4]. Exclusively, therein obtain a basic correlation among rectifying curves and Darboux vectors, which trick some momentous parts in mechanics, kinematics as well as in differential geometry in describing the curves of constant motion [5,12].
Besides, special curve pairs are characterized by some relationships between their Frenet vectors or curvatures. Involute-evolute curves, Bertrand curves, Mannheim curves are admitted sample of curve pairs and studious by some mathematicians [3,11-13,16,17].

Hereabout, a new curve pair in the Euclidean 3 -space E^{3} has been defined by Choi and Kim [6]. They have considered an integral curve γ of a unit vector field X defined in the Frenet basis of a Frenet curve α and they have given the definitions and characterizations of principal-directional curve and principal-donor curve in E^{3}. They have also given some applications of these curves to some special curves.

In the current paper, we consider a new type of associated curve and define a new curve pair such as normaldirection curve and normal-donor curve in E^{3}. We obtain some characterizations for these curves and show that normal-direction curve is an evolute of normal-donor curve. Moreover, we give some applications of normal-direction curve to some special curves such as helix, slant helix or plane curve.

2. Preliminaries

This section includes a brief summary of space curves and definitions of general helix and slant helix in the Euclidean 3 -space E^{3}.

A unit speed curve $\alpha: I \rightarrow E^{3}$ is called a general helix if there is a constant vector u, so that $\langle T, u\rangle=\cos \theta$ is constant along the curve, where $\theta \neq \pi / 2$ and $T(s)=\alpha^{\prime}(s)$ is unit tangent vector of α at s. The curvature (or first curvature) of α is defined by $\kappa(s)=\left\|\alpha^{\prime \prime}(s)\right\|$. Then, the curve α is called Frenet curve, if $\kappa(s) \neq 0$, and the unit principal normal vector $N(s)$ of the curve α at s is given by $\alpha^{\prime \prime}(s)=\kappa(s) N(s)$. The unit vector $B(s)=T(s) \times N(s)$ is called the unit binormal vector of α at s. Then $\{T, N, B\}$ is called the Frenet frame of α. For the derivatives of the Frenet frame, the following Frenet-Serret formulae hold:

```
T'
N'=[
B'
    0}<\kappa\quad
    -\kappa
    0}-\boldsymbol{~
T
N
B
where \(\tau(s)\) is the torsion (or second curvature) of \(\alpha\) at \(s\). It is well-known that the curve \(\alpha\) is a general helix if and only if \(\frac{\tau}{\kappa}(s)=\) constant [17]. If both \(\kappa(s) \neq 0\) and \(\tau(s)\) are constants, we call \(\alpha\) as a circular helix. A curve \(\alpha\) with \(\kappa(s) \neq 0\) is called a slant helix if the principal normal lines of \(\alpha\) make a constant angle with a fixed direction. Also, a slant helix \(\alpha\) in \(E^{3}\) is characterized by the differential equation of its curvature \(\kappa\) and its torsion \(\tau\) given by
\[
\frac{\kappa^{2}}{\left(\kappa^{2}+\tau^{2}\right)^{3 / 2}}\left(\frac{\tau}{\kappa}\right)^{\prime}=\text { constant }
\]
(See [11]).
Now, we give the definitions of some associated curves defined by Choi and Kim [6]. Let \(I \subset \mathbb{R}\) be an open interval. For a Frenet curve \(\phi: I \rightarrow E^{3}\), consider a vector field \(X\) given by
\[
\begin{equation*}
\chi(s)=\vartheta(s) \mathbf{T}(\mathbf{s})+v(s) \mathbf{N}(\mathbf{s})+\omega(s) \mathbf{B}(\mathbf{s}) \tag{2}
\end{equation*}
\]
where \(\vartheta, v\) and \(\omega\) are arbitrary differentiable functions of \(s\) which is the arc length parameter of \(\phi\). Let
\[
\begin{equation*}
\vartheta^{2}(s)+v^{2}(s)+\omega^{2}(s)=1 \tag{3}
\end{equation*}
\]
holds. Then the definitions of \(\chi\)-direction curve and \(\chi\)-donor curve in \(E^{3}\) are given as follows.
Definition 2.1. ([6]) Let \(\phi\) be a Frenet curve in Euclidean 3 -space \(E^{3}\) and \(\chi\) be a unit vector field satisfying the equations (2) and (3). The integral curve \(\delta: I \rightarrow E^{3}\) of \(\chi\) is called an \(\chi\)-direction curve of \(\phi\). The curve \(\phi\) whose \(\chi\)-direction curve is \(\delta\) is called the \(\phi\)-donor curve of \(\delta\) in \(E^{3}\).

