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Abstract

Current crop protection strategies against the fungal pathogen Botrytis cinerea rely on a combination of conventional fungicides
and host genetic resistance. However, due to pathogen evolution and legislation in the use of fungicides, these strategies are
not sufficient to protect plants against this pathogen. Defence elicitors can stimulate plant defence mechanisms through a
phenomenon known as priming. Priming results in a faster and/or stronger expression of resistance upon pathogen recognition
by the host. This work aims to study priming of a commercial formulation of the elicitor chitosan. Treatments with chitosan
result in induced resistance in solanaceous and brassicaceous plants. In tomato plants, enhanced resistance has been linked with
priming of callose deposition and accumulation of the plant hormone jasmonic acid (JA). Large-scale transcriptomic analysis
revealed that chitosan primes gene expression at early time-points after infection. In addition, two novel tomato genes with a
characteristic priming profile were identified, Avr9/Cf-9 rapidly-elicited protein 75 (ACRE75) and 180 (ACRE180). Transient
and stable overexpression of ACRE75, ACRE180 and their Nicotiana benthamiana homologs, revealed that they are positive
regulators of plant resistance against B. cinerea. This provides valuable information in the search for strategies to protect

Solanaceae plants against B. cinerea.
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Introduction

Crop yield losses of 20-40% of total agriculture productivity can be attributed to pests and diseases (Oerke,
2006, Savary et al., 2012). Of these threats, the pathogen Botrytis cinerea causes annual losses of $10-
$100 billion, as it reduces crop yield before harvest or leads to waste and spoilage post-harvest. It is
the causative agent of grey mould disease in tomato and many other economically important crops, such
as pepper, aubergine, grape, lettuce and raspberry. B. cinerea is a fungal generalist (broad-host range)
and considered to be a model necrotrophic pathogen (Williamson et al., 2007). Effective control include
the use of conventional crop protectants (e.g. fungicides) and resistant varieties as well as sanitation and
environmental control. However, rapid pathogen evolution can result in the loss of efficacy of resistance
sources and fungicides (Pappas, 1997, Williamson et al., 2007). In addition, the use of pesticides is strictly
limited by European regulations due to human health and environment risk and hazard assessment changes.
New alternative strategies are therefore needed. Exploiting the plant’s defence system to provide protection
against these threats has emerged as a potential strategy against pathogen infection and disease (Luna,
2016).



Plant endogenous defences is activated by elicitor molecules resulting in induced resistance (IR) (Mauch-
Mani et al., 2017), since they are able to mimic pathogen-inducible defence mechanisms (Aranega-Bou et al.,
2014). Induced resistance works via two different mechanisms: direct activation of systemic plant defences
after signal recognition and; priming, a mechanism that initiates a wide reprogramming of plant processes,
considered to be an adaptive component of induced resistance (Mauch-Mani et al., 2017). Priming has been
demonstrated to be the most cost-effective mechanism of induced resistance in terms of plant development
as there is no direct relocation of plant resources from growth to defence until it is necessary (van Hulten
et al., 2006). Studies have already shown that low elicitor doses can enhance resistance to pests without
interfering with crop production (Redman et al., 2001). Elicitor-induced priming has been demounstrated to
last from a few days (Conrath et al., 2006) to weeks (Worrall et al., 2012) after treatment and even through
subsequent generations (Ramirez-Carrasco et al., 2017, Slaughter et al., 2012).

Priming can have multiple effects on plant defences, which vary depending on the type of plant-pathogen
interaction. Defence priming enables the plant to fine-tune immunity responses through enhancement of the
initial defences. These is achieved through different mechanisms that act at specific defence layers (Mauch-
Mani et al., 2017). For instance, cell-wall fortification and effective production of reactive oxygen species
(ROS) has been used as a marker for the expression of priming responses. Hexanoic acid (Hx) primes cell-
wall defences through callose deposition and redox processes in tomato cultivars against B.cinerea (Aranega-
Bou et al., 2014). In Arabidopsis thaliana , BABA and benzothiadiazole (BTH)-induced priming is also
based on an increase in callose deposition (Kohler et al., 2002, Ton et al., 2005). Priming also results in
transcriptomic changes. Gene expression analysis of A. thaliana after BABA treatment was used to identify
a transient accumulation of SA-dependent transcripts, including that of NPR1 |, which provides resistance
against Pseudomonas syringae (Zimmerli et al., 2000). Changes in metabolite accumulation have been shown
to mark priming of defence also. For instance, defence hormone profiling has shown that accumulation of
JA and JA-derivatives mediates priming of mycorrhizal fungi (Pozo et al., 2015). Moreover, untargeted
metabolomic analysis have identified different compounds, including kaempferol (Krdl et al., 2015), quercetin,
and indole 3 carboxylic acid (I3CA) (Gamir et al., 2014), that drive priming responses.

Several elicitors have been described to induce resistance mechanisms in tomato against B. cinerea . For
instance, BABA has been demonstrated to provide long-lasting induced resistance against B. cinerea in
leaves (Luna et al., 2016) and in fruit (Wilkinson et al., 2018). In addition, the plant defence hormone JA
has also been linked to short-term and long-term induced resistance in tomato against B. cinerea (Luna
et al., 2016, Worrall et al., 2012). To date, however, few studies have investigated elicitor-induced priming
in tomato againstB. cinerea. One of them showed that Hx-induced priming is based on callose deposition,
the expression of tomato antimicrobial genes (e.g. protease inhibitor and endochitinase genes), and the fine-
tuning of redox processes (Aranega-Bou et al., 2014, Finiti et al., 2014). Therefore, evidence is building in
tomato, that induced resistance against B. cinerea can be based on priming also.

In this study we investigated whether the chitin de-acetylated derivative, chitosan, triggers priming of defence
in tomato againstB. cinerea . Chitosan as a plant protection product is considered ‘generally recognised
as safe’ (Raafat and Sahl, 2009) that is effective in protecting strawberry, tomato and grape against B.
cinerea(Munoz and Moret, 2010, Romanazzi et al., 2013). Different studies have shown that its effect on crop
protection results from induction of defence mechanisms (Sathiyabama et al., 2014) and direct antimicrobial
activity (Goy et al., 2009). However, treatments with chitosan require infiltration into the leaves to trigger a
robust effect (Scalschi et al., 2015) making it an unsuitable method of application in large-scale experiments
or studies that take into consideration first barrier defence strategies. Here, we have addressed whether
treatment with a water-soluble formulation of chitosan results in induced resistance phenotypes and in
priming of cell wall defence and defence hormone accumulation. In addition, whole-scale transcriptome
analysis was performed to identify candidate genes that are driving expression of priming. Our findings,
together with the outlined characteristics of chitosan, make this substance a suitable candidate for extensive
application as a component of Integrated Pests (and disease) Management (IPM) for the protection of crops
against fungal pathogens.



