Co-gasification characteristics of pine bark biomass and Bangladeshi bituminous coal using an entrained flow gasifier

M. Shahabuddin¹ and Sankar Bhattacharya¹

¹Monash University

April 28, 2020

Abstract

Co-gasification of coal and renewable biomass is a promising technique to reduce greenhouse gas emission from coal gasification alone. The co-gasification performance of pine bark (PB) biomass and Bangladeshi bituminous coal (BBC) have been assessed using a high-temperature entrained flow gasifier under CO2 atmosphere. Results show that increasing biomass concentration increases the carbon conversion, syngas quality and cold gas efficiency (CGE), while reduces emission. Using 20% CO2 as the reactant gas, an addition of 20% biomass with coal increased the carbon conversion by 21.5, 10.6 and 4.5%-point at temperatures of 1000, 1200 and 1400 °C compared to that of coal respectively. Increasing biomass in the blend from 20% to 80% increased the yield of CO by 36%, 21% and 11% with increasing temperature, while the concentration of H2 remained nearly constant. Also, the CGE, fragmentation index and alkali and alkaline earth minerals in ash were increased with increasing biomass ratio.

Hosted file

Manuscript.docx available at https://authorea.com/users/309215/articles/440456-co-gasification-characteristics-of-pine-bark-biomass-and-bangladeshi-bituminous-coal-using-an-entrained-flow-gasifier