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Abstract

By means of the techniques of the real analysis and the weight functions, a few equivalent conditions of a Hilbert-type integral
inequality with the general nonhomogeneous kernel in the whole plane are obtained. The constant factor is proved to be the
best possible. As applications, a few equivalent conditions of a Hilbert-type integral inequality with the general homogeneous
kernel in the whole plane are deduced. We also consider the operator expressions, a few particular cases and some examples.
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Introduction

Assuming that f(x), g(y) ≥ 0, 0 <
∫∞
0
f2(x)dx < ∞ and 0 <

∫∞
0
g2(y)dy < ∞, we have the following

well-known Hilbert’s integral inequality (see (missing citation)):

∫ ∞
0

∫ ∞
0

f(x)g(y)

x+ y
dxdy < π

(∫ ∞
0

f2(x)dx

∫ ∞
0

g2(y)dy

) 1
2

, (1)

with the best possible constant factor π.

Recently, by means of the weight functions, a lot of extensions of (1) were given by two books (see (B. C.
Yang & inequalities, n.d.), (B. C. Yang, n.d.)). Some Hilbert-type inequalities with the homogenous kernels
and nonhomogenous kernels were provided by (B. C. Yang, n.d.)-(L. Debnath, n.d.). In 2017, Hong (Y.
Hong, n.d.) also gave a equivalent condition between a Hilbert-type inequalities with the homogenous kernel
and some parameters. Some other kinds of Hilbert-type inequalities were obtained by (M.Th. Rassias,
n.d.)-(Q. Liu et al., 2019). Most of them are built in the quarter plane of the first quadrant.

Using the way of real analysis, in 2007, Yang (B. C. Yang, n.d.) gave a Hilbert-type integral inequality in
the whole plane as follows:

0Foundation item: This work is supported by the National Natural Science Foundation (No. 61772140), and Science and
Technology Planning Project Item of Guangzhou City (No. 201707010229).

1



P
os

te
d

on
A

u
th

or
ea

28
M

ar
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

54
23

67
.7

59
90

53
7

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)

(1 + ex+y)λ
dxdy

< B(
λ

2
,
λ

2
)

(∫ ∞
−∞

e−λxf2(x)dx

∫ ∞
−∞

e−λyg2(y)dy

) 1
2

, (2)

with the best possible constant factor B(λ2 ,
λ
2 )(λ > 0, B(u, v) is the beta function) (see (missing citation)).

He et al. (B. He, n.d.)-(Z.H Gu1, n.d.) proved some new Hilbert-type integral inequalities in the whole
plane with the best possible constant factors.

In this paper, by means of the techniques of the real analysis and the weight functions, a few equivalent
conditions of a Hilbert-type integral inequality with the general non-homogeneous kernel in the whole plane
are obtained in Theorem 1. The constant factor is proved to be the best possible in Theorem 2. As applica-
tions, a few equivalent conditions of a Hilbert-type integral inequality with the general homogeneous kernel
in the whole plane are deduced in Theorem 3. We also consider the operator expressions in Theorem 4-5. A
few particular cases and some examples are obtained in Corollaries 1-4 and Examples 1-2. The lemmas and
theorems provide an extensive account of this type of inequalities.

Two lemmas

In what follows, we suppose that p > 1, 1p + 1
q = 1, σ1, σ ∈ R = (−∞,∞), h(u) is a nonnegative measurable

function in R, with

K(1)(σ) :=

∫ 1

−1
h(u)|u|σ−1du =

∫ 1

0

(h(−u) + h(u))uσ−1du,

K(2)(σ) : =

∫
{u;|u|≥1}

h(u)|u|σ−1du =

∫ ∞
1

(h(−u) + h(u))uσ−1du,

K(σ) : =

∫ ∞
−∞

h(u)|u|σ−1du =

∫ ∞
0

(h(−u) + h(u))uσ−1du

= K(1)(σ) +K(2)(σ).

