THE SOLUTIONS OF A CONFORMABLE TIME FRACTIONAL NLPDE VIA IBSEFM

Khanlar Mamedov ${ }^{1}$, Ulviye Demirbilek ${ }^{1}$, and Volkan Ala ${ }^{1}$
${ }^{1}$ Mersin Universitesi

April 28, 2020

Abstract

The nonlinear conformable time-fractional the simplified modified Camassa-Holm (MCH) equation plays an important role in physics. It is an interesting model to define change waves with weak nonlinearity. In this paper, the space-time fractional derivatives are defined in the sense of the new conformable fractional derivative. The new exact solutions of MCH equation using Improved Bernoulli Sub-Equation Function Method (IBSEFM) are constructed, the 2D graphs and 3D graphs acquired from the values of the solutions are given. The results show that IBSEFM is a powerful mathematical tool to solve nonlinear conformable time-fractional partial differantial equations (CTFPDEs) arising in mathematical physics.

Hosted file

THE SOLUTIONS OF A CONFORMABLE TIME FRACTIONAL NLPDE VIA IBSEFM.pdf available at https://authorea. com/users/308444/articles/439443-the-solutions-of-a-conformable-time-fractional-nlpde-viaibsefm

Figure 2b: The 3D and 2D surfaces of the exact solution $u_{2}(x, t)$ for imaginary part. By considering the values $\sigma=0.4 ; r=0.2 ; c=0.9 ; d=0.3 ; \varepsilon=0.1 ; \alpha=0.1 ; s=0.5 ;-15<x<15,-1<t<1$ for 3D surface and $-15<x<15 ; t=0.1$ for 2D surface.

Figure 3: The 3D and 2D surfaces of the exact solution $u_{3}(x, t)$. By considering the values $\sigma=0.4 ; a_{2}=0.1 ; c=0.1 ; d=0.2 ; \varepsilon=0.3 ; \alpha=0.5 ; b_{0}=0.4 ;-13<x<13,-2<t<2$ for 3D surface and $-3<x<3 ; t=0.1$ for 2D surface.

Figure 1a: The 3D and 2D surfaces of the exact solution $u_{1}(x ; t)$ for real part. By considering the values $d=0.6 ; p=0.2 ; c=0.7 ; b_{0}=0.3 ; a_{2}=0.4 ; \alpha=0.1 ; r=0.3 ;-15<x<15,-1<t<1$ for 3D surface and $-15<x<15 ; t=0.1$ for 2D surface.

Figure 1b: The 3D and 2D surfaces of the exact solution $u_{1}(x, t)$ for imaginary part. By considering the values $d=0.6 ; p=0.2 ; c=0.7 ; b_{0}=0.3 ; a_{2}=0.4 ; \alpha=0.1 ; r=0.3 ;-15<x<15,-1<t<1$ for 3D surface and $-15<x<15 ; t=0.1$ for 2D surface.

Figure 2a: The 3D and 2D surfaces of the exact solution $u_{2}(x, t)$ for real part. By considering the values $\sigma=0.4 ; r=0.2 ; c=0.9 ; d=0.3 ; \varepsilon=0.1 ; \alpha=0.1 ; s=0.5 ;-15<x<15,-1<t<1$ for 3D surface and $-15<x<15 ; t=0.1$ for 2D surface.