Material and Methods
Plant material and growth conditions

Tomato cv. Money-maker seeds were used in the described experiments. Unless otherwise specified, seeds
were placed into propagator trays containing Bulrush peat (Bulrush pesticide-free black peat, low nutrient
and low fertilizer mix) and a top layer of vermiculite and left at 20 °C until germination. Germinated seeds
were transplanted to individual pots containing Bulrush soil (pesticide-free compost mix and nutrient and
fertilizer rich) in a growth cabinet for 16h - 8h / day-night and 23°C / 20°C cycle C at ~150 pE m2s7! at ~
60% relative humidity (RH).Nicotiana benthamiana seeds were cultivated in a similar manner specified for
tomato for 16h - 8h/ day-night cycle; 26°C / 22°C at "150 uE m 2 s'! at ~ 60% relative humidity (RH).
Aubergine (Solanum melongena ) cv. Black Beauty seeds were placed into propagators containing Bulrush
peat and a layer of vermiculite on the top and incubated at 20°C for 1-2 weeks until germination. Seedlings
were then transplanted to individual pots containing Bulrush soil and grown and cultivated as for tomato.
Arabidopsis thaliana (hereafter referred to as Arabidopsis) Columbia-0 (Col-0) and transgenic lines were
grown in a soil mixture of 2/3 Levington M3 soil and 1/3 sand for 8h - 16h/day - night and 21°C / 18°C
cycle at "150 uE m 2 s ! at ~ 60% RH. Ten-day-old plants were transplanted to individual pots.

Chemical treatment

All experiments were performed using a commercial, water-soluble chitosan formulation, known as ChitoPlant
(ChiPro GmbH, Bremen, Germany) (Romanazzi et al., 2013, Younes et al., 2014). ChitoPlant, referred to
as chitosan latterly, was freshly prepared in water to the specific concentrations (please see figure legends for
details). Treatments were performed by foliar spraying of chitosan solution (with 0.01% Tween20) directly
onto leaves.

Botrytis cinerea cultivation, infection and scoring

B. cinerea R16 (Faretra and Pollastro, 1991) was used in all experiments and was kindly provided by Dr
Mike Roberts (Lancaster University). Cultivation of the fungus and infection of tomato-based experiments
were performed as described (Luna et al., 2016). ForN. benthamiana, 2-3 detached leaves were inoculated
with 6ul inoculum solution containing 2 x 10% spores/ml of B. cinerea . Infected leaves were kept at 100% RH
by sealing the trays and placed in the dark before disease assessment. Arabidopsis infections were performed
as previously described (La Camera et al., 2011) with a few modifications. Leaves were inoculated with
5ul inoculum solution containing % strength of potato dextrose broth (PDB — Difco at 12 g/1) and 5 x 10°
spores/ml. Infected Arabidopsis plants were put in a sealed tray at 100% RH and moved back to the growth
cabinet. Infections of S. melongena plants were performed by drop inoculating detached leaves with a spore
solution of B. cinerea containing 2 x 10* spores/ ml. For all pathosystems, disease was scored by measuring
lesion diameters with an electronic calliper (0.1 mm resolution) on different days post infection.

Plant growth analysis

Relative growth rate (RGR) was used to analyse tomato growth after chitosan treatment as described (Luna
et al., 2016). Growth analysis of Arabidopsis plants was performed by measuring rosette perimeter using
Photoshop CS5 (Vasseur et al., 2018).

Callose deposition assays

For analysis of callose deposition after chitosan treatment, material from tomato and Arabidopsis plants
with different concentrations of chitosan were collected 1 day after treatment (dat) and placed in 96% (v/v)
ethanol in order to destain leaves. Aniline blue was used to stain callose deposits as described previously
(Luna et al., 2011). Analysis of callose associated with the infection by B. cinerea in tomato leaves was
performed as described (Rejeb et al., 2018) with some modifications. Briefly, infected tomato leaf samples
were collected and placed in 96% (v/v) ethanol 1 day after infection with B. cinerea and allowed to destain.
Destained material was hydrated with 0.07 M phosphate buffer (pH 9.0) for 30 min and then incubated for 15
min in 0.1% (w/v) aniline blue (Sigma-Aldrich) and 0.005% (w/v) fluorescent brightener (Sigma-Aldrich).



Solutions were then replaced with 0.1% (w/v) aniline blue and incubated for 24h in the dark prior to
microscopic analysis. All observations were performed using an UV-epifluorescence microscope (GXM-12800
with GXCAM HiChrome-MET camera). Callose was quantified from digital photographs by the number
of yellow pixels (callose intensity). Infection-associated callose was scored and analysed in a similar way
but callose intensity was expressed relative to fungal lesion diameters. Image analyses were performed with
Photoshop CS5 and ImagelJ.

Chitosan antifungal activityin vitroassay

B. cinerea mycelial growth assessment was performed using Potato Dextrose Agar (PDA) as culture media
with different concentrations of chitosan (1%, 0.1%, 0.01% w/v). PDA was autoclaved and then chitosan and
the fungicide Switch (as positive fungicide control) (1%, 0.1%, 0.01% w/v) were added directly to PDA as it
cooled. One 5 mm diameter agar plugs of actively growing B. cinerea mycelium was added per plate. Five
plates per treatment were sealed with parafilm and then incubated under controlled conditions (darkness
and 24°C). After 4 days, the mean growth of the fungus was determined by measuring two perpendicular
diameters and calculating the mean diameter.

High-Pressure Liquid Chromatography (HPLC) - Mass Spectrometry (MS)

Healthy and infected tomato leaf tissues were harvested in liquid nitrogen and subsequently freeze-dried for
3 days. Freeze-dried samples were ground in 15 mL Falcon tubes containing a tungsten ball in a bead beater.
Ten mg of each sample was used for hormone extraction. Sample extraction, HPLC-MS quantitative analysis
of plant hormones and data analysis were performed as described (Forcat et al., 2008). Accurate quantification
of ABA, SA and JA used the deuterated internal standards added during sample extraction (Forcat et al.,
2008) and concentrations were calculated using standard concentration curves. Relative accumulation of
jasmonic acid-isoleucine (JA-Ile) were obtained by calculations of % peak areas among samples.