Definition 2.2. ([6]) An integral curve of principal normal vector \(\mathbf{N}(\mathbf{s})\) (resp. binormal vector \(\mathbf{B}(\mathbf{s})\) ) of \(\phi\) in (2) is called the principal-direction curve (resp. binormal-direction curve) of \(\phi\) in \(E^{3}\).

Remark 2.1. ([6]) A principal-direction (resp. the binormal-direction) curve is an integral curve of \(\phi(s)\) with \(\vartheta(s)=\omega(s)=0, v(s)=1(\) resp. \(\vartheta(s)=v(s)=0, \omega(s)=1)\) for all \(s\) in (2).

\section*{3. Normal-direction curve and normal-donor curve in \(E^{3}\)}

In this section, we will give definitions of normal-direction curve and normal donor curve in \(E^{3}\). We obtain some theorems and results characterizing these curves. First, we give the following definition.

Definition 3.1. Let \(\alpha\) be a Frenet curve in \(E^{3}\) and \(X\) be a unit vector field lying on the normal plane of \(\alpha\) and defined by
\[
\begin{equation*}
X(s)=v(s) N(s)+w(s) B(s), v(s) \neq 0, w(s) \neq 0 \tag{4}
\end{equation*}
\]
and satisfying that the vectors \(X^{\prime}(s)\) and \(T(s)\) are linearly dependent. The integral curve \(\gamma: I \rightarrow E^{3}\) of \(X(s)\) is called a normal-direction curve of \(\alpha\). The curve \(\alpha\) whose normal -direction curve is \(\gamma\) is called the normal-donor curve in \(E^{3}\).

The Frenet frame is a rotation-minimizing with respect to the principal normal \(N[9]\). If we consider a new frame given by \(\{T, X, M\}\) where \(M=T \times X\), we have that this new frame is rotation-minimizing with respect to \(T\), i.e., the unit vector \(X\) belongs to a rotation-minimizing frame.

Since, \(X(s)\) is a unit vector and \(\gamma: I \rightarrow E^{3}\) is an integral curve of \(X(s)\), without loss of generality we can take \(s\) as the arc length parameter of \(\gamma\) and we can give the following characterizations in the view of these information.

Theorem 3.1. Let \(\alpha: I \rightarrow E^{3}\) be a Frenet curve and an integral curve of \(X(s)=v(s) N(s)+w(s) B(s)\) be the curve \(\gamma: I \rightarrow E^{3}\). Then, \(\gamma\) is a normal-direction curve of \(\alpha\) if and only if the following equalities hold,
\[
\begin{equation*}
v(s)=\sin \left(\int \tau d s\right) \neq 0, \quad w(s)=\cos \left(\int \tau d s\right) \neq 0 \tag{5}
\end{equation*}
\]

Proof: Since \(\gamma\) is a normal-direction curve of \(\alpha\), from Definition 3.1, we have
\[
\begin{equation*}
X(s)=v(s) N(s)+w(s) B(s) \tag{6}
\end{equation*}
\]
and
\[
\begin{equation*}
v^{2}(s)+w^{2}(s)=1 \tag{7}
\end{equation*}
\]

Differentiating (6) with respect to \(s\) and by using the Frenet formulas, it follows
\[
\begin{equation*}
X^{\prime}(s)=-v \kappa T+\left(v^{\prime}-w \tau\right) N+\left(w^{\prime}+v \tau\right) B \tag{8}
\end{equation*}
\]

Since we have that \(X^{\prime}\) and \(T\) are linearly dependent. Then from (8) we can write
\(-v \kappa \neq 0\),
\(v^{\prime}-w \tau=0\),
\(w^{\prime}+v \tau=0\).
(9)

The solutions of second and third differential equations are
\[
v(s)=\sin \left(\int \tau d s\right) \neq 0, \quad w(s)=\cos \left(\int \tau d s\right) \neq 0
\]
respectively, which completes the proof.
Theorem 3.2. Let \(\alpha: I \rightarrow E^{3}\) be a Frenet curve. If \(\gamma\) is the normal-direction curve of \(\alpha\), then \(\gamma\) is a space evolute of \(\alpha\).