(3)

For n ∈ N = {1, 2, . . . }, we define the following two expressions:

I1 :=

∫
{y;|y|≥1}

(∫
{x;|x|≤1}

h(xy)|x|σ+
1
pn−1dx

)
|y|σ1− 1

qn−1dy, (4)

I2 :=

∫
{y;|y|≤1}

(∫
{x;|x|≥1}

h(xy)|x|σ−
1
pn−1dx

)
|y|σ1+

1
qn−1dy.

2
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(5)

Setting u = xy in (4), by Fubini theorem (cf. (J. C. Kuang, n.d.)), it follows that

I1 =

∫
{y;|y|≥1}

[∫ 0

−1
h(xy)(−x)σ+

1
pn−1dx

+

∫ 1

0

h(xy)xσ+
1
pn−1dx

]
|y|σ1− 1

qn−1dy

= 2

∫ ∞
1

(∫ y

0

(h(−u) + h(u))(
u

y
)σ+

1
pn−1 1

y
du

)
yσ1− 1

qn−1dy

= 2

∫ ∞
1

(∫ y

0

(h(−u) + h(u))uσ+
1
pn−1du

)
yσ1−σ− 1

n−1dy (6)

In the same way, we obtain

I2 =

∫
{x;|x|≥1}

(∫
{y;|y|≤1}

h(xy)|y|σ1+
1
qn−1dy

)
|x|σ−

1
pn−1dx

= 2

∫ ∞
1

(∫ x

0

(h(−u) + h(u))uσ1+
1
qn−1du

)
xσ−σ1− 1

n−1dx. (7)

Lemma 1. Lemma 1. If K(1)(σ) > 0, there exists a constant M , such that for any nonnegative measurable
functions f(x) and g(y) in R, the following inequality

I : =

∫ ∞
−∞

∫ ∞
−∞

h(xy)f(x)g(y)dxdy

≤ M

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p
[∫ ∞
−∞
|y|q(1−σ1)−1gq(y)dy

] 1
q

(8)

holds true, then we have σ1 = σ.

Proof. Proof. If σ1 < σ, then for n > 1
σ−σ1

(n ∈ N), we set functions

fn(x) := {

0, |x| < 1

|x|σ−
1
pn−1, |x| ≥ 1

, gn(y) := {

|y|σ1+
1
qn−1, |y| ≤ 1

0, |y| > 1
,and then obtain

J2 : =

[∫ ∞
−∞
|x|p(1−σ)−1fpn(x)dx

] 1
p
[∫ ∞
−∞
|y|q(1−σ1)−1gqn(y)dy

] 1
q

=

(∫
{x;|x|≥1}

|x|− 1
n−1dx

) 1
p
(∫
{y;|y|≤1}

|y| 1n−1dy

) 1
q

= 2n.

3
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By (7), we have

2

∫ ∞
1

[∫ 1

0

(h(−u) + h(u))uσ1+
1
qn−1du

]
xσ−σ1− 1

n−1dx

≤ I2 =

∫ ∞
−∞

∫ ∞
−∞

h(xy)fn(x)gn(y)dxdy ≤MJ2 = 2Mn. (9)

Since for any n > 1
σ−σ1

(n ∈ N), σ − σ1 − 1
n > 0, it follows that

∫∞
1
xσ−σ1− 1

n−1dx =∞. By (9), in view of

∫ 1

0

(h(−u) + h(u))uσ1+
1
qn−1du ≥

∫ 1

0

(h(−u) + h(u))uσ−1 = K(1)(σ) > 0,

we find that ∞ ≤ 2Mn <∞, which is a contradiction.

If σ1 > σ, then for n > 1
σ1−σ (n ∈ N), we set functions

f̃n(x) := {

|x|σ+
1
pn−1, |x| ≤ 1

0, |x| > 1
, g̃n(y) := {

0, |y| < 1

|y|σ1− 1
qn−1, |y| ≥ 1

,and then obtain

J̃2 : =

[∫ ∞
−∞
|x|p(1−σ)−1f̃pn(x)dx

] 1
p
[∫ ∞
−∞
|y|q(1−σ1)−1g̃qn(y)dy

] 1
q

=

(∫ 1

−1
|x| 1n−1dx

) 1
p

(∫
{y;|y|≥1}

|y|− 1
n−1dy

) 1
q

= 2n.

