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Abstract

We use recent plot-level panel data from Tanzanian smallholder farmers to investigate maize yield responses to inorganic

fertilizer under variable soil carbon conditions. Unlike many prior studies which consider total carbon measurements, we focus

on active soil carbon, which is the component that most influences key soil functions, such as nutrient cycling and availability.

Active soil organic carbon is found to strongly influence maize yield response to nitrogen fertilizer. These results highlight

important sources of variation in the returns to fertilizer investments across plots and smallholder farmers in the region. When

farmgate prices for maize and fertilizer are incorporated into calculations of economic returns, we find that the profitability

of fertilizer use is strongly dependent upon farmgate price ratio assumptions: under our most optimistic agronomic response

estimates, 71% of farmer plots have an average value-cost ratio (AVCR) greater than 1.5 at a maize-nitrogen price ratio of

0.15. That share drops to 30% at a price ratio of 0.12 and 2% at a price ratio of 0.09. Our findings provide insights into

the intertwined biophysical and economic underpinnings of low levels of fertilizer use in Tanzania and elsewhere in the region.

Raising active carbon stocks in smallholder systems may be a strategic priority in many areas for incentivizing greater use of

inorganic fertilizer, reversing land degradation, and achieving sustainable agricultural intensification.

Motivation

Staple crop yields in sub-Saharan Africa (SSA) remain very low by international standards, with yield gaps
on the order of 80% (van Ittersum et al. 2017). Inorganic fertilizer is widely agreed to be the technology
with the greatest potential to raise yields in SSA’s smallholder systems (Vanlauwe et al., 2014; Holden
2018). Inorganic fertilizer also greatly promotes crop biomass and is therefore an important component of
an integrated and sustainable soil fertility management strategy.

Nitrogen is the main constraining nutrient for cereal crop performance across most environments, both in
terms of yield level and yield stability (Vanlauwe et al., 2011). Indeed, nitrogen has been identified as one of
the grand challenges of the 21st Century given its pivotal role in food production, and nowhere is this more
important than in sub-Saharan Africa where a strong negative relationship has been observed between soil
nitrogen balances and population density (Drechsel et al., 2001). Yet the relatively low uptake of nitrogen
fertilizers by SSA smallholders indicates important constraints, which are not yet fully understood.

The large spatial heterogeneity in fertilizer usage in SSA (Sheahan & Barrett 2017) suggests that both
market factors (e.g. farmgate crop/fertilizer price ratios) as well as environmental factors (such as soil
and rainfall) may play an important role. Yield response – i.e. the marginal or average physical product
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of fertilizer – is often low and highly variable for smallholder staples producers, resulting in low levels of
profitability of fertilizer use when farm-gate crop and fertilizer prices are applied (Xu et al., 2009; Marenya
& Barrett, 2009; Sheahan et al., 2013; Jayne & Rachid, 2013; Liverpool-Tasie et al., 2017; Burke et al.,
2017; Koussoube & Nauges, 2017).11See Jayne et al. (2018) for a recent review of over 20 studies estimating
the profitability of applying inorganic fertilizer on maize in various African locations. Relatedly, fertilizer
is not profitable for many farmers even where the average benefits are positive and relatively large, given
differences in management ability and other factors that vary across plots and households (Suri, 2011).
Fertilizer responses in many areas may be limited by depleted soil organic matter (Marenya & Barrett, 2009,
Dreschel et al., 2001), soil acidity (Burke et al., 2017), and other factors. Risk-averse farmers are especially
likely to forgo expected gains in the face of uncertainty around the performance or profitability of a given
technology (Emerick et al., 2016; Magruder, 2018). Disentangling the patterns of fertilizer responses may
help us to better understand how to design area-, household-, and plot-specific interventions to overcome
constraints to the profitable use of fertilizer in African smallholder production systems.

This study identifies key soil-related drivers of maize yield and maize yield response to nitrogen fertilizers for
Tanzanian smallholders. Our particular emphasis is on organic carbon, a particularly important component
of soil fertility (Lal 2006; Nord & Snapp 2020). We use two-wave panel data on farmer-managed plots
in 25 maize-producing districts in Tanzania. In addition to the standard farmer-, farm- and community-
level characteristics typically included in such analyses, our dataset features well-measured yields (through
yield sub-plot crop cuts at harvest time), plot-level soil chemical analysis, and detailed plot-level agronomic
management information. We find that estimated maize yield response to N is similar to other empirical
studies from the region based on farmer-managed fields and that they are strongly conditioned by both rainfall
and soil organic carbon stocks. Our production function estimates indicate that the marginal product of
nitrogen increases by 25% when moving from the 25thto the 75th percentile of available carbon in our sample.
Furthermore, the variability around these expected returns are high. After factoring in local input and
output prices, profitability assessments indicate relatively low returns to fertilizer investments: less than half
of the sample have AVCR>2 under our most favorable estimation results and very conservative estimates of
farmgate price ratios. Our results also highlight differences in conclusions about the profitability of fertilizer
use on farmers’ own fields and management conditions vs. studies relying on farm trials and demonstration
plots (e.g., Jama et al., 2017), which tend to benefit from researcher management protocols that many
smallholder farmers may not be able to replicate (Snapp et al., 2014). Our results highlight the importance
of considering the factors that condition fertilizer response (and profitability) from the farmer’s standpoint
when designing agricultural intensification programs and investment strategies. Our analysis concludes that
agricultural intensification strategies based on raising the intensity of fertilizer use are unlikely to lead to
widespread adoption if the variation in agronomic and economic returns is not accounted for and if the
sources of low active soil carbon are not also addressed.