Transcriptome analysis

Four conditions were analysed using microarrays: (i) ddHsO-treated and non-infected plants (Water +
Mock); (ii) Chitosan-treated and non-infected plants (Chitosan + Mock); (iii)ddH;O-treated and B. cinerea
-infected plants (Water + B. cinerea ); (iv) Chitosan-treated and B. cinerea -infected plants (Chitosan +
B. cinerea ). Inoculations were performed four days after treatment (dat) with chitosan, and leaf discs
from four independent plants (biological replicates) per treatment were sampled at 6, 9 and 12 h post-
inoculation (hpi) with mock orB. cinerea spores. Total RNA was extracted with an RNeasy Plant Mini
Kit (Qiagen) as recommended. A custom 60-mer oligonucleotide microarray was designed using eArray
(https://earray.chem.agilent.com/earray/; A-MTAB-667 and E-MTAB-8868;www.ebi.ac.uk/arrayexpress/’)
from predicted transcripts (34,616 in total) of the S. lycopersicum (ITAG 2.3) genome. Experimental design
is detailed at E-MTAB-8868;www. ebi.ac.uk/arrayexpress/. Two-channel microarray processing was utilised,
according to the Low Input Quick Amp Labelling Protocol v. 6.5 (Agilent). Microarray images were imported
into Feature Extraction software (v. 10.7.3.1; Agilent) and data extracted using default parameters. Data
were subsequently imported into Genespring software (v. 7.3; Agilent) for subsequent pre-processing and
statistical analysis. Following Lowess normalisation, data were re-imported as single-colour data. Data were
filtered to remove probes that did not have detectable signal in at least 3 replicates, leaving 22,381 probes
for statistical analysis.

Analysis of Variance (2-way ANOVA; p-value [?]0.01, Benjamini-Hochberg false discovery rate correction)
was used to identify differentially expressed genes (DEGs) for the factors ‘Treatment’ (3,713 DEGs), ‘Time’
(6,920), and ‘Treatment-Time interaction’ (186). Subsequently, pairwise Student’s T-tests were performed
(Voleano plots: P-value [?7]0.05, 2-fold cut-off) on the global set of 8,471 DEGs for each of the three test
treatments (Chitosan + Mock, Water + Mock and Chitosan + B. cinerea ) compared to control (Water +
Mock) at each time point. Venn diagrams were used at each time point to identify common and specific
DEGs.



Panther gene ontology (GO) term enrichment analysis

Panther software (Thomas et al., 2003) was used to visualise DEG products in the context of biological
pathways and/or molecular functions, using default settings. Functional enrichment analysis was performed
using DEG lists for Chitosan 4+ B. cinerea and Water + B. cinerea treatments at 6 hpi. ‘Biological processes’
and ‘molecular functions’ were selected using PANTHER Overrepresentation Test (release 20170413) against
S. lycopersicum (all genes in database) and Bonferroni correction for multiple testing.

DEG transcript co-expression analysis

Two-way ANOVA was performed on the filtered microarray dataset at increased stringency (p-value [?]0.01,
Bonferroni false discovery rate correction) to identify 1,722 highly-significant DEGs. Pearson’s correlation
was used with default settings in Genespring (v 7.3) to generate a heatmap to help identify co-expressed
transcripts (Fig 3b).

Gene expression analysis

Validation of S. lycopersicum transcriptomic analysis was performed by qRT-PCR of nine candidate differ-
entially expressed genes (DEGs), comparing gene expression values with microarray. RNA samples were
DNAse-treated with TurboDnase (ThermoFisher) and complementary DNA (¢cDNA) was synthesized from
2.5 pg total RNA using Superscript III reverse transcriptase (Invitrogen) as recommended with random
hexamer /oligo dT primers. RT-qPCR reactions were performed with specificS. lycopersicum oligonucleotide
primers (Table S4) purchased from Sigma-Aldrich. Gene primers and probes were designed using Univer-
sal Probe Library (UPL) assay design centre (Roche Diagnostics Ltd.). RT-qPCR was performed using
FastStart Universal Probe Master Mix (Roche) and expression was calculated against two reference genes
(SlActin-like and SlUbiquitin ) using the Pfaffl method (Pfaffl, 2001).

Gene cloning

Orthologues of SIACRE75 and SIACRE180 were obtained from CDS and protein sequences BLAST anal-
ysis against Arabidopsis genome (TAIR10) for Arabidopsis sequences, or a reciprocal best BLAST hits
(RBH) (Ward and Moreno-Hagelsieb, 2014) test was performed (Sol Genomics Network) for N. benthami-
ana , termed NbACRE75 andNbACRE180 , respectively. Best CDS and protein hits were identified,
being Niben101Scf03108g12002.1 and Niben101Scf12017g01005.1 for SIACRET75 and SIACRE180 respec-
tively; termed NbACRE75 and NbACRE180 onwards. Flanking the (i) SIACRE75 , (ii) SIACRE180
(i) NbACRE180 and (iv) NbACRE75 coding sequences (CDS), Gateway®) cloning was used to design and
produce overexpression constructs for the gene candidates for a N-terminal GFP:ACRE fusion protein per
insert (Reece-Hoyes and Walhout, 2018). Briefly, pUC57 plasmids containing SIACRE75 , SIACRE180
NbACRE75and NbACRE180 coding sequences were chemically synthesized by GenScript. For SIACRE75 |
SIACRFE180, NbACRE75 andNbACRE180, cDNAs from pUCSH7 entry vector were transformed by electropo-
ration into Escherichia coli strain DH10B and transferred by a recombinant LR reaction of Gateway cloning
(Clonase IT enzyme mix Kit, Thermo Fisher) into pBTWGF2 (Karimi et al., 2002).

Transient expression in Nicotiana benthamiana

Agrobacterium tumefaciens , strain GV3103, carrying plasmids with expression constructs (i) pB7TWGF2:35S:GFP:SIACRET5;
(ii) pPBTWGF2:35S:GFP:SIACRE180; (iii) pBTWGF2:35S:GFP:NbACRE180; (iv) pB7TWGF2:35S:GFP:NbACRET5

and; (v) pPBTWGF2:355:GFP (empty vector), were grown in YEP medium (containing 50 pg/ ml rifampicin,

100 pg/ ml spectinomycin, and 25 pg/ ml gentamicin) for 24 h with continuous shaking at 28°C. Overnight

cultures were collected by centrifugation, resuspended in Agromix/infiltration buffer (10 mM MgCly: 10 mM

MES) and 200 uM acetosyringone (pH 5.7) and diluted to a final volume of 20 ml at ODggg of 0.1. Cultures

were infiltrated into leaves of 4-week-old N. benthamiana plants using 1 ml needleless syringes. One day

after agroinfiltration, 1-2 leaves per plant were excised for B. cinerea infection assays (as described above).

These experiments were repeated once.