By (6), we have

2

∫ ∞
1

[∫ 1

0

(h(−u) + h(u))uσ+
1
pn−1du

]
yσ1−σ− 1

n−1dy

≤ I1 =

∫ ∞
0

∫ ∞
0

h(xy)f̃n(x)g̃n(y)dxdy ≤MJ̃2 = 2Mn. (10)

Since for n > 1
σ1−σ (n ∈ N), (σ1 − σ) − 1

n > 0, it follows that
∫∞
1
y(σ1−σ)− 1

n−1dy = ∞. By (10), in view of

K(1)(σ) > 0, namely, ∫ 1

0

(h(−u) + h(u))uσ+
1
pn−1du > 0,

we have ∞ ≤ 2Mn <∞, which is a contradiction.

Hence, we conclude that σ1 = σ. The lemma is proved. 2

4
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Lemma 2. Lemma 2. If there exists a constant M , such that for any nonnegative measurable functions
f(x) and g(y) in R, the following inequality

∫ ∞
−∞

∫ ∞
−∞

h(xy)f(x)g(y)dxdy

≤ M

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p
[∫ ∞
−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

(11)

holds true, then we have K(σ) ≤M <∞.

Proof. Proof. For σ1 = σ, we reduce (6) and then use inequality I1 ≤MJ̃2 (when σ1 = σ) as follows

1

2n
I1 =

∫ 1

0

(h(−u) + h(u))uσ+
1
pn−1du

+

∫ ∞
1

(h(−u) + h(u))uσ−
1
qn−1du ≤M. (12)

By Fatou lemma (cf. (J. C. Kuang, n.d.)) and (12), we have

K(σ) =

∫ 1

0

lim
n→∞

(h(−u) + h(u))uσ+
1
pn−1du

+

∫ ∞
1

lim
n→∞

(h(−u) + h(u))uσ−
1
qn−1du

≤ limn→∞
1

2n
I1 ≤M <∞.

The lemma is proved. 2

Main results and a few corollaries

Theorem 0.1. Theorem 1. If K(1)(σ) > 0, then the following conditions are equivalent:

(i) There exists a constant M, such that for any f(x) ≥ 0, satisfying 0 <
∫∞
−∞ |x|

p(1−σ)−1fp(x)dx < ∞, we
have the following inequality:

J : =

[∫ ∞
−∞
|y|pσ1−1

(∫ ∞
−∞

h(xy)f(x)dx

)p
dy

] 1
p

< M

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p

.

5
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(13)

(ii) There exists a constant M, such that for any f(x), g(y) ≥ 0, satisfying 0 <
∫∞
−∞ |x|

p(1−σ)−1fp(x)dx <∞,
and 0 <

∫∞
=∞ |y|

q(1−σ1)−1gq(y)dy <∞, we have the following inequality:

I =

∫ ∞
−∞

∫ ∞
−∞

h(xy)f(x)g(y)dxdy

< M

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p
[∫ ∞
−∞
|y|q(1−σ1)−1gq(y)dy

] 1
q

.

(14)

(iii) σ1 = σ and K(σ) <∞.

Proof. Proof. (i) => (ii). By Hölder’s inequality (see ?), we have

I =

∫ ∞
−∞

(
|y|σ1− 1

p

∫ ∞
−∞

h(xy)f(x)dx

)(
|y|

1
p−σ1g(y)

)
dy

≤ J

[∫ ∞
−∞
|y|q(1−σ1)−1gq(y)dy

] 1
q

. (15)

Then by (13), we have (14).

(ii) => (iii). Since K(1)(σ) > 0, by Lemma 1, we have σ1 = σ. Then by Lemma 2, we have K(σ) ≤M <∞.

(iii) => (i). Setting u = xy, we obtain the following weight function: For y ∈ (−∞, 0) ∪ (0,∞),

ω(σ, y) : = |y|σ
∫ ∞
−∞

h(xy)|x|σ−1dx

=

∫ ∞
0

(h(−u) + h(u))uσ−1du = K(σ).