The rest of this paper is organized as follows. After describing our setting, data and empirical estimation
strategy, we present estimation results for agronomic and economic returns to fertilizer investments, in turn.
We discuss these results and their implications for sustainable intensification strategies, concluding with key
messages for policymakers and recommendations for further research.

Empirical framework

Context

Tanzania is one of the largest countries in Eastern and Central Africa, and an important source of the region’s
maize production. However, most of this production comes from smallholders who have relatively low levels
of productivity, and few of which use modern inputs such as fertilizer. As such, raising maize yields has
been an important investment and policy target for the country and its partners in recent years. Tanzania
is representative in many ways of the maize-based farming systems found elsewhere in the region, in terms
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of its agroecologies and range of biophysical endowments, the predominant production characteristics of its
smallholder farmers, and the relatively low levels of market infrastructure development. At the same time,
the heterogeneity of production characteristics found within Tanzania’s maize growing areas bodes well for its
value as a test case for evaluating variability of agronomic responses across key geographical characteristics
(Nord & Snapp 2020).

Data

Farm household survey data were collected in Tanzania in 2016 and 2017 on 624 households, located in 25
districts (Figure 1). These districts are located in both the Southern Highlands and Northern zone, represent-
ing the most important maize growing areas in the country. Within each district, a stratified sampling frame
was used that maximized soil type variability so as be able to make broad inferences about crop response,
and to identify survey localities (Walsh & V̊agen 2006; Shepherd et al., 2015). Within each locality, a listing
of all maize producing households was generated with the assistance of the local headman. From this listing,
24 households in each locality were randomly selected. Data were collected on household demographics, farm
and non-farm economic portfolios, land holdings and productive assets, and other characteristics. Within
each farm household, basic information was collected for each plot managed by the household (e.g. land use
status, production decisions). In addition, very detailed agronomic management information was collected
for household’s most important maize plot (henceforth the farm’s “focal plot”). This plot was identified by
the farmer as the plot which generated the most maize production, and which received the most managerial
effort.

Nitrogen and other macronutrient supplies were calculated from the various fertilizer blends farmers reported
using. To account for implausible values, we replaced application rates exceeding 700 kg ha-1 of N with that
value, which was tantamount to winsorizing at the 99th percentile of N application rates for fertilizer users,
and which follows the protocols used by Liverpool-Tasie et al. (2017) and Sheahan and Barrett (2017).

Maize yields on focal plots were measured using crop cuts from three 5x5 meter quadrants, calculated at
12.5% grain moisture content. Soil characteristics from these plots were measured from samples taken at
quadrant locations at 0-10 and 10-20 cm depths.

Total organic carbon, despite its well-recognized importance as an indicator of overall soil quality, is not
an ideal indicator of nutrient availability because much of the bulk soil organic matter is relatively inert
(Drinkwater et al., 1998). Soil organic carbon is largely conditioned by topography and soil parent material;
however, once a field is converted to agriculture, active soil organic matter fractions largely determine soil
productivity, and this is markedly influenced by farmer practices (Zingore et al., 2008). Thus, rather than
testing for total carbon, as is often the case in standardized soil testing, testing the active organic matter
pool provides better insight into how changes in management affect nutrient cycling and potential soil
C accumulation or loss (Haynes, 2005; Wander, 2004). The active carbon pool, while constituting a small
fraction (5–20%) of the soil’s total organic matter, is the component that greatly influences key soil functions,
such as nutrient cycling and availability, soil aggregation, and soil C accumulation (Grandy and Robertson,
2007; Schmidt et al., 2011; Six et al., 1998; Wander, 2004). Hence, in this analysis, we focus on the factors
influencing active carbon.

Developments in laboratory assays to monitor ‘active’ soil organic matter fractions have highlighted the
value of permanganate oxidizable carbon as an early indicator of management influence on soil organic carbon
(Culman et al., 2012). Total soil organic carbon also provides insights regarding sustainable soil management,
although at a slow timestep (five to ten years). For this work, permanganate oxidizable carbon (POXC)
was determined on a ground (1mm sieve) sub-sample, oxidized with 0.02 M KMnO4, and subsequently
absorbance was read at a wavelength of 550nm (ibid.). To address potential measurement error, and under
the assumption that the soil properties of interest here (particularly soil active carbon) are relatively stable,
we use the average measure across the two years for each plot in our regression work.

Rainfall was measured as the sum of dekadal values recorded for the main growing season, using the CHIRPS
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dataset (Funk et al., 2017). Rainfall variability was measured as the coefficient of variation on the dekadal
observations within a season.