Confocal microscopy analysis

For the analysis of the subcellular localization, A. tumefaciensGV3101 carrying plasmids with expression
constructs were co-infiltrated with pFlub vector (RFP-peroxisome tagged marker) into leaves of 4-week-old
N. benthamiana CB157 (nucleus mRFP marker) and CB172 (ER mRFP marker) reporter lines using 1 ml
needleless syringes. Two days after infiltration, leaves were excised and prepared for confocal microscopy.
GFP and mRFP fluorescence was examined under Nikon A1R confocal microscope with a water-dipping
objective, Nikon X 40/ 1.0W. GFP was excited at 488 nm from an argon laser and its emissions were
detected between 500 and 530 nm. mRFP was excited at 561 nm from a diode laser, and its emissions were
collected between 600 and 630 nm.

Western blot analysis

Leaves from N. benthamiana leaves infiltrated with A. tumefaciens GV3101 carrying plasmids with expression
constructs were excised, ground and proteins extracted as previously described (Gilroy et al., 2011, Yang
et al., 2016). Western blotting was performed as previously described (Qin et al., 2018). Detection of
GFP was performed using a polyclonal rabbit anti-GFP antibody (1:4,000 dilution) and secondary anti-
mouse antibody (IG HRP 1:10,000) according to the manufacturer’s instructions. ECL development kit
(Amersham) detection was used according to the manufacturer’s instructions.

Transformation of Arabidopsis thaliana stable overexpression transgenic lines

Arabidopsis overexpression plants were transformed using A. tumefaciens GV3101 carrying plasmids with
expression constructs using the flower dipping method (Clough and Bent, 1998). Selection of Arabidopsis
transformants and homozygous lines selection were performed as described (Luna et al., 2014). Resistance
was tested against B. cinerea as described before. Two independent homozygous overexpression lines were
obtained per construct.

Pathosystem statistics

Statistical analysis of induced resistance and growth phenotypes were performed as described (Luna et al.,
2016). Data analysis was performed using SPSS Statistics 23 and GenStat@®) 18th Edition (VSN Internatio-
nal, Hemel Hempstead, UK). Statistical analysis of resistance phenotypes in Arabidopsis overexpression lines
was done by ANOVA with ‘construct’ as a single treatment factor at 10 levels: Col-0 (wild-type treatment);
two empty vector lines ‘EV 3.1’ and ‘EV 4.1’; ‘SIACRE75 1.1’ and ‘SIACRET75 2.1’; ‘SIACRE180 1.2’ and
‘STACRE180 3.1; ‘NbACRE180 1.1’ and ‘NbACRE180 2.1’; and ‘NbACRET75 1.1°. The replicate units were
individual plants of which there were 8-16 for each construct. Measurements of four lesions were recorded
for each plant. Random effects were modelled as plant + plant X lesion to capture the plant-to-plant and
within-plant variation. As part of the ANOVA, specific planned (non-orthogonal) contrasts were included to
test for significant differences between the mean for each construct line compared to Col-0.

Results

Identification and characterisation of a novel chitosan formulation in its ability to induce
resistance against Botrytis cinerea

We tested the water-soluble chitosan-based commercial formulation ChitoPlant, from hereafter termed chi-
tosan, in its capacity to induce resistance against the fungal pathogen B. cinerea . Treatments of chitosan
demonstrated that this elicitor successfully triggers resistance in tomato (Fig 1a), Arabidopsis (Fig 1b) and
aubergine (Fig S1) against B. cinerea . In tomato, chitosan significantly decreased necrotic lesion size in all
concentrations compared with control plants (Fig 1a). The resistance phenotype induced by chitosan had
a dose-dependent effect at the two high concentrations (1% and 0.1%), however, the lowest concentration
(0.01%) induced a level of resistance in between 0.1% and 1% treatments. In Arabidopsis, chitosan treatment
resulted in induced resistance in a concentration-dependent manner, with 1% having the strongest effect (Fig



1b). In aubergine, chitosan treatment resulted in differences in lesion diameter in all concentrations compared
to water-treated control plants (Fig S1), however, post-hoc analysis demonstrated that 0.1% was the most
effective concentration.

We then tested whether chitosan induces callose deposition in a similar manner to other chitosan formulations
(Luna et al., 2011). Plants were treated with increasing concentrations of chitosan one day before aniline
blue staining. In both plant species, treatments with chitosan resulted in a direct induction of callose. The
lowest concentrations of 0.001% and 0.01% in tomato and Arabidopsis, respectively, triggered the strongest
effect (Fig 1c and d).

To determine any antifungal effect of chitosan, different concentrations were tested on B. cinerea hyphal
growth in vitro and compared to different concentrations of the fungicide Switch (Syngenta). Whereas all
concentrations of Switch arrested pathogen growth, only 0.1% concentration of chitosan or higher had an
antifungal effect (Fig S2). However, the lowest concentration of chitosan tested (0.01 %) had no antifungal
effect compared to the control. This shows a concentration threshold for chitosan-direct antifungal activity
against B. cinerea . Since 0.01% chitosan had no antifungal effect, but reduced B. cinerea lesions and induced
callose formation, this concentration was selected for more in-depth analysis.

Analysis of priming mechanisms marking chitosan-induced resistance

We tested whether induced resistance triggered by chitosan is mediated by priming mechanisms through the
assessment of its capacity to induced long-lasting resistance in distal parts of the plants. Treatments with 1%
chitosan induced long-lasting resistance against B. cinereaof up to 2 weeks after initial treatment of tomato
plants (Fig 2a).

In order to assess whether treatments with chitosan directly affects plant development, we tested plant
growth one week after treatment with 1% chitosan. These experiments revealed that chitosan treatment
triggers a statistically significant growth promotion, therefore indicating that induced resistance by chitosan
does not negatively impact plant development (Fig S3a).

To study whether chitosan induced resistance (IR) was based on known mechanisms of priming, callose and
hormone profiling analysis were performed after subsequent infection. Treatment with chitosan resulted in
the accumulation of approximately twice the callose deposited at the site of attack compared to plants treated
with water (Fig 2b,c). In addition, mass spectrometry profiling of defence-dependent hormones demonstrated
that chitosan-induced resistance is mediated specifically by accumulation of jasmonic acid (JA) (Fig 2d) and
its amino acid conjugate JA- isoleucine (JA-Ile, Fig S3b). In contrast, no other impacts were found in the
concentration of other defence hormones such as salicylic acid (SA) and abscisic acid (ABA) (Fig 2d). Thus,
chitosan-IR is based on priming of callose at the infection site and accumulation of JA and its conjugate
JA-Ile.