(16)

By Hölder’s inequality with weight and (16), we have

6
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(∫ ∞
−∞

h(xy)f(x)dx

)p
=

{∫ ∞
−∞

h(xy)

[
|y|(σ−1)/p

|x|(σ−1)/q
f(x)

] [
|x|(σ−1)/q

|y|(σ−1)/p

]
dx

}p
≤

∫ ∞
−∞

h(xy)
|y|σ−1

|x|(σ−1)p/q
fp(x)dx

[∫ ∞
−∞

h(xy)
|x|σ−1

|y|(σ−1)q/p
dx

]p/q
=

[
ω(σ, y)|y|q(1−σ)−1

]p−1 ∫ ∞
−∞

h(xy)
|y|σ−1

|x|(σ−1)p/q
fp(x)dx

= (K(σ))p−1|y|−pσ+1

∫ ∞
−∞

h(xy)
|y|σ−1

|x|(σ−1)p/q
fp(x)dx.

(17)

If (17) takes the form of equality for a y ∈ (−∞, 0) ∪ (0,∞), then (see (J. C. Kuang, n.d.)), there exists
constants A and B, such that they are not all zero, and

A
|y|σ−1

|x|(σ−1)p/q
fp(x) = B

|x|σ−1

|y|(σ−1)q/p
a.e. in R.

We suppose that A 6= 0 (otherwise B = A = 0). Then it follows that

|x|p(1−σ)−1fp(x) = |y|q(1−σ) B

A|x|
a.e. in R,

which contradicts the fact that 0 <
∫∞
−∞ |x|

p(1−σ)−1fp(x)dx < ∞. Hence, (17) takes the form of strict
inequality.

For σ1 = σ, by Fubini theorem (see (J. C. Kuang, n.d.)) and (17), we have

J < (K(σ))
1
q

[∫ ∞
−∞

∫ ∞
−∞

h(xy)
|y|σ−1

|x|(σ−1)p/q
fp(x)dxdy

] 1
p

= (K(σ))
1
q

{∫ ∞
−∞

[∫ ∞
−∞

h(xy)
|y|σ−1

|x|(σ−1)(p−1)
dy

]
fp(x)dx

} 1
p

= (K(σ))
1
q

[∫ ∞
−∞

ω(σ, x)|x|p(1−σ)−1fp(x)dx

] 1
p

= K(σ)

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p

.

For K(σ) ∈ R+, setting M ≥ K(σ), we have

J < K(σ)

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p

≤M
[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p

,

namely, (13) follows.

7
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Therefore, the conditions (i), (ii) and (iii) are equivalent.

The theorem is proved. 2

For σ1 = σ, we have

Theorem 0.2. Theorem 2. The following conditions are equivalent:

(i) There exists a constant M, such that for any f(x) ≥ 0, satisfying 0 <
∫∞
−∞ |x|

p(1−σ)−1fp(x)dx < ∞, we
have the following inequality:

[∫ ∞
−∞
|y|pσ−1

(∫ ∞
−∞

h(xy)f(x)dx

)p
dy

] 1
p

< M

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p

.

(18)

(ii) There exists a constant M, such that for any f(x), g(y) ≥ 0, 0 <
∫∞
−∞ |x|

p(1−σ)−1fp(x)dx < ∞, and

0 <
∫∞
−∞ |y|

q(1−σ)−1gq(y)dy <∞, we have the following inequality:

∫ ∞
−∞

∫ ∞
−∞

h(xy)f(x)g(y)dxdy

< M

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p
[∫ ∞
−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

.

(19)

(iii) K(σ) <∞.

Moreover, if (iii) follows and K(σ) > 0, then the constant factor M = K(σ) ∈ R+ in (18) and (19) is the
best possible.

Proof. Proof. For σ1 = σ in Theorem 1, we still can conclude that the conditions (i), (ii) and (iii) in
Theorem 2 are equivalent.

When Condition (iii) follows and K(σ) > 0, if there exists a constant M ≤ K(σ), such that (19) is valid,
then by Lemma 2, we have K(σ) ≤ M. Hence, the constant factor M = K(σ) ∈ R+ in (19) is the best
possible.