Estimation strategy

The intent of this paper is to understand the agronomic and economic returns to nitrogen fertilizer applica-
tions in smallholder maize production. In keeping with agronomic and agricultural economic literature, we
frame maize yield (y) as a function of fertilizer application rates (F), other agronomic management decisions
(M), and other exogenous conditioners (G).

y = f(F,M,G) (1)

Because farmers in Tanzania use a variety of fertilizer blends, we integrate these decisions be decompo-
sing each blend into its macronutrient content, i.e. nitrogen (N), phosphorous (P) and potassium (K). Other
management factors include improved maize seed, maize-legume intercropping (common in the southern high-
lands), organic matter integration via compost, manure and crop residue retention, plant spacing, weeding,
fallowing, terracing and erosion control structures, and herbicide and pesticide applications. Other exogenous
conditioners include slope, rainfall, rainfall variability and the presence of disease or striga (witchweed).

We adopt a flexible polynomial functional form, allowing for quadratic terms and interactions between
variables. In this approach, we follow similar empirical studies (e.g. Burke et al., 2017, Sheahan et al., 2013,
Xu et al., 2009). This flexibility is important in enabling us to investigate how yield response to nitrogen is
conditioned by other factors. We may generalize this function as:

yit = α+ β1Nit + β2N
2
it + β10Xit + +β11Nit ∗Xit + uit(2)

where N is nitrogen, our primary input of interest, i indexes plots, t indexes observations over time, and where,
for convenience, we have subsumed M and G in the vectorX . As indicated earlier, a priori hypotheses include
the possibility of positive interactions between nitrogen, soil organic carbon and rainfall, after controlling for
other factors.

A key consideration is the possibility that unobserved factors may possibly bias our estimation results.
Concretely, we may decompose the residual in equation 2 as:

uit = oit + ci + εit(3)

where o represents unobserved time-varying factors, c represents unobserved time-constant factors, and
ε is a randomly distributed error term. Time-varying unobservables may include soil moisture, nutrient
status or other factors which are often missing from empirical studies (or poorly measured). Time-constant
unobservables may include farmer ability or plot biophysical characteristics which change little from year
to year, but which may affect both fertilizer usage and yield outcomes. Finally, correlation between model
covariates and the stochastic error term may be an additional source of bias.11Burkeet al . (2017) provide a
useful, detailed discussion of these issues and corresponding identification strategies in survey data settings.

In the present study, we argue that our dataset does a better job at controlling for time-varying plot and
plot-management factors than is typically the case in empirical studies, and therefore unobsevedoitis unlikely
to be a major issue. Our larger concern is with time-invariant unobserved farmer and plot-level heterogeneity
which are likely to upwardly bias our results if not addressed (e.g. under the assumption that more able
farmers are more likely to use fertilizer than less able farmers). To address this, we estimate models with
the Mundlak-Chamberlain device (i.e. the Correlated Random Effects model (Wooldridge 2010), as well as
a Fixed Effects estimator.
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Results

Descriptive statistics

Summary statistics on our dataset are reported in Table 1. The average farm size is 3.3 hectares, and is
comprised of 4 plots. Most of our sample consists of farms in the 1-4 hectare range, which is typical for
smallholder systems in the region. Only 7% had a single plot, and 14% had more than 5 plots. The mean
and median focal plot sizes are 0.85 and 0.51 ha, respectively. Thirteen % of our sample farms are managed
by female household heads.

Yields in our sample are somewhat higher than the national averages reported elsewhere for Tanzania, with
a median value of 2.7 tons/ha. This reflects the fact that the focal plot is not a random maize plot, but
the most important and generally most productive plot available to the farmer. Furthermore, because our
sample districts were selected on the basis of being important maize producing districts, maize yields in
our sample likely reflect more favorable production conditions than a nationally representative sample. This
sample orientation notwithstanding, only about a third of sample uses fertilizer on these plots.11Sheahan
& Barret (2017) estimate that 17% of Tanzanian farm households use fertilizer, drawn from the nationally
representative 2011 wave of the LSMS-ISA data. Mather et al. (2016), using three waves of the LSMS-ISA
data, find similar national-level estimates, but note higher levels of fertilizer use by maize farmers in the
zones covered by our survey: 31-37% of maize plots in the Southern Highlands and 16% of maize plots in the
Northern zone. Of these fertilizer users, there is considerable variability in fertilizer application rates, with a
median rate of 56 kg ha-1 of nitrogen (somewhat below regional recommendations).22Sheahan and Barrett
(2017) found that fertilizer users applied an average of 32kg/ha in the nationally representative LSMS-ISA
data for Tanzania in 2011. The higher application rates we find for fertilizer users in our sample reflects our
sample design, as noted above, as well as the fact that fertilizer use in our sample is dominated by high
analysis Urea (46%N) and was often applied to very small maize plots.

Agronomic returns to nitrogen

Production function coefficient estimates are shown in Table 2 (we show only a subset of estimation results;
full results are reported in the supplementary materials). We show six alternative specifications. In each
of these, the dependent variable is maize yield, measured in kg ha-1 during the maize production season.
Nitrogen, as expected, shows a strong positive and non-linear influence on yield outcomes. Specifications
(1) and (2) use pooled OLS (POLS), and only differ in the interaction term: the first specification interacts
N with active carbon alone, while the second specification interacts N with active carbon and log rainfall
for that growing season. Specifications (3) and (4) incorporate the Mundlak-Chamberlain device – i.e. the
correlated random effects (CRE) model – to address unobserved heterogeneity, but are otherwise similar to
the first two specifications. Specifications (5) and (6) use Fixed Effects estimation to address unobserved
heterogeneity, but are otherwise similar to the other specification pairs. All models are cluster robust at the
household level and include controls for plot, household and community characteristics (including distance
to markets), detailed plot management controls, a year indicator, and, in the POLS and CRE models,
time-invariant controls for the 75 districts in the sample.