Proof: Since \(\gamma\) is an integral curve of \(X\), we have \(\gamma^{\prime}=X\). Denote the Frenet frame of \(\gamma\) by \(\{\bar{T}, \bar{N}, \bar{B}\}\). Differentiating \(\gamma^{\prime}=X\) with respect to \(s\) and by using Frenet formulas we get
\[
\begin{equation*}
X^{\prime}=\bar{T}^{\prime}=\bar{\kappa} \bar{N} \tag{10}
\end{equation*}
\]

Furthermore, we know that \(X^{\prime}\) and \(T\) are linearly dependent. Then from (10) we get \(\bar{N}\) and \(T\) are linearly dependent, i.e, \(\gamma\) is a space evolute of \(\alpha\).

Theorem 3.3. Let \(\alpha: I \rightarrow E^{3}\) be a Frenet curve. If \(\gamma\) is the normal direction curve of \(\alpha\), then the curvature \(\bar{\kappa}\) and the torsion \(\bar{\tau}\) of \(\gamma\) are given as follows,
\[
\begin{equation*}
\bar{\kappa}=\kappa\left|\sin \left(\int \tau d s\right)\right|, \bar{\tau}=\kappa \cos \left(\int \tau d s\right) . \tag{11}
\end{equation*}
\]

Proof: From (8), (9) and (10), we have
\[
\begin{equation*}
\bar{\kappa} \bar{N}=-v \kappa T . \tag{12}
\end{equation*}
\]

By considering (12) and (5) we obtain
\[
\begin{equation*}
\bar{\kappa} \bar{N}=-\kappa \sin \left(\int \tau d s\right) T \tag{13}
\end{equation*}
\]
which gives us
\[
\begin{equation*}
\bar{\kappa}=\kappa\left|\sin \left(\int \tau d s\right)\right| . \tag{14}
\end{equation*}
\]

Moreover, from (13) and (14), we can write
\[
\begin{equation*}
\bar{N}=T \tag{15}
\end{equation*}
\]

Then, we have
\[
\begin{equation*}
\bar{B}=\bar{T} \times \bar{N}=\cos \left(\int \tau d s\right) N-\sin \left(\int \tau d s\right) B \tag{16}
\end{equation*}
\]

Differentiating (16) with respect to \(s\) gives
\[
\begin{equation*}
\bar{B}^{\prime}=-\kappa \cos \left(\int \tau d s\right) T \tag{17}
\end{equation*}
\]

Since \(\bar{\tau}=-\left\langle\bar{B}^{\prime}, \bar{N}\right\rangle=-\left\langle\bar{B}^{\prime}, T\right\rangle\), from (17) it follows
\[
\begin{equation*}
\bar{\tau}=\kappa \cos \left(\int \tau d s\right), \tag{18}
\end{equation*}
\]
that finishes the proof.
Corollary 3.1. Lety be a normal-direction curve of the curve \(\alpha\). Then the relationships between the Frenet frames of curves are given as follows,
\[
X=\bar{T}=\sin \left(\int \tau d s\right) N+\cos \left(\int \tau d s\right) B, \bar{N}=T, \bar{B}=\cos \left(\int \tau d s\right) N-\sin \left(\int \tau d s\right) B
\]

Proof: The proof is clear from Theorem 3.3.
Theorem 3.4. Let \(\gamma\) be a normal-direction curve of \(\alpha\) with curvature \(\bar{\kappa}\) and torsion \(\bar{\tau}\). Then curvature \(\kappa\) and torsion \(\tau\) of \(\alpha\) are given by
\[
\kappa=\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}, \tau=\frac{\bar{\tau}^{2}}{\bar{\kappa}^{2}+\bar{\tau}^{2}}\left(\frac{\bar{\kappa}}{\bar{\tau}}\right)^{\prime} .