The constant factor M = K(σ) in (18) is still the best possible. Otherwise, by (15) (for σ1 = σ), we would
reach a contradition that the constant factor M = K(σ) in (19) is not the best possible.

The theorem is proved. 2

8
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In particular, for σ1 = σ = 1
p in Theorem 2, we have

Corollary 1. Corollary 1. The following conditions are equivalent:

(i) There exists a constant M, such that for any f(x) ≥ 0, satisfying 0 <
∫∞
−∞ |x|

p−2fp(x)dx <∞, we have
the following inequality:

[∫ ∞
−∞

(∫ ∞
−∞

h(xy)f(x)dx

)p
dy

] 1
p

< M

(∫ ∞
−∞
|x|p−2fp(x)dx

) 1
p

.

(20)

(ii) There exists a constant M, such that for any f(x), g(y) ≥ 0, satisfying 0 <
∫∞
−∞ |x|

p−2fp(x)dx <∞, and

0 <
∫∞
−∞ gq(y)dy <∞, we have the following inequality:

∫ ∞
−∞

∫ ∞
−∞

h(xy)f(x)g(y)dxdy < M

(∫ ∞
−∞
|x|p−2fp(x)dx

) 1
p
(∫ ∞
−∞

gq(y)dy

) 1
q

.

(21)

(iii) K( 1
p ) <∞.

If Condition (iii) follows and K( 1
p ) > 0, then the constant factor M = K( 1

p ) (∈ R+) in (20) and (21) is the
best possible.

Setting y = 1
Y , G(Y ) = g( 1

Y ) 1
Y 2 in Theorem 1-2, then replacing Y by y, we have

Corollary 2. Corollary 2. If K(1)(σ) > 0, then the following conditions are equivalent:

(i) There exists a constant M, such that for any f(x) ≥ 0, satisfying 0 <
∫∞
0
|x|p(1−σ)−1fp(x)dx < ∞, we

have the following inequality:

[∫ ∞
−∞
|y|−pσ1−1

(∫ ∞
−∞

h(
x

y
)f(x)dx

)p
dy

] 1
p

< M

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

]
.

(22)

(ii) There exists a constant M, such that for any f(x), G(y) ≥ 0, satisfying 0 <
∫∞
−∞ |x|

p(1−σ)−1fp(x)dx <∞,
and 0 <

∫∞
−∞ |y|

q(1+σ1)−1Gq(y)dy <∞, we have the following inequality:

∫ ∞
−∞

∫ ∞
−∞

h(
x

y
)f(x)G(y)dxdy

< M

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p
[∫ ∞
−∞

yq(1+σ1)−1Gq(y)dy

] 1
q

.
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(23)

(iii) σ1 = σ, and K(σ) <∞.

If Condition (iii) follows, then the constant M = K(σ) (∈ R+) in (22) and (23) (for σ1 = σ) is the best
possible.

Note. h(xy ) is a homogeneous function of degree 0, namely, h(xy ) = k0(x, y).

Setting h(u) = kλ(u, 1), where kλ(x, y) (x, y ∈ R) is the homogeneous function of degree −λ ∈ R, with

K
(1)
λ (σ) : =

∫ 1

−1
kλ(u, 1)|u|σ−1du ,

K
(2)
λ (σ) : =

∫
{u;|u|≥1}

kλ(u, 1)|u|σ−1du ,

Kλ(σ) : =

∫ ∞
−∞

kλ(u, 1)|u|σ−1du = K
(1)
λ (σ) +K

(2)
λ (σ),

then for g(y) = |y|λG(y) and µ = λ− σ1 in Corollary 2, we have

Theorem 0.3. Theorem 3. If K
(1)
λ (σ) > 0, then the following conditions are equivalent:

(i) There exists a constant M, such that for any f(x) ≥ 0, satisfying 0 <
∫∞
−∞ |x|

p(1−σ)−1fp(x)dx < ∞, we
have the following inequality:

[∫ ∞
−∞
|y|pµ−1

(∫ ∞
−∞

kλ(x, y)f(x)dx

)p
dy

] 1
p

< M

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p

.