Coefficient estimates (Table 2) are fairly consistent across all specifications, although they differ somewhat
in magnitude. Results correspond with the expected positive returns to N applications, but at diminishing
rates. Interaction terms – N*POXC and N*POXC*log(rainfall) – are significant under all three estimators,
indicating that the agronomic efficiency of N is conditioned by active carbon and rainfall, as hypothesized.
The coefficients on active carbon and its interaction term is highly significant in all models, even where the
individual coefficient for active carbon is not significant at conventional levels. The estimated impacts of
rainfall and rainfall variability are positive and negative, respectively, as we would expect.

Average marginal effects are shown for N and POXC in Table 3. The marginal effects for N are our estimates
of marginal physical product (MP). These estimates differ somewhat across specifications, being somewhat
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higher under FE compared with POLS and CRE models. The range in MP estimates of 10-16 (additional
kgs of maize yield per additional kg of N) are similar to those found elsewhere in the region: 8 kg in Nigeria
(Liverpool-Tasie et al., 2017), 16 kg for Zambia (Xu et al., 2009), 17 kg for Kenya (Marenya & Barret, 2009),
23 to 25 kg for Uganda (Matsumoto & Yamano, 2013), 21 to 25 kg for Malawi (Harou et al., 2017), 19 kg
for Burkina Faso (Koussoube & Nauges, 2017). Our results are somewhat higher than Mather et al. (2016)
found for Tanzania using LSMS-ISA data (7-8kg). However, their data included all plots and production
in marginal areas, and was based on farmer estimates, rather than crop-cut measures. Because our sample
focuses on the most productive maize plots of farmers in Tanzania’s maize producing belt, we would expect
somewhat higher levels of productivity than for the entire population of smallholders in the nation.

In the analysis that follows, we focus on the results of the Fixed Effects regression, as the model which
has the most plausible controls for unobserved time-invariant heterogeneity which may otherwise bias our
results. However, we may note that all our results (i.e. limited agronomic and economic returns to fertilizer)
are even stronger when based on the other model estimates, which indicate lower agronomic use efficiencies.
We return to this point in the discussion.

Table 4 illustrates the diminishing expected MP of nitrogen at different levels of active carbon (10th, 25th,
50th, 75th, and 90th percentile, respectively), holding other factors constant, focusing on the Fixed Effects
model results. The direct impact of moving from 337 ppm (the 25th percentile of our sample) to 696 ppm
(75th percentile) implies an increase in MP by 20-25 percentage points, depending upon the specification
(i.e. whether or not log rainfall enters via an interaction). Moving from the 10th to the 90th percentile of the
active carbon distribution is associated with even larger changes in MP: 43-55 percentage points.

Given the uncertainty that farmer face in production environments, these expected changes in MP are not
at all trivial. Recall that rainfall variability also affects response. Because rainfall is a stochastic variable, the
large impact it has on yields, even after controlling for other factors, indicates the magnitude of uncertainty
in yield outcomes for farmers operating in these areas.

As a complement to our MP estimate, we computed the average physical product (AP) of N, calculated as
the difference between the estimated difference in yields resulting from zero fertilizer and yields resulting
from 200 kg ha-1 of nitrogen (the level at which MVCR=1, on average, when using a farmgate maize-nitrogen
price ratio of 0.15), with other sample values as observed. The distribution of MP and AP estimates across
the sample is shown in Table 5. These results indicate substantial variability in agronomic response across
the sample. As an illustration, a farmer at the 75thpercentile of the MP distribution has an expected MP
that is 40% larger than that of a farmer at the 25th percentile.

Economic returns to nitrogen

To translate these agronomic responses into profitability terms, we calculate and summarize a number of
relative measures of economic returns on the basis of alternative maize-nitrogen price ratios. In our farm
survey data, the farmer-reported input and output prices were exceedingly noisy and it was not possible to
coherently interpret the variability of responses within a given area. Data entry problems cannot be ruled
out, but we may also note the wide variety of fertilizer acquisition and maize sales channels: farmers buy and
sell at very different quantities, in different types of markets, at different distances from their homestead. For
this reason, we base the profitability analysis in this paper on a set of representative wholesale prices based on
different sources of local market price information for Tanzania: data on the average maize wholesale prices
in regional markets was taken from FEWSNet for the 2014-2018 period. Data on the average unsubsidized
commercial price of urea (generally the cheapest source of N) for all local Tanzanian markets reporting
prices for 50kg bags during the 2014-2018 period was obtained AfricaFertilizer.org. The price for nitrogen
was inferred from the urea price, based on the 46% N content of urea, as is standard practice in this type
of analysis. Based on these data, we define a representative market price ratio, as well several indicative
farmgate price ratios (Table 6). The representative maize/nitrogen market price ratio of 0.22, based on 0.27
and 1.22 USD/kg for maize and nitrogen respectively. These values are very similar to those used in other
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studies of fertilizer profitability for Tanzanian maize farmers (e.g. Kihara et al., 2016). However, such a
market price ratio fails to account for last mile transfer costs incurred by farmers, in which effective prices of
inputs increase (as the farmer needs to add transport costs to the market price paid) and the effective prices
of marketed output decline (as the farmer must discount transfer costs between the farm and the market
from the market price received).33Note that this situation does not change when marketing is done locally
via traders. In that case, the trader’s margins will include transfer costs between the village and market,
plus intermediation fees. Thus, we further define farmgate price ratios from the baseline market price ratio,
based on transfer costs of 0.006 USD/kg/km at 5,10,15 and 20 kilometers distance, respectively, between
the wholesale market and the farmgate, resulting in decreasing price ratios of 0.18, 0.15, 0.12, and 0.09.
The transfer cost assumption here is based on the empirical finding of Benson et al. (2012). Our resulting
farmgate price ratios are in the range of those calculated by Mather et al. (2016) from LSMS-ISA data for
Tanzania (which range from 0.19-0.14).