\]

Proof: From (14) and (18), we easily get
\[
\kappa=\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}
\]
(19)

Substituting (19) into (14) and (18), it follows
\[
\begin{equation*}
\left|\sin \left(\int \tau d s\right)\right|=\frac{\bar{\kappa}}{\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}} \tag{20}
\end{equation*}
\]
\[
\begin{equation*}
\cos \left(\int \tau d s\right)=\frac{\bar{\tau}}{\sqrt{\bar{\kappa}^{2}+\bar{\tau}^{2}}} \tag{21}
\end{equation*}
\]
respectively. Differentiating (20) with respect to \(s\), we have
\[
\begin{equation*}
\tau \cos \left(\int \tau d s\right)=\frac{\bar{\tau}\left(\bar{\kappa}^{\prime} \bar{\tau}-\bar{\kappa} \bar{\tau}^{\prime}\right)}{\left(\bar{\kappa}^{2}+\bar{\tau}^{2}\right)^{3 / 2}} \tag{22}
\end{equation*}
\]

From (21) and (22), it follows
\[
\tau=\frac{\bar{\kappa}^{\prime} \bar{\tau}-\bar{\kappa} \bar{\tau}^{\prime}}{\bar{\kappa}^{2}+\bar{\tau}^{2}}
\]
or equivalently,
\[
\begin{equation*}
\tau=\frac{\bar{\tau}^{2}}{\bar{\kappa}^{2}+\bar{\tau}^{2}}\left(\frac{\bar{\kappa}}{\bar{\tau}}\right)^{\prime} \tag{23}
\end{equation*}
\]

Theorem 3.4 leads us to give the following corollary whose proof is clear.
Corollary 3.2. Let \(\gamma\) with the curvature \(\bar{\kappa}\) and the torsion \(\bar{\tau}\) be a normal-direction curve of \(\alpha\). Then
\[
\begin{equation*}
\frac{\tau}{\kappa}=-\frac{\bar{\kappa}^{2}}{\left(\bar{\kappa}^{2}+\bar{\tau}^{2}\right)^{3 / 2}}\left(\frac{\bar{\tau}}{\bar{\kappa}}\right)^{\prime} \tag{24}
\end{equation*}
\]
is satisfied, where \(\kappa\) and \(\tau\) are curvature and torsion of \(\alpha\), respectively.

\section*{4. Applications of normal-direction curves}

In this section, we focus on relations between normal-direction curves and some special curves such as general helix, slant helix, plane curve or rectifying curve in \(E^{3}\).
4.1. General helices, slant helices and plane curves

Considering Corollary 3.2, we have the following theorems which gives a way to construct the examples of slant helices by using general helices.

Theorem 4.1. Let \(\alpha: I \rightarrow E^{3}\) be a Frenet curve in \(E^{3}\) and \(\gamma\) be a normal-direction curve of \(\alpha\). Then the followings are equivalent,
i) A Frenet curve \(\alpha\) is a general helix in \(E^{3}\).
ii) \(\alpha\) is a normal-donor curve of a slant helix.
iii) A normal-direction curve of \(\alpha\) is a slant helix.

Theorem 4.2. Let \(\alpha: I \rightarrow E^{3}\) be a Frenet curve in \(E^{3}\) and \(\gamma\) be a normal-direction curve of \(\alpha\). Then the followings are equivalent,
i) A Frenet curve \(\alpha\) is a plane curve in \(E^{3}\).
ii) \(\alpha\) is a normal-donor curve of a general helix.
iii) A normal-direction curve of \(\alpha\) is a general helix.

Example 4.1. Let consider the general helix given by the parametrization \(\alpha(s)=\left(\cos \frac{s}{\sqrt{2}}, \sin \frac{s}{\sqrt{2}}, \frac{s}{\sqrt{2}}\right)\) in \(E^{3}\) (Fig. 1). The Frenet vectors and curvatures of \(\alpha\) are obtained as follows,
\[
\begin{gathered}
T(s)=\left(-\frac{1}{\sqrt{2}} \sin \frac{s}{\sqrt{2}}, \frac{1}{\sqrt{2}} \cos \frac{s}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
N(s)=\left(-\cos \frac{s}{\sqrt{2}}, \sin \frac{s}{\sqrt{2}}, 0\right)
\end{gathered}
\]
\[
B(s)=\left(\frac{1}{\sqrt{2}} \sin \frac{s}{\sqrt{2}},-\frac{1}{\sqrt{2}} \cos \frac{s}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\]
\[
\kappa=\tau=\frac{1}{2}
\]

Then we have \(X(s)=\left(x_{1}(s), x_{2}(s), x_{3}(s)\right)\) where
\[
\begin{aligned}
& x_{1}(s)=-\sin \left(\frac{s}{2}+c\right) \cos \frac{s}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cos \left(\frac{s}{2}+c\right) \sin \frac{s}{\sqrt{2}}, \\
& x_{2}(s)=\sin \left(\frac{s}{2}+c\right) \sin \frac{s}{\sqrt{2}}-\frac{1}{\sqrt{2}} \cos \left(\frac{s}{2}+c\right) \cos \frac{s}{\sqrt{2}}, \\
& x_{3}(s)=\frac{1}{\sqrt{2}} \cos \left(\frac{s}{2}+c\right) .