(24)

(ii) There exists a constant M, such that for any f(x), g(y) ≥ 0, satisfying 0 <
∫∞
−∞ |x|

p(1−σ)−1fp(x)dx <∞,
and 0 <

∫∞
−∞ |y|

q(1−µ)−1gq(y)dy <∞, we have the following inequality:

∫ ∞
−∞

∫ ∞
−∞

kλ(x, y)f(x)g(y)dxdy

< M

[∫ ∞
−∞
|x|p(1−σ)−1fp(x)dx

] 1
p
[∫ ∞
−∞
|y|q(1−µ)−1gq(y)dy

] 1
q

.

(25)

10
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(iii) µ+ σ = λ, and Kλ(σ) <∞.

If Condition (iii) follows, then the constant M = Kλ(σ) (∈ R+) in (24) and (25) is the best possible.
Remark. Remark 2 . If λ = 0, µ = −σ1, k0(x, y) = h(xy ), then Theorem 3 reduces to Corollary 2.

In particular, for λ = 1, σ = 1
q , µ = 1

p in Theorem 3 (also refer to Theorem 2), we have
Corollary 3. Corollary 3. The following conditions are equivalent:

(i) There exists a constant M, such that for any f(x) ≥ 0, satisfying 0 <
∫∞
−∞ fp(x)dx < ∞, we have the

following inequality:

[∫ ∞
−∞

(∫ ∞
−∞

k1(x, y)f(x)dx

)p
dy

] 1
p

< M

(∫ ∞
−∞

fp(x)dx

)
.

(26)

(ii) There exists a constant M, such that for any f(x), g(y) ≥ 0, satisfying 0 <
∫∞
−∞ fp(x)dx < ∞, and

0 <
∫∞
−∞ gq(y)dy <∞, we have the following inequality:

∫ ∞
−∞

∫ ∞
−∞

k1(x, y)f(x)g(y)dxdy < M

(∫ ∞
−∞

fp(x)dx

) 1
p
(∫ ∞
−∞

gq(y)dy

) 1
q

.

(27)

(iii) K1( 1
q ) <∞.

If Condition (iii) follows and K1( 1
q ) > 0, then the constant M = K1( 1

q )(∈ R+) in (26) and (27) is the best
possible.

For λ = 1, σ = 1
p , µ = 1

q in Theorem 3 (also refer to Theorem 2), we have
Corollary 4. Corollary 4. The following conditions are equivalent:

(i) There exists a constant M, such that for any f(x) ≥ 0, satisfying 0 <
∫∞
−∞ |x|

p−2fp(x)dx <∞, we have
the following inequality:

[∫ ∞
−∞
|y|p−2

(∫ ∞
−∞

k1(x, y)f(x)dx

)p
dy

] 1
p

< M

(∫ ∞
−∞
|x|p−2fp(x)dx

) 1
p

.

(28)

(ii) There exists a constant M, such that for any f(x), g(y) ≥ 0, satisfying 0 <
∫∞
−∞ |x|

p−2fp(x)dx <∞, and

0 <
∫∞
−∞ |y|

q−2gq(y)dy <∞, we have the following inequality:

11
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∫ ∞
−∞

∫ ∞
−∞

k1(x, y)f(x)g(y)dxdy

< M

(∫ ∞
−∞
|x|p−2fp(x)dx

) 1
p
(∫ ∞
−∞
|y|q−2gq(y)dy

) 1
q

.

(29)

(iii) K1( 1
p ) <∞.

If Condition (iii) follows and K1( 1
p ) > 0, then the constant factor M = K1( 1

p ) (∈ R+) in (28) and (29) is the
best possible.