The marginal value-cost ratio (MVCR) is computed as the MP multiplied by the input-output price ratio,
while the average value-cost ratio (AVCR) is the AP multiplied by the input-output price ratio. An AVCR
value exceeding 1 indicates profitability, strictly speaking, although an AVCR value of 2 is often used as
a shorthand criterion for gauging the economic attractiveness of an investment from the perspective of a
risk-averse farmer. Similarly, while an MVCR value of 0 indicates the optimal input level for a risk-neutral
farmer (because marginal returns are zero), MVCR values of 1 or greater are often used as more reasonable
indicators of acceptable minimum marginal returns, under assumptions of risk-aversion and imperfectly
observed production or transactions costs.

Table 7 summarizes these measures for the different price ratio assumptions, using the estimation results from
the FE model with N*POXC*log(rainfall) interactions (column 6 in table 2). This specification produces the
highest estimated agronomic response of maize to N. As such, these results may be taken as an upper bound
to the actual profitability of fertilizer in our survey area.

Results indicate relatively low rates of profitability, regardless of the assumption: the average MVCR ranges
from 2.85 (at the market price ratio of 0.22) to 1.116 (when the farmgate price ratio is 0.09). While most
farmers apply at rates below the economically efficient rate for a risk-neutral farmer (i.e. where MVCR=0),
the share of farmers with MVCR>1 drops notably with price ratio reductions, and the share of farmers with
MVCR>2 drops even faster. As discussed elsewhere (e.g. Sheahan et al., 2013; Xu et al., 2009), an MVCR of
2 may be a more appropriate “optimal” level of input usage, under the assumption that a risk-averse farmer
will require a marginal return of at least this magnitude.

AVCR estimates show similar cross-sectional variability, with mean values ranging between 2.60 (at price
ratio=0.22) to 1.06 (at price ratio=0.09). It is common to use an AVCR of 1.5 or 2 as a minimal threshold
of profitability sufficient to incentivize risk-averse smallholder farmers to use fertilizer, to account for risk
aversity and unobserved transactions costs in production and marketing (e.g. Xu et al., 2009; Sheahan et al.,
2013). While most farmers in the sample have AVCR estimates exceeding 1, the share with AVCR estimates
exceeding 1.5 or 2 is very sensitive to price ratio assumptions: at a price ratio of 0.15 only 71% and 22% of
our sample has an AVCR exceeding 1.5 and 2, respectively. Our results suggest that under even moderate
uncertainty about farm gate prices, the magnitude of the MVCR and AVCR estimates may be insufficient
to motivate farmers to make risky fertilizer investments.

These findings suggest that even where agronomic returns are positive and of magnitudes generally consi-
dered conducive to investment, the incorporation of “last mile” transportation costs may quickly attenuate
the economic attractiveness of these investments (e.g., Minten et al., 2013). The implications of economic
remoteness have been well described (e.g. Minten & Stifel, 2004; Chamberlin & Jayne, 2013). Adding un-
certainty around the actual costs of last mile transportation (which is the reality for many farmers in rural
Tanzania) will only magnify the disincentivizing effects of these transfer costs on fertilizer investments. The
fact that active soil carbon is an empirically important driver of agronomic responses may help to target
attention to where these market remoteness effects may be especially magnified. Figure 2 shows the AVCR
calculated at a price ratio of 0.15 as a non-parametric function of active carbon. This graph illustrates that
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at lower levels of soil carbon the agronomic use efficiency of nitrogen is likely to be insufficient to be an
attractive investment for risk averse farmers, even in average rainfall years. When we additionally consider
the estimated impacts on profitability of seasonal rainfall (Figure 3), we can clearly see the sensitivity of
expected profitability calculations to stochastic factors.

Discussion

Our results indicate that while the marginal and average agronomic returns to inorganic fertilizer use are
generally positive, there are strong variations in these returns over our sample. We have shown that both
early-season rainfall and available soil carbon are important conditioners of yield responses to nitrogen.
Building on these agronomic response estimates, our economic analysis has stark implications. Even under
relatively modest assumptions of last-mile transportation costs, the inclusion of estimated farmgate prices
in relative profitability calculations reduces the attractiveness of fertilizer investments for a large share of
our sample.