\end{aligned}
\]
and \(c\) is integration constant. Now, we can construct a slant helix \(\gamma\) which is also a normal-direction curve of \(\alpha\) (Fig. 2):
\[
\gamma=\int_{0}^{s} \gamma^{\prime}(s) d s=\int_{0}^{s} X(s) d s=\left(\gamma_{1}(s), \gamma_{2}(s), \gamma_{3}(s)\right)
\]
where
\[
\begin{aligned}
& \gamma_{1}(s)=\int_{0}^{s}\left[-\sin \left(\frac{s}{2}+c\right) \cos \frac{s}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cos \left(\frac{s}{2}+c\right) \sin \frac{s}{\sqrt{2}}\right] d s \\
& \gamma_{2}(s)=\int_{0}^{s}\left[\sin \left(\frac{s}{2}+c\right) \sin \frac{s}{\sqrt{2}}-\frac{1}{\sqrt{2}} \cos \left(\frac{s}{2}+c\right) \cos \frac{s}{\sqrt{2}}\right] d s \\
& \gamma_{3}(s)=\int_{0}^{s} \frac{1}{\sqrt{2}} \cos \left(\frac{s}{2}+c\right) d s
\end{aligned}
\]
\([\) width \(=3 \mathrm{in}\), height \(=3 \mathrm{in}\), keepaspectratio, \(] 1[\) width \(=2.96 \mathrm{in}\), height \(=2.96 \mathrm{in}\), keepaspectratio \(=\) false \(] 2\)
Fig. 1. General helix \(\alpha\). Fig. 2. Slant helix \(\gamma\) constructed by \(\alpha\).

\subsection*{4.2. ND-normal Curves}

In this subsection we define normal-direction ( \(N D\) ) -normal curves in \(E^{3}\) and give the relationships between normal-direction curves and \(N D\)-normal curves.

A space curve whose position vector always lies in its normal plane is called normal curve [5]. Moreover, if the Frenet frame and curvatures of a space curve are given by \(\{T, N, B\}\) and \(\kappa, \tau\), respectively, then the vector \(\tilde{D}(s)=\frac{\tau}{\kappa}(s) T(s)+B(s)\) is called modified Darboux vector of the curve [11].

Let now \(\alpha\) be a Frenet curve with Frenet frame \(\{T, N, B\}\) and \(\gamma\) a normal-direction curve of \(\alpha\). The curve \(\gamma\) is called normal-direction normal curve (or \(N D\)-normal curve) of \(\alpha\), if the position vector of \(\gamma\) always lies on the normal plane of its normal-donor curve \(\alpha\).
The definition of \(N D\)-normal curve allows us to write the following equality,
\[
\begin{equation*}
\gamma(s)=m(s) N(s)+n(s) B(s), \tag{25}
\end{equation*}
\]
where \(m(s), n(s)\) are non-zero differentiable functions of \(s\). Since \(\gamma\) is normal-direction curve of \(\alpha\), from Corollary 3.1, we have
\[
\begin{align*}
& N=\sin \left(\int \tau d s\right) \bar{T}+\cos \left(\int \tau d s\right) \bar{B} \\
& B=\cos \left(\int \tau d s\right) \bar{T}-\sin \left(\int \tau d s\right) \bar{B} \tag{26}
\end{align*}
\]

Substituting (26) in (25) gives
\[
\begin{equation*}
\gamma(s)=\left[m \sin \left(\int \tau d s\right)+n \cos \left(\int \tau d s\right)\right] \bar{T}+\left[m \cos \left(\int \tau d s\right)-n \sin \left(\int \tau d s\right)\right] \bar{B} . \tag{27}
\end{equation*}
\]

Writing
\(\rho(s)=m \sin \left(\int \tau d s\right)+n \cos \left(\int \tau d s\right)\),
\(\sigma(s)=m \cos \left(\int \tau d s\right)-n \sin \left(\int \tau d s\right)\),
(28)
in (27) and differentiating the obtained equality we obtain
\[
\begin{equation*}
\bar{T}=\rho^{\prime} \bar{T}+(\rho \bar{\kappa}-\sigma \bar{\tau}) \bar{N}+\sigma^{\prime} \bar{B} . \tag{29}
\end{equation*}
\]

Then we have
\[
\begin{equation*}
\sigma=a=\text { constant }, \rho=s+b=\frac{\bar{\tau}}{\bar{\kappa}} a \tag{30}
\end{equation*}
\]
where \(a, b\) are non-zero integration constants. From (30), it follows that
\[
\begin{equation*}
\gamma(s)=a\left(\frac{\bar{\tau}}{\bar{\kappa}} \bar{T}+\bar{B}\right)(s)=a \tilde{\bar{D}}(s) \tag{31}
\end{equation*}
\]
where \(\tilde{\bar{D}}\) is the modified Darboux vector of \(\gamma\).