Transcriptional analysis of chitosan-induced resistance

Priming of gene expression normally follows a characteristic pattern: differential expression is low, transient
or often non-detectable after treatment with the elicitor only (i.e. Chitosan + Mock) and enhanced differential
expression occurs upon subsequent infection (i.e. Chitosan + B. cinerea ) compared to infected plants that
were not pretreated with the chemical (i.e. Water + B. cinerea ) (Conrath et al., 2006, Martinez-Medina et
al., 2016). Importantly, the expression kinetics are also key points for the establishment of priming. To further
determine the priming basis of chitosan-induced resistance, we performed whole transcriptomic analysis at 6,
9 and 12 hours post infection (hpi) with B. cinerea. These time points were selected as they cover the early,
non-symptomatic start of the B. cinereainfection process. Unsupervised data analysis was first performed
to observe global changes in the experiment. For this, we did a 2D principal component analysis (PCA) at
different hours post infection. This analysis shows that chitosan treatments did not trigger major changes in
transcription, however, it was the infection with B. cinerea which greatly impacts the experiment (Fig 3a).
Moreover, whereas separation can be observed between Mock- and B. cinerea -infected replicates at 9 and
12 hpi, no obvious differences could be seen at the early time point of 6 hpi.



Genes with similar expression profiles were grouped, resulting in the identification of 1,722 differentially-
expressed genes (DEGs) across all three treatments and time points. Hierarchical clustering separated the
genes into four crude groups when compared to the Water + Mock treatment at the first time point (6
hpi, Fig 3b): Cluster i consists of genes that were repressed by B. cinerea infection; clusterii represents
genes induced by chitosan treatment only; clusteriii includes genes repressed by B. cinerea infection and by
treatment of chitosan at the later time points; cluster iwconsists of genes induced by B. cinerea infection and
by treatment of chitosan only (Fig 3b). Overall patterns aligned with the previous finding that infection with
B. cinerea had a large-scale, more extensive and differential response on tomato transcription compared to
treatment with chitosan (Fig 3a). Moreover, the analysis demonstrates that application of chitosan results in
a higher number of genes repressed than induced, with the exception of some highly induced genes in cluster
1w . Distinct differences were evident between treatment with chitosan compared to infection withB. cinerea
, e.g. a large group of genes in cluster ivdifferentially induced by B. cinerea at 9 and 12 h, as well as a large
group of genes repressed by the pathogen in cluster i . This indicates that chitosan works as a priming agent
that does not directly trigger major effects in gene transcription.

To study the different signalling pathways and specific genes responsible for priming of chitosan against B.
cinerea , a two-way ANOVA identified 8,471 differentially expressed genes (DEGs) among all three treatments
and time points. This global list of DEGs was subsequently used for focussed pairwise analysis to identify
transcripts changing between treatments at each time-point. Venn diagrams demonstrates that the effect
of chitosan on its own did not trigger major changes in gene transcription: only 15, 36 and 20 genes were
differentially expressed in Chitosan + Mock vs Water + Mock treatments at 6, 9 and 12 hpi, respectively
(Fig 3c). However, the effect of chitosan was much more pronounced after plants had been infected withB.
cinerea . This combination resulted in the differential expression of 543, 2,011 and 2,967 genes at 6, 9 and 12
hpi, respectively, of which 260, 991 and 723 DEGs were induced only in the chitosan B. cinerea treatment
(Fig 3c¢). In comparison, Water +B. cinerea treatments displayed differential expression of 327, 1,134, and
2,697 genes at 6, 9 and 12 hpi, respectively, of which 70, 116 and 501 DEGs were specific to the Water + B.
cinereatreatment (Fig 3c). These results demonstrate that there is a subset of genes potentially responsible
for chitosan-induced priming for a faster and more robust response against B. cinerea.

To further identify early-acting signalling pathways and genes involved in chitosan-induced priming, further
analyses were performed on genes corresponding to the 260 probes differentially expressed only in the Chito-
san + B. cinerea treatment at 6 hpi. Gene overrepresentation analysis was performed to identify biological
processes and molecular functions of enriched genes. For biological processes, pathways such as response to
stimulus, chemical and auxins were overrepresented (Table 1). Moreover, for molecular function, cysteine-
type peptidase activity, transcription factor activity, sequence-specific DNA binding and nucleic acid binding
transcription factor activity were enriched (Table 1).

Identification of genes primed by chitosan

To identify genes that could be involved in chitosan-induced resistance, gene expression profiles were scruti-
nized. First, gRT-PCR analysis of a subset of 9 genes was done to successfully validate the expression data
of the microarray (Fig S4a,b). Similar expression profiles were observed in the microarray and the qRT-PCR
data, validating the data set. Priming profiles, i.e. subtle or non-detectable differential expression after chi-
tosan treatment (i.e. Chitosan + Mock) and an increased differential expression after infection (i.e. Chitosan
+ B. cinerea ) were identified. Transcripts of the earliest time point during the infection (6 hpi) were chosen
to identify primed genes involved in early immune responses. Expression of the subset of 260 DEGs unique
for Chitosan +B. cinerea treatment at 6 hpi (Fig 3c) were analysed over Water + Mock, Chitosan + Mock
and water + B. cinerea . From the subset, 203 down-regulated (Table S1) and 57 genes were found to be
up-regulated (Table S2). An over-representation test was performed to investigate gene ontology categories
of the primed genes (Panther 14.0).

Among the 203 genes that were repressed during infection (Table S1), eleven transcripts were associated
with cysteine-type peptidase activity. Other transcripts were grouped with photosynthesis, light harvesting
in photosystem I activity. Moreover, several had a response to hormone activity; nine ethylene-responsive



transcription factor and receptor genes were significantly down-regulated from -2,3 to -1,1 compared to
Water + B. cinerea . Other notable genes with strong priming include those with proteolysis activity, with
a range between -3 to -1,7 fold repressed. Other genes with repressed expression belong to auxin hormones
and one to the ABA receptor (ABAPYL4). Furthermore, two genes of the little-known LATERAL ORGAN
BOUNDARIES (LOB) were identified as repressed. Additional transcripts were functionally unassigned
within the list.

Among the 57 differentially up-regulated genes (Table S2), there was one transcript encoding peroxidase
activity with 2 fold increase compared to Water 4+ B. cinerea , nine transcripts with protein kinase activity
with between +1,1 to 42,1 fold, five transcripts with transcription regulatory activity, including SIMYB20,
SLWRKY51 and SIWRKY72. Additional transcripts were functionally unassigned within the list.

Importantly, uncharacterised genes also show primed expression patterns. Of these, Avr9/Cf-9 rapidly elicited
protein 75 (ACRET75; Solyc11g010250.1) was up-regulated 1,6-fold in Chitosan 4+ B. cinerea in comparison
to water + B. cinerea at 6 hpi (Table S2). ACRE genes have been previously studied and characterised
as important genes involved in R gene-mediated and ROS gene-independent early plant defence responses
(Durrant et al., 2000) and in response to methyl-jasmonate (MeJA) treatment (van den Burg et al., 2008).
ACRET75 molecular functions are still to be deciphered and therefore research into its role and other members
of the ACRE gene family in priming of chitosan was pursued.