Our findings are likely to overestimate Tanzanian smallholders’ agronomic responses to fertilizer use and
hence their economic incentives to use fertilizer, for several reasons. First of all, our sample consists of
farmers in Tanzania’s maize belt, where agroecological conditions are generally more favorable than in most
other parts of the country. Secondly, the fact that this analysis is based on focal plots, rather than on all plots,
means that our analysis cannot be taken as representative of all maize production conditions, but rather of
preferential conditions within the smallholder maize system. Farmer preferential allocation of maize crops
to higher fertility, adequate soil organic carbon status field has been well documented (Mhango et al., 2013;
Tittonell et al., 2008). As such, our estimates of agronomic and economic returns to fertilizer use are likely
an upward bound on the true values for the system. Problems with acute soil organic carbon depletion and
other soil fertility issues are likely to be much worse on average over the farming system as a whole.

Thirdly, our analysis uses the most favorable production function estimates, i.e. those resulting from the
Fixed Effects estimation. Profitability analysis using the POLS and CRE estimators is even less profitable
on average (although in most other respects estimation results are remarkably consistent). When we re-run
the same economic analysis using the estimates of agronomic returns generated from the POLS and CRE
estimation results, the share of farmers for with MVCR and AVCR estimates exceeding 2 is much lower.11For
example, Table 7 shows that 71% of the sample has estimated AVCR values greater than 1.5. When we use
POLS and CRE estimates corresponding to columns 2 and 4 in Table 2 as the basis of the calculation, the
corresponding share of the sample with AVCR values great than 1.5 is just 13% and 1%, respectively.

Fourth, our estimates of farmgate maize/nitrogen price ratios, upon which profitability estimates critically
depend, are conservative and likely to overestimate the ratio for many farmers. Our price ratio assumptions
are somewhat higher than those used in other empirical analysis in the region. Sheahan et al. (2013) find
an average maize/nitrogen price ratio of 0.083 for Kenya. Matsumoto and Yamano (2011) find ratios of
0.063-0.075 in Kenya and 0.044-0.027 in Uganda. The price ratio assumptions we employ in our analysis are
likely to be optimistic; many farmers in Tanzania are likely to regularly face less-favorable farmgate price
ratios. As such, our profitability analysis is likely biased upwards.

Finally, our results highlight important sources of uncertainty in both agronomic and economic returns
to fertilizer investments. We see this particularly in the role of seasonal rainfall and rainfall distribution
parameters in the production functions, but may also note that the large uncertainty around input, output
and transportation prices faced by farmers means that calculating expected returns on fertilizer investments
is highly uncertain even under optimal biophysical production contexts. The fact that soil carbon stocks
have such a strong effect on yield responses in our sample is all the more striking given these considerations.
What this means is that even for the most productive smallholders, the agronomic and economic returns to
fertilizer use are quite variable, which would further impede the incentives of risk averse farmers to incur
high capital outlays on fertilizers.
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Taken together, these results indicate that efforts to spur fertilizer usage by smallholder farmers in Tanzania
should not focus exclusively on blanket agronomic targets, which are based on average responses over large
areas, but rather should carefully consider localized response rates. This is in alignment with conclusions
from other studies, e.g. Nord & Snapp (2020), who studied soil fertility variability in the same geography.
Investments in extension and promotion of integrated use of organic management practices in combination
with fertilizer are urgently required if maize based systems are to be productive, which has clear implications
for reform of input-based agricultural subsidies (Lal 2006; Adowla et al., 2019). Such policies will often miss
the mark, as there is growing evidence – including this study – regarding the accumulation of active soil
carbon as being necessary to raise yield responses sufficiently for nitrogen fertilizer to become economically
attractive. This may be particularly valid for risk adverse farmers in areas facing high transport costs to
regional input and output markets. Failure to address these issues may continue to stall the process of
sustainably raising fertilizer use on the majority of Africa’s smallholder farms. There is rising urgency in
this challenge, as the closure of the land frontier in many African farming areas has led to more frequent
continuous cropping of plots, which, without greater usage of fertilizers, will certainly contribute to land
degradation and rural poverty (Barbier and Hochard, 2012).

Success in investing in soil organic carbon can also help mitigate the variability of yields in the face of highly
variable weather and a changing climate (Williams et al., 2016). Our analysis suggests that agronomic
returns to nitrogen will have to increase substantially in order to offset the low and variable price margins
that smallholder farmers typically face in countries like Tanzania.

Conclusions

Many areas of smallholder cultivation in sub-Saharan Africa have been systematically experiencing reductions
in soil organic carbon levels, particularly where continuous maize cultivation without legume rotations and/or
application of inorganic or organic fertilizer is common (Shepherd & Soule, 1998; Drechsel et al., 2001;
Tittonell et al., 2005; Lal 2006; Marenya & Barrett 2009). Low soil organic carbon stocks are known to
affect plant uptake of nutrient supplies and figure into low-responsiveness of yields to nitrogen supply in
some areas. Farmers in such areas are much less likely to find fertilizer investments to be economically
attractive, regardless of how well fertilizer markets are performing. Because of its role in promoting greater
crop biomass (including roots), inorganic fertilizer is usually a crucial component of a sustainable agricultural
intensification strategy, and its use will need to rise rapidly to arrest the land degradation processes already
evident in areas where the land frontier has been reached and where continuous cultivation has become the
norm.