Now we can give the followings which characterize \(N D\)-normal curves.
Theorem 4.3. Let \(\alpha: I \rightarrow E^{3}\) be a Frenet curve in \(E^{3}\) and \(\gamma\) be a normal-direction curve of \(\alpha\). If \(\gamma\) is a \(N D\)-normal curve in \(E^{3}\), then we have the followings,
i) \(\gamma\) is a rectifying curve in \(E^{3}\) whose curvatures satisfy \(\frac{\bar{\tau}}{\bar{\kappa}}=\frac{s+b}{a}\) where \(a, b\) are non-zero constants.
ii) The position vector and modified Darboux vector \(\tilde{\bar{D}}\) of \(\gamma\) are linearly dependent.

Theorem 4.3 gives a way to construct a rectifying curve by using normal-donor curve as follows:
Corollary 4.1. Let \(\alpha: I \rightarrow E^{3}\) be a Frenet curve in \(E^{3}\) and \(\gamma\) a \(N D\)-normal curve of \(\alpha\) in \(E^{3}\). Then the position vector of \(\gamma\) is obtained as follows,
\[
\begin{equation*}
\gamma(s)=\left[(s+b) \sin \left(\int \tau d s\right)+a \cos \left(\int \tau d s\right)\right] N(s)+\left[(s+b) \cos \left(\int \tau d s\right)-a \sin \left(\int \tau d s\right)\right] B(s) \tag{32}
\end{equation*}
\]
where \(a, b\) are non-zero integration constants.
Proof. The proof is clear from (25), (28) and (30).
Example 4.2. Let consider the general helix given by the parametrization
\[
\alpha(s)=\left(\sqrt{1+s^{2}}, s, \ln \left(s+\sqrt{1+s^{2}}\right)\right)
\]
and drawn in Fig. 3. Frenet vectors and curvatures of the curve are
\[
\begin{gathered}
T(s)=\frac{1}{\sqrt{2} \sqrt{1+s^{2}}}\left(s, \sqrt{1+s^{2}}, 1\right), \\
N(s)=\frac{1}{\sqrt{1+s^{2}}}(1,0,-s), \\
B(s)=\frac{1}{\sqrt{2} \sqrt{1+s^{2}}}\left(-s, \sqrt{1+s^{2}},-1\right), \\
\kappa=\tau=\frac{1+s^{2}}{2}
\end{gathered}
\]
respectively. Then from Corollary 4.1, a \(N D\)-normal curve \(\gamma\) is obtained as follows,
\[
\begin{aligned}
\gamma(s)= & \left(\frac{1}{\sqrt{1+s^{2}}}\left[(s+b) \sin \left(\frac{s}{2}+\frac{s^{3}}{6}+c\right)+a \cos \left(\frac{s}{2}+\frac{s^{3}}{6}+c\right)\right]\right. \\
& -\frac{s}{\sqrt{2\left(1+s^{2}\right)}}\left[(s+b) \cos \left(\frac{s}{2}+\frac{s^{3}}{6}+c\right)-a \sin \left(\frac{s}{2}+\frac{s^{3}}{6}+c\right)\right] \\
& -\frac{1}{\sqrt{2}}\left[(s+b) \cos \left(\frac{s}{2}+\frac{s^{3}}{6}+c\right)-a \sin \left(\frac{s}{2}+\frac{s^{3}}{6}+c\right)\right] \\
& -\frac{s}{\sqrt{1+s^{2}}}\left[(s+b) \sin \left(\frac{s}{2}+\frac{s^{3}}{6}+c\right)+a \cos \left(\frac{s}{2}+\frac{s^{3}}{6}+c\right)\right] \\
& \left.-\frac{1}{\sqrt{2\left(1+s^{2}\right)}}\left[(s+b) \cos \left(\frac{s}{2}+\frac{s^{3}}{6}+c\right)-a \sin \left(\frac{s}{2}+\frac{s^{3}}{6}+c\right)\right]\right)
\end{aligned}
\]
which is also a rectifying curve in the view of Theroem 4.3 and drawn in Figures \(4,5,6\) by choosing \(a=b=\) \(1, c=0\).