Operator expressions and examples

For µ + σ = λ, we set the following functions: ϕ(x) := |x|p(1−σ)−1, ψ(y) := |y|q(1−σ)−1, φ(y) := |y|q(1−µ)−1,
wherefrom, ψ1−p(y) = |y|pσ−1, φ1−p(y) = |y|pµ−1 (x, y ∈ R). Define the following real normed linear spaces:

Lp,ϕ(R) :=

{
f : ||f ||p,ϕ :=

(∫ ∞
−∞

ϕ(x)|f(x)|pdx
) 1
p

<∞

}
,

wherefrom,

Lq,ψ(R) =

{
g : ||g||q,ψ :=

(∫ ∞
−∞

ψ(y)|g(y)|qdy
) 1
q

<∞

}
,

Lq,φ(R) =

{
g : ||g||q,φ :=

(∫ ∞
−

φ(y)|g(y)|qdy
) 1
q

<∞

}
,

Lp,ψ1−p(R) =

{
h : ||h||p,ψ1−p =

(∫ ∞
−∞

ψ1−p(y)|h(y)|pdy
) 1
p

<∞

}
,

Lq,φ1−p(R) =

{
h : ||h||p,φ1−p =

(∫ ∞
−∞

φ1−p(y)|h(y)|pdy
) 1
p

<∞

}
.

(a) In view of Theorem 2, for f ∈ Lp,ϕ(R), setting h1(y) :=
∫∞
−∞ h(xy) f(x)dx (y ∈ R), by (18), we have

||h1||p,ψ1−p =

[∫ ∞
−∞

ψ1−p(y)hp1(y)dy

] 1
p

< M ||f ||p,ϕ <∞.

(30)

12
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Definition 1. Definition 1. Define a Hilbert-type integral operator with the nonhomogeneous kernel T (1) :
Lp,ϕ(R) → Lp,ψ1−p(R) as follows: For any f ∈ Lp,ϕ(R), there exists a unique representation T (1)f = h1 ∈
Lp,ψ1−p(R), satisfying for any y ∈ R, T (1)f(y) = h1(y).

In view of (30), it follows that

||T (1)f ||p,ψ1−p = ||h1||p,ψ1−p ≤M ||f ||p,ϕ,

and then the operator T (1) is bounded satisfying

||T (1)|| = sup
f( 6=θ)∈Lp,ϕ(R)

||T (1)f ||p,ψ1−p

||f ||p,ϕ
≤M.

If we define the formal inner product of T (1)f and g as follows:

(T (1)f, g) :=

∫ ∞
−∞

(∫ ∞
−∞

h(xy)f(x)dx

)
g(y)dy,

then we can rewrite Theorem 2 as follows:
Theorem 0.4. Theorem 4. The following conditions are equivalent:

(i) There exists a constant M, such that for any f(x) ≥ 0, f ∈ Lp,ϕ(R), ||f ||p,ϕ > 0, we have the following
inequality:

||T (1)f ||p,ψ1−p < M ||f ||p,ϕ.

(31)

(ii) There exists a constantM, such that for any f(x), g(y) ≥ 0, f ∈ Lp,ϕ(R), g ∈ Lq,ψ(R), ||f ||p,ϕ, ||g||q,ψ > 0,
we have the following inequality:

(T (1)f, g) < M ||f ||p,ϕ||g||q,ψ.

(32)

(iii) K(σ) <∞.

Moreover, if (iii) follows and K(σ) > 0, then the constant factor M = K(σ)(∈ R+) in (31) and (32) is the
best possible, namely, 0 < ||T (1)|| = K(σ) ≤M.

(b) In view of Theorem 3 (σ + µ = λ), for f ∈ Lp,ϕ(R), setting h2(y) :=
∫∞
−∞ kλ(x, y)f(x)dx (y ∈ R), by

(24), we have

||h2||p,φ1−p =

[∫ ∞
−∞

φ1−p(y)hp2(y)dy

] 1
p

< M ||f ||p,ϕ <∞.

13
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(33)

Definition 2. Definition 2. Define a Hilbert-type integral operator with the homogeneous kernel T (2) :
Lp,ϕ(R) → Lp,φ1−p(R) as follows: For any f ∈ Lp,ϕ(R), there exists a unique representation T (2)f = h2 ∈
Lp,φ1−p(R), satisfying for any y ∈ R, T (2)f(y) = h2(y).

In view of (33), it follows that

||T (2)f ||p,φ1−p = ||h2||p,φ1−p ≤M ||f ||p,ϕ,

and then the operator T (2) is bounded satisfying

||T (2)|| = sup
f( 6=θ)∈Lp,ϕ(R)

||T (2)f ||p,φ1−p

||f ||p,ϕ
≤M.