This paper has assembled evidence on the ways in which maize yield responses to inorganic fertilizer are
affected by soil organic carbon and other factors. We have shown that the marginal product of nitrogen
is positively associated with both soil organic carbon stocks (measured as active carbon), as well as by
seasonal rainfall. When farmgate prices for maize and fertilizer are incorporated into calculations of average
and marginal cost-benefit ratios, we find that economic returns – as measured by MVCR and AVCR –
drop drastically over price-ratio ranges that are representative of those likely faced by many smallholders in
Tanzania. For example, assuming a price ratio of 0.15, only 22% to farmers could utilize fertilizer profitably
(using AVCR>2). However, even under more favorable assumptions, the high year-to-year variability around
these expected returns would discourage many farmers from investing in fertilizer even if it were profitable
to do so on average across all years. Our results indicate that the sensitivity of fertilizer profitability to such
outcome uncertainty will be to be particularly acute in areas of depleted organic matter.

An important implication of our analysis is the importance of investments and policy interventions which
address the systematic depletion of soil organic carbon stocks. This study adds to the growing evidence that
cereal crop response to fertilizer requires that attention to be paid to soil health, as indicated by active
soil carbon. There have been previous calls by soil scientists and economists for integrated soil fertility
management to complement inorganic fertilizer, yet few previous studies have examined this at scale. Our
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research, conducted across a broad range of soil types and market contexts across Tanzania, reasserts the
urgency of this proposition to better inform discussions of how to stimulate fertilizer investments by African
smallholders. Farmer incentives to make such investments will be promoted by efforts to raise the agronomic
efficiency of fertilizer sufficiently for fertilizer to be profitable.
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Tables

Table 1: Summary statistics of sample

Variable units 25th 50th 50th 75th 75th mean mean

farm/farmer characteristics farm/farmer characteristics
farm size ha 1.11 2.02 2.02 3.64 3.64 3.30 3.30
# of plots count 2 3 3 4 4 4 4
focal plot size ha 0.26 0.51 0.51 1.03 1.03 0.85 0.85
household size members 4 5 5 7 7 6 6
farmer age years 38 48 48 59 59 49 49
farmer education years 8 8 8 8 8 7 7
female binary - - - - - 0.13 0.13
focal plot characteristics
yield kg ha-1 1,112 2,748 2,748 4,464 4,464 2,996 2,996
used fertilizer binary - - - - - 0.32 0.32
N (for fertilizer users) kg ha-1 38 60 60 101 101 84 84
P (for fertilizer users) kg ha-1 0 10 10 55 55 38 38
K (for fertilizer users) kg ha-1 0 0 0 0 0 3 3
available carbon ppm 341 472 472 632 632 513 513
total carbon ppm 4,673 6,604 6,604 9,919 9,919 8,604 8,604
topsoil pH pH 5.6 6.1 6.1 6.5 6.5 6.1 6.1
intercropped binary - - - - - 0.54 0.54
legume rotation binary - - - - - 0.09 0.09
compost binary - - - - - 0.01 0.01
manure binary - - - - - 0.19 0.19
crop residues retained binary - - - - - 0.06 0.06
herbicide binary - - - - - 0.01 0.01
pesticide binary - - - - - 0.01 0.01
improved seed binary - - - - - 0.33 0.33
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Variable units 25th 50th 50th 75th 75th mean mean

n. weedings count 1 2 2 2 2 1.57 1.57
disease binary - - - - - 0.12 0.12
striga binary - - - - - 0.03 0.03
fallowed w/in 3 years binary - - - - - 0.05 0.05
erosion control structures binary - - - - - 0.14 0.14
terraced binary - - - - - 0.04 0.04
sloped binary - - - - - 0.77 0.77
rainfall mm 322 383 383 759 759 528 528
rainfall CV CV 0.49 0.65 0.65 0.85 0.85 0.66 0.66

Notes: Summary statistics calculated for the 553 observations recorded in year 2017.

Table 2: Production function estimates

(1) (1) (2) (2) (3) (3) (4) (4) (5) (5) (6) (6)

POLS POLS POLS POLS CRE CRE CRE CRE FE FE FE FE
N N 9.430*** 9.430*** 9.180*** 9.180*** 7.474** 7.474** 7.196** 7.196** 12.99*** 12.99*** 12.00*** 12.00***

(2.764) (2.764) (2.821) (2.821) (3.097) (3.097) (3.158) (3.158) (4.360) (4.360) (4.356) (4.356)
Nˆ2 Nˆ2 -0.0155*** -0.0155*** -0.0153*** -0.0153*** -0.0133*** -0.0133*** -0.0131*** -0.0131*** -0.0256*** -0.0256*** -0.0259*** -0.0259***

(0.00470) (0.00470) (0.00465) (0.00465) (0.00479) (0.00479) (0.00476) (0.00476) (0.00923) (0.00923) (0.00884) (0.00884)
POXC POXC 0.438 0.438 0.432 0.432 0.483 0.483 0.475 0.475

(0.349) (0.349) (0.350) (0.350) (0.352) (0.352) (0.353) (0.353)
N*POXC N*POXC 0.00481*** 0.00481*** 0.00443** 0.00443** 0.00767*** 0.00767***