\([\) width \(=2.92 \mathrm{in}\), height \(=2.92 \mathrm{in}\), keepaspectratio \(=\) false \(] 3[\) width \(=2.92 \mathrm{in}\), height \(=2.92 \mathrm{in}\), keepaspectratio \(=\) false \(] 4\)
Fig. 3. General helix \(\alpha\). Fig 4. \(N D\)-normal curve \(\gamma\) for \(-\pi \leq s \leq \pi\).
\([\) width \(=3.00 \mathrm{in}\), height \(=3.00 \mathrm{in}\), keepaspectratio \(=\) false \(] 5[\) width \(=3.00 \mathrm{in}\), height \(=3.00 \mathrm{in}\), keepaspectratio \(=\) false \(] 6\)
Fig 5. \(N D\)-normal curve \(\gamma\) for \(\frac{-3 \pi}{2} \leq s \leq \frac{3 \pi}{2}\). Fig 6. \(N D\)-normal curve \(\gamma\) for \(-2 \pi \leq s \leq 2 \pi\).

\section*{References}
[1] Barros, M., General helices and a theorem of Lancret, Proc. Amer. Math. Soc., 125 (5) (1997) 1503-1509.
[2] Beltran, J.V., Monterde, J., A characterization of quintic helices, J. Comput. Appl. Math., 206 (1) (2007) 116-121.
[3] Burke, J.F., Bertrand curves associated with a pair of curves. Mathematics Magazine, 34(1) (1960) 60-62.
[4] Chen, B.Y., When does the position vector of a space curve always lie in its normal plane?, Amer. Math. Monthly, 110 (2003) 147-152.
[5] Chen, B.Y., Dillen, F., Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica, 33 (2005) 77-90.
[6] Choi, J.H., Kim, Y.H., Associated curves of a Frenet curve and their applications, Applied Mathematics and Computation, 218 (2012) 9116-9124.
[7] Da Fonseca, A.F., Malta, C.P., Lancret helices, arXiv:physics/0507105v1 [physics.bio-ph].
[8] Farouki, R.T., Han, C.Y., Manni, C., Sestini, A., Characterization and construction of helical polynomial space curves, J. Comput. Appl. Math., 162 (2) (2004) 365-392.
[9] Farouki, R.T., Giannelli, G., Sampoli, M.C., Sestini, A., Rotation-minimizing osculating frames, Computer Aided Geometric Design, 31 (2014) 27-42.
[10] Hayden, H.A., On a generalized helix in a Riemannian \(n\)-space, Proc. Lond. Math. Soc., 32 (1931) 337-345.
[11] Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk. J. Math., 28 (2004) 153-163.
[12] Kahraman, T., Önder, M., Kazaz, M., Uğurlu, H.H., Some Characterizations of Mannheim Partner Curves in Minkowski 3-space, Proceedings of the Estonian Academy of Sciences, 60(4) (2011) 210-220.
[13] Hanif, M., Önder, M., Generalized quaternionic involute evolute curves in the Euclidean four-space E4, Mathematical Methods in the Applied Sciences, (2020).
[14] Otsuki, T., Differential Geometry, Asakura Publishing Co. Ltd., Tokyo, (in Japanese), (1961).
[15] Puig-Pey, J. Gálvez, A., Iglesias, A., Helical curves on surfaces for computer-aided geometric design and manufacturing, in: Computational Science and its Applications-ICCSA 2004. Part II, 771-778, in: Lecture Notes in Comput. Sci., vol. 3044, Springer, Berlin, (2004).
[16] Struik, D.J., Lectures on Classical Differential Geometry, \(2^{\text {nd }}\) ed. Addison Wesley, Dover, (1988).
[17] Wang, F., Liu, H., Mannheim partner curves in 3-Euclidean space, Mathematics in Practice and Theory, 37(1) (2007) 141-143.
[18] Whittemore, J.K., Bertrand curves and helices. Duke Math. J., 6(1) (1940) 235-245.```