Role of ACRE genes in induced resistance against Botrytis cinerea

In order to investigate whether other members of the ACRE gene family display a similar priming profile
to ACRE75 |, correlation analysis was performed on the subset of genes differentially expressed at 6 hpi.
Genes with statistically significant similar profiles were identified (Table S3), which included ACRE180 at a
confidence value of 0.956. In addition, analysis of the samples later in the experiment, confirmed that both
ACRE75 and ACRE180 are primed also at later time points (Fig S4a,b).

In order to investigate whether primed expression of ACRE75 andACRE180 genes may be involved in
enhanced disease resistance, genes from S. lycopersium and ortholog genes in N. benthamiana were over-
expressed using both transient and stable systems. For SIACRE75 , best match against N. benthamiana
genome was Niben101Scf03108g12002.1 (termed NVACRE75 ), sharing a 77.5% protein identity; (i) For
SIACRE180 , the best match against theN. benthamiana genome was Niben101Scf12017g01005.1 (termed
NbACRE180), with 49.5% protein identity. Arabidopsis ortholog analysis failed to identify hits for ACRE75
and ACRE1280 candidate genes. Constructs were produced with a fused GFP protein in the N-terminus and
protein integrity was confirmed via Western blot. Proteins extracted from N. benthamiana leaves 48h after
agro-infiltration and Western blot analysis confirmed that they were the expected sizes (Fig S5). Subcellular
location of proteins was analysed via confocal microscopy of GFP fluorescence. Overexpression constructs
were co-infiltrated with RFP-marker pFlub vector (McLellan et al., 2013) (Fig S6a) into N. benthamiana
reporter lines CB157 (nucleus mRFP marker - Fig S6b) and CB172 (ER mRFP marker - Fig S6¢). Free
GFP accumulated in both cytoplasm and nucleus (Fig S6d), whereas GFP-SIACRE75 and GFP-NbACRET5
fusions accumulated exclusively in the nucleus and nucleolus of N. benthamiana cells (Fig S6e,f). Further-
more, GFP-SIACRE180 fusion accumulated exclusively in ER (Fig S6g), whereas GFP-NbACRE180 fusion
accumulation was exclusively in peroxisomes (Fig S6h).

To further investigate the impact of overexpression of ACRE genes in disease resistance, the 4 constructs
containing GFP-SIACRE75, GFP-SIACRE180, GFP-NbACRET75 and GFP-NbACRE180, and GFP-empty
vector (EV), were agro-infiltrated into leaves of N. benthamiana plants, which were subsequently challenged
with B. cinerea . Chitosan-induced resistance against B. cinerea was proven effective in N. bethamiana
(Fig 4a). All GFP-SIACRET75, GFP-SIACRE180, GFP-NbACRE75 and GFP-NbACRE180-infiltrated N.
benthamiana leaves showed a significant decreased in B. cinereanecrotic lesion size compared with the EV
control (Fig 4b). To further analyse ACRE75 and ACRE180 biological functions and to confirm their role
in plant resistance against B. cinerea , Arabidopsis plants were transformed to constitutively overexpress
GFP-SIACRET75, GFP-SIACRE180, GFP-NbACRE75 and GFP-NbACRE180 proteins. Homozygous lines



were identified and growth phenotype of transgenic plants was analysed by measuring rosette perimeter. No
statistically significant differences were identified (Fig S7). Five-week-old plants were infected with B. cinerea
and disease was scored at 6 dpi. Transgenic GFP-SIACRE75, GFP-SIACRE180, GFP-NbACRE180 and GFP-
NbACRET75 overexpression plants all showed an enhanced resistance phenotype and significantly decreased
B. cinerea lesion sizes in comparison to Col-0 and GFP-EV controls (Fig 4c). Furthermore, GFP-SIACRE75
and its homolog GFP-NbACRET75-overexpression plants showed a stronger resistance to B. cinerea than
GFP-SIACRE180 and GFP-NbACRE180 overexpression lines at 6 dpi (Fig 4c).

Discussion

We have assessed the capacity of chitosan to induce resistance againstB. cinerea in different plant species
and have linked its effect with priming of defence mechanisms. We have identified a formulation of chitosan
that unlike some other formulations, can be easily dissolved in water and does not require infiltration. This
opens possibilities to identify early-acting priming mechanisms in elicitor-induced resistance. Moreover, it
enables opportunities for upscaling the use of chitosan as an elicitor of resistance in large-scale experiments
due to the high-throughput nature of spraying the elicitor onto plants.

Treatments with chitosan resulted in induced resistance in S. lycopersicum (Fig la), S. melongena (Fig S1),
Arabidopsis (Fig 1b) and N. benthamiana (Fig 4a) at a range of concentrations, which indicates that there
are similar defence mechanisms acting in the response to fungal PAMPs. Moreover, treatments with chitosan
resulted in the activation of basal resistance processes such as the deposition of callose at the cell wall (Fig
le,d), which is considered an important factor for penetration resistance against invading pathogens (Oide
et al., 2013). Expression of resistance was dependent on the concentration of chitosan used in Arabidopsis.
In contrast, in tomato and aubergine the levels of resistance did not depend on the chitosan concentration.
Moreover, chitosan-induced callose deposition in tomato and Arabidopsis did not follow a classical dose-
response curve and the most effective treatments that activated callose were the lower concentrations of
the elicitor (Fig 1lc,d). This is likely to be dependent on the antimicrobial effects of chitosan (Fig S2) at
higher concentrations. Other elicitors have been shown to trigger induced resistance phenomena at lower
concentrations. For example, meJA treatment results in more effective protection against the pathogen
Fusarium oxysporum f.sp.lycopersici when applied at lower concentrations (Krdl et al., 2015). In contrast,
high doses of MeJA had detrimental effects on physiological processes and overall decreased protection
efficiency. This, together with the observation that low concentrations of chitosan do not directly impact
pathogen growth (Fig S2) suggests that there is a concentration threshold in the effect of chitosan-induced
resistance.

Foliar applications of chitosan have been widely used to control disease development caused by numerous
pests and pathogens (El Hadrami et al. 2010). However, few studies have investigated the role of chitosan as a
priming agent and most have focused on its use as a seed priming elicitor mainly to improve germination and
yield (Guan et al., 2009, Hameed et al., 2013). Here, we show that chitosan-induced resistance is based on
priming of defence mechanisms. Our experiments confirmed that chitosan-induced resistance is not associated
with growth reduction (Fig S3a), was durable and maintained for at least two weeks after treatment (Fig 2a),
and that is based on a stronger accumulation of callose at the site of attack and accumulation of JA (Fig 2d)
and JA-ile (Fig S3b). These results demonstrate that fungal growth arrest after chitosan treatment is not
directly mediated by the toxicity effect of the chemical, as the infected leaves were formed after treatment and
therefore were not sprayed with the elicitor. Moreover, these results demonstrate similar priming mechanisms
after chitosan treatment to other elicitors, including Hx, which has been linked with priming of callose and
JA against B. cinerea (Ferndndez-Crespo et al., 2017, Wang et al., 2014). Interestingly, however, despite
many reported antagonistic and other crosstalk interactions between plant hormones (Robert-Seilaniantz et
al., 2011), the concentrations of other plant hormones, SA and ABA, were not affected. This suggests that
priming by chitosan does not result in the downregulation of other hormone-dependent signalling pathways,
thereby maintaining an effective resistance status against other stresses.