If we define the formal inner product of T (2)f and g as follows:

(T (2)f, g) :=

∫ ∞
−∞

(∫ ∞
−∞

kλ(x, y)f(x)dx

)
g(y)dy,

then we can rewrite Theorem 3 (for µ+ σ = λ) as follows:
Theorem 0.5. Theorem 5. The following conditions are equivalent:

(i) There exists a constant M, such that for any f(x) ≥ 0, f ∈ Lp,ϕ(R), ||f ||p,ϕ > 0, we have the following
inequality:

||T (2)f ||p,φ1−p < M ||f ||p,ϕ.

(34)

(ii) There exists a constant M, such that for any f(x), g(y) ≥ 0, f ∈ Lp,ϕ(R), g ∈ Lq,φ(R), ||f ||p,ϕ, ||g||q,φ > 0,
we have the following inequality:

(T (2)f, g) < M ||f ||p,ϕ||g||q,φ.

(35)

(iii) Kλ(σ) <∞.

If Condition (iii) follows and Kλ(σ) > 0, then the constant factor M = Kλ(σ)(∈ R+) in (34) and (35) is the
best possible, namely, 0 < ||T (2)|| = Kλ(σ) ≤M.

14
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Example 1. Example 1. Setting h(xy) = | ln |xy||β
(max{|xy|,1})λ−1|xy−1| , and

kλ(x, y) =
| ln |x/y||β

(max{|x|, |y|})λ−1|x− y|
(x, y ∈ R),

for β > 0, σ, µ > 0, σ + µ = λ, it follows that

K(σ) = Kλ(σ) =

∫ ∞
0

| lnu|βuσ−1

(max{u, 1})λ−1

(
1

u+ 1
+

1

|u− 1|

)
du

=

∫ 1

0

(− lnu)β
(

1

u+ 1
+

1

1− u

)
(uσ−1 + uµ−1)du

= 2

∫ 1

0

(− lnu)β
1

1− u2
(uσ−1 + uµ−1)du

= 2

∫ 1

0

(− lnu)β
∞∑
k=0

u2k(uσ−1 + uµ−1)du.

By Lebesgue term by term integration theorem (cf. (J. C. Kuang, n.d.)), we have

K(σ) = Kλ(σ) = 2

∞∑
k=0

∫ 1

0

(− lnu)β(u2k+σ−1 + u2k+µ−1du

= 2

∞∑
k=0

[
1

(2k + σ)β+1
+

1

(2k + µ)β+1

] ∫ ∞
0

vβe−vdv

=
Γ(β + 1)

2β

(
ζ(β + 1,

σ

2
) + ζ(β + 1,

µ

2
)
)
∈ R+,

where, ζ(s, a) =
∑∞
k=0

1
(k+a)sRes > 1; a > 0) is the extended Riemann zeta function (ζ(s, 1) =

∑∞
k=1

1
ks (Res >

1) is the Riemann zeta function) (cf. (missing citation)). Then by Theorem 4 and Theorem 5, we have

||T (1)|| = ||T (2)|| = Γ(β + 1)

2β

(
ζ(β + 1,

σ

2
) + ζ(β + 1,

µ

2
)
)
.

(36)

Example 2. Example 2. Setting h(xy) = 1
|xy−1|λ , kλ(x, y) = 1

|x−y|λ (x, y ∈ R), for σ, µ > 0, σ+µ = λ < 1,

it follows that

K(σ) = Kλ(σ) =

∫ ∞
0

(
1

(u+ 1)λ
+

1

|u− 1|λ

)
uσ−1du

=

∫ ∞
0

uσ−1

(u+ 1)λ
du+

∫ 1

0

1

(1− u)λ
(uσ−1 + uµ−1)du

= B(σ, µ) +B(1− λ, σ) +B(1− λ, µ) ∈ R+.

15
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Then by Theorem 4 and Theorem 5, we have

||T (1)|| = ||T (2)|| = B(σ, µ) +B(1− λ, σ) +B(1− λ, µ).

(37)
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