In order to further explore priming of defence and to unravel the transcriptional mechanisms behind chitosan-
induced resistance, we performed transcriptome analysis. In our experiment, using a concentration of chitosan
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that is associated with priming but with no direct antimicrobial effect, we identified early-acting differential
transcriptomic changes. Results demonstrate that chitosan treatments do not result in major transcriptional
changes (Fig 3a). In contrast, comparison of treatment against Water + Mock revealed and Chitosan + B.
cinerea shows a higher number of DEGs (Fig 3b,c), thus responding to the priming nature of the elicitor in
the first instance.

Panther enrichment analysis showed that at 6hpi, the number of down-regulated DEGS was more than three
times up-regulated ones for Chitosan + B. cinerea (203 down-regulated and 57 DEGs up-regulated). This
suggests that tomato plants might repress susceptible factors in order to reduce B. cinerea manipulation of
host defences (El Oirdi et al., 2011, Temme and Tudzynski, 2009). Interestingly, some of the down-regulated
transcripts have cysteine-type peptidase activity (Table S1). These proteins have been reported to have a
role in immunity against pathogens including B.cinerea (Pogdny et al., 2015). Other down-regulated genes
are related to plant hormone activity; including ethylene AP2/ERF transcription factors and ABA PYL
receptors (SIABAPYL4), reported to be involved in defence responses, which act as positive or negative
regulators of JA/ET-dependent defences against B. cinerea (Cantu et al., 2009, Moffat et al., 2012). Up-
regulated genes included transcripts with peroxidase and transcription regulatory activity, such as peroxidase
5, SIMYB20, SLWRKY51 and SIWRKY72, CONSTANS-like protein with zinc finger binding domain and
NAC domain protein and a RING-type E3 ubiquitin transferase involved in protein degradation. These genes
have been linked with defence responses (Serrano et al., 2018), which could be result in priming of the tomato
immune system against B. cinerea infection.

Transcriptomic (Table S2, Fig S4a) and qRT-PCR (Fig S4b) analyses showed that chitosan can prime
ACRET75 for a faster and stronger expression after infection with B. cinerea . ACRE genes have been
linked to plant defence responses. Similar genes were previously identified in tobacco cells to exhibit ra-
pid Cf-9—dependent change in expression through gene-for-gene interaction between the biotroph pathogen
Cladosporium fulvum avirulence gene (Avr9) and tomato resistance Cf-9 gene (Durrant et al., 2000). To
determine the role of ACRE genes in priming by chitosan, we searched for other ACRE genes showing simi-
lar expression profiles to ACRE75 and this revealed that ACRFE180 displays a similar priming profile. This
was more evident at 9 hpi (Fig S4b) than at 6 hpi, suggesting that the role of ACRE180 is later time than
ACRET75. Subcellular localisation may indicate why priming of these genes does not occur at the same time;
whereas ACRE75 accumulates exclusively in the nucleus and nucleolus (Fig S6e,f), ACRE180 accrues in the
ER and peroxisomes (Fig S6g,h). This suggests different molecular functions of these proteins as they tag
different cell organelles. Moreover, it could be plausible that ACRET75 and ACRE180 are part of the same
signalling pathway, one working upstream of the other, therefore justifying the delayed transcription and
activity of ACRE180.

The roles of ACRE75 and ACRE180 in chitosan-induced priming were investigated by overexpressing these
genes in transient and stable systems, in N. benthamiana and Arabidopsis, respectively. Moreover, we aimed
to identify any N. benthamiana and Arabidopsis ACRE75 and ACRE180 analogues. BLAST analysis of
tomato ACRET75 identified a very low amino acid identity sequence (39%) and ACRE180 failed to identify
any Arabidopsis homologue. In contrast, N. benthamiana ACRE75 and ACRE180 homologues were putatively
identified. ACRE75 and ACRE180 lack signal peptides, which suggests they might encode small proteins
involved in signalling or antimicrobial activity within the infected cell. Similar to the exclusive production
of glucosinolates compounds in Brassica plants (Matthaus & luftmann 2000) it is likely that ACRE75 and
ACRE180 are involved in the production of unique compounds to Solanaceae plants. Overexpression of
SIACRE7T5 andSIACRE180, and their N. benthamiana orthologues results in induced resistance against
B. cinerea (Fig 4b,c). Therefore, our results confirm involvement of ACRE genes in plant immunity and
suggest an involvement in chitosan-induced priming due to their expression profiles. Interestingly, the induced
resistance effect was greater in Arabidopsis plants overexpressing ACRET75 in comparison to ACRE180 (Fig
4c¢), which could corroborate our evidence of earlier activity of ACRET75, therefore being more effective during
early resistance response. More work in needed to unravel the molecular function of ACRE75 and ACRE180
in the expression of priming mechanisms. Nevertheless, fine-tuning of priming-based mechanisms under the
control of SIACRE75 ,SIACRE180 , NbACRE75 and NbACRE180 could facilitate its incorporation into
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other crop species for the enhancement of cross tolerance to old and emergent pest and pathogens, and
other challenges. The results unveiled potential molecular pathways involved in chitosan-induced priming of
resistance in tomato against B. cinerea , potentially applicable to other crops.
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Figure Legends

Figure 1. Characterisation of chitosan-induced resistance in tomato and Arabidopsis. (a)
Disease lesions in tomato and (b) in Arabidopsis at 3 days post inoculation. Values represent means + SEM
(n=4-10). (c) Callose deposition triggered by chitosan treatment in tomato and (d) in Arabidopsis 1 day post
treatment. Values represent means £ SEM (n=8-10) of % of callose per leaf area. Different letters indicate
statistically significant differences among treatments (Least Significant Differences for graph a and Dunnett
T3 Post-Hoc test for graphs b, ¢ and d, «=0.05).

Figure 2. Chitosan-induced resistance is based on priming .(a) Disease lesions in tomato at 3 days
post inoculation (dpi) 2 weeks after treatment with water (Control) or 1% chitosan. Values represent means
+ SEM (n=8). Asterisk indicates statistically significant differences among treatments (Student’s T. test,
0=0.05).(b) Percentage of callose deposited at the infection site in water (Control) and chitosan (0.01%)-
treated plants compared to the fungal lesion diameter at 1 day after infection with B. cinerea . Values
represent means + SEM (n=4). Asterisk indicates statistically significant differences among treatments
(Student’s T. test, «=0.05).(c) Representative pictures of chitosan-induced priming of callose at the infection
site. Blue colours correspond to fungal growth whereas yellow colours correspond with the callose deposition
at the infection site. Scale bars= 0.5 mm. (d) Mass-spectrometry quantification (ng/mL) of Salicylic acid
(SA), Jasmonic acid (JA) and Abscisic acid (ABA) at 24h post infection. Values represent means + SEM
(n=4). letters indicates statistically significant differences among treatments (Least Significant Differences,
0=0.05, n.s. = not significant).

Figure 3. Transcriptome analysis of chitosan-induced resistance against Botrytis cinerea. (a)
Principal component analysis (PCA) of whole transcriptional microarray at 6, 9 and 12 hour post infection
(hpi). (b) Heatmap of differentially expressed genes (2-way ANOVA p < 0.01, Bonferoni), clustered by
expression. Profiles are shown +/- treatment with chitosan and infection with B. cinerea at 6, 9, 12 hpi
logarithmic scale fold induced (red) or repressed (blue) compared to Water + Mock. Hierarchical clusters
on expression profile are broadly classed as i, ii, iii or iv.(c) Venn diagram of statistically significant data set
(2-way ANOVA p < 0.01, Benjamin—Hochberg) of differentially expressed genes. Pairwise Student’s T-test
comparisons were performed (Volcano plots: p < 0.05, 2-fold cut-off) for the three test treatments (Chitosan
+ Mock, Water + B. cinerea and Chitosan + B. cinerea ) compared to control treatment (Water + Mock)
at 6, 9 and 12 hpi.

16


https://authorea.com/users/308305/articles/439322-chitosan-primes-plant-defence-mechanisms-against-botrytis-cinerea-including-expression-of-avr9-cf-9-rapidly-elicited-genes
https://authorea.com/users/308305/articles/439322-chitosan-primes-plant-defence-mechanisms-against-botrytis-cinerea-including-expression-of-avr9-cf-9-rapidly-elicited-genes
https://authorea.com/users/308305/articles/439322-chitosan-primes-plant-defence-mechanisms-against-botrytis-cinerea-including-expression-of-avr9-cf-9-rapidly-elicited-genes

Figure 4. Functional characterisation of ACRE genes .(a) Chitosan-induced resistance in Nicotiana
benthamiana . Disease lesions at 2 days post inoculation (dpi). Values represent means + SEM (n=18). Aste-
risk indicates statistically significant differences between treatments (Student’s T. test, «=0.05).(b) Transient
expression of constitutively active SIACRE75, SIACRE180, NbACRE75 and NbACRE180 in N. benthami-
ana againstB. cinerea . Lesion size measurements were performed at 4 days post-infection (dpi). Values
presented are means = SEM (n=6). Different letters indicate statistically significant differences (ANOVA
p < 0.05 followed by Tukey‘s Post-hoc at 4 dpi). (c)A. thaliana transformed overexpression stable S1A-
CRET75, SIACRE180, NbACRET75 and NbACRE180 infected with B. cinerea . Lesion sizes were measured at
6 days after inoculation (dpi). Values presented are means + SEM (n=8-16). Asterisks indicate statistically
significant differences (* p < 0.05, ** p < 0.01; *** p < 0.001).

Figure S1. Chitosan-induced resistance in Solanaceae melongena (aubergine) . Disease lesions at
3 dpi. Values represent means + SEM (n=10). Different letters indicate statistically significant differences
among treatments (Least Significant Differences, ¢=0.05).

Figure S2. Chitosan and Switch fungicide antifungal activity against Botrytis cinerea . Bars
represent means of fungal growth diameter (£ SEM, n=5) at 4 days after inoculating PDA-containing Petri
dishes with 5 mm agar plugs of actively growing B. cinereamycelia. Different letters indicate statistically
significant differences among treatments (Least Significant Differences, a=0.05)

Figure S3. Chitosan-induced resistance is based on priming .(a) Relative Growth Rate (RGR)
per week of tomato plants 1 and 2 weeks after treatment with 0.01% chitosan. Values represent means
+ SEM (n=10). Asterisk indicates statistically significant differences among treatments (Student’s T. test,
0=0.05) (b)Mass-spectrometry quantification (% of peak area) of Jasmonic acid-isoleucine (JA-ile) at 24h
post inoculation. Values represent means + SEM (n=4). Different letters indicate statistically significant
differences among treatments (Least Significant Differences, a=0.05)

Figure S4. Validation of microarray expression results . Expression profile obtained in the microarray
(a) and in the analysis by RT-q-PCR (b) of a subset of 9 genes at 9 hpi with Botrytis cinerea

Figure S5. Western Blot analysis . Expression of proteins by immunoblot analysis of GFP-SIACRET5,
GFP-SIACRE180, GFP-NbACRET5 and GFP-NbACRE180 fusion proteins in N. benthamiana leaves at 48
h after agroinfiltration. Expected protein sizes were (i) SIACRE75= 14.79 + 26 KDa GFP= 40.8 KDa;
(ii) SIACRE180= 10.86 +26= 36.8 KDa; (iii) NbACRE180= 11.744+26= 37.7 KDa; and (iv) NbACRE75=
14.64+26= 40.7 Kda. Proteins were separated by SDS-PAGE and analysed by immunoblotting. A GFP-
specific antibody was used for detection of GFP-fusion protein. Equal loading of total proteins was ex-
amined by Ponceau staining (PS). Three lanes represent 3 replicates per construct GFP-SIACRE75, GFP-
SIACRE180, GFP-NbACRET75, GFP-NbACRE180, and a GFP-non-protein/ empty vector (control).

Figure S6. Subcellular location of ACRE proteins. Confocal microscopy observation of (a) pFlub
vector as a RFP-peroxisome tagged marker, (b) nucleus mRFP marker, (¢) ER mRFP marker, (d) free
GFP in cytoplasm and the nucleus, (¢)GFP-SIACRE75 and (f) GFP-NbACRET5 fusions in the nucleus and
nucleolus, (g) GFP-SIACRE180 fusion in the ER and (h)GFP-NbACRE180 fusion in the peroxisomes.

Figure S7. Growth analysis. Perimeter in cm of rosettes from Arabidopsis lines overexpressing GFP-
Empty vector (EV), GFP-SIACRE75, GFP-SIACRE180, GFP-NbACRET75 and GFP-NbACRE180 con-
structs. Values represent means + SEM (n=8-16). n.s = not significant differences between treatments
(One-way ANOVA, 0=0.05)
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