(0.00172) (0.00172) (0.00194) (0.00194) (0.00221) (0.00221)
N*POXC*log(rain) N*POXC*log(rain) 0.000819** 0.000819** 0.000767** 0.000767** 0.00153*** 0.00153***

(0.000330) (0.000330) (0.000362) (0.000362) (0.000440) (0.000440)
log(rain) log(rain) 3,162*** 3,162*** 3,172*** 3,172*** 4,188*** 4,188*** 4,201*** 4,201*** 4,092*** 4,092*** 4,112*** 4,112***

(955.1) (955.1) (954.8) (954.8) (1,108) (1,108) (1,108) (1,108) (1,175) (1,175) (1,174) (1,174)
CV(rain) CV(rain) -1,167 -1,167 -1,168 -1,168 -943.4 -943.4 -940.2 -940.2 -2,077** -2,077** -2,042** -2,042**

(875.1) (875.1) (874.4) (874.4) (907.6) (907.6) (907.1) (907.1) (1,006) (1,006) (1,003) (1,003)
Observations Observations 607 607 607 607 607 607 607 607 498 498 498 498
R-squared R-squared 0.343 0.343 0.343 0.343 0.358 0.358 0.358 0.358 0.261 0.261 0.263 0.263
Estimator Estimator POLS POLS POLS POLS CRE CRE CRE CRE FE FE FE FE
HH, farm & plot controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Plot management controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mundlak-Chamberlain controls No No No No Yes Yes Yes Yes – – – –
District fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes – – – –
Year fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The dependent variable in all models is maize yield measured in kg ha-1. N = nitrogen; POXC =
active carbon; CV = coefficient of variation. Rainfall measured in 10-day periods during the growing season
for the survey year. Standard errors are cluster robust at the household level. Significance denoted by *
(p<0.1), ** (p<0.05) and *** (p<0.01). Full results shown in appendix (table A1).

Table 3: Partial effects of nitrogen and active carbon (estimates from Fixed Effects models)

14



P
os

te
d

on
A

u
th

or
ea

13
A

p
r

20
20

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

6
7
85

20
.0

94
14

22
8

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

(1) (2)

(1) (2)

Fixed Effects estimates Fixed Effects estimates
w/ N*POXC interaction w/ N*POXC*log(rainfall) interaction

MP at POXC=220 (10th pctile) 13.20*** 12.59***
(3.921) (3.882)

MP at POXC=337 (25th pctile) 14.09*** 13.69***
(3.936) (3.884)

MP at POXC=481 (50th pctile) 15.20*** 15.07***
(3.979) (3.923)

MP at POXC=696 (75th pctile) 16.85*** 17.11***
(4.088) (4.053)

MP at POXC=954 (90th pctile) 18.84*** 19.57***
(4.286) (4.311)

Δ MP: 25th-75th POXC pctile 20% 25%
Δ MP: 10th-90th POXC pctile 43% 55%

Notes: Table shows partial effects of nitrogen (N) and active carbon (POXC) from Fixed Effects models in
table 2. Standard errors are cluster robust at the household level. Standard errors are cluster robust at the
household level. Significance denoted by * (p<0.1), ** (p<0.05) and *** (p<0.01).

Table 4: Partial effects of nitrogen at different levels of active carbon in sample (estimates from Fixed Effects
models)

Notes: Table shows partial effects of nitrogen at 10th, 25th, 50th, 75th and 90th percentile of active carbon
in the sample, from the Fixed Effects models reported in table 2. Standard errors are cluster robust at
the household level. Standard errors are cluster robust at the household level. Significance denoted by *
(p<0.1), ** (p<0.05) and *** (p<0.01).

Table 5: Distribution of MP and AP estimates

physical product 10th 25th 50th 75th 90th mean std.dev.

MP 7.77 11.35 13.65 15.84 18.22 12.87 5.46
AP 9.09 10.03 11.50 13.45 14.97 11.73 2.49

Note: MP and AP estimates come from the Fixed Effects model corresponding to column 5 in table 2. MP is
calculated for each household using sample values. AP is calculated as the difference between the estimated
difference in yields resulting from zero fertilizer and yields resulting from 200 kg ha-1 of nitrogen (the level at
which MVCR=1, on average, when using a farmgate maize-nitrogen price ratio of 0.15), with other sample
values as observed.

Table 6: Maize and N price assumptions used in profitability calculations

Price ratios used for profitability analysis maize (USD/kg) nitrogen (USD/kg) maize/N price ratio

wholesale price ratio: 0.22 0.27 1.22 0.22
farmgate price ratio: 0.18 0.24 1.33 0.18
farmgate price ratio: 0.15 0.21 1.44 0.15
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Price ratios used for profitability analysis maize (USD/kg) nitrogen (USD/kg) maize/N price ratio

farmgate price ratio: 0.12 0.18 1.55 0.12
farmgate price ratio: 0.09 0.15 1.66 0.09

Table 7: Profitability distributions under alternative maize-N price ratios

MVCR 10th 25th 50th 75th 90th mean std.dev. MVCR>0 MVCR>1 MVCR>2

wholesale price ratio: 0.22 1.72 2.51 3.02 3.51 4.03 2.85 1.21 96% 94% 88%
farmgate price ratio: 0.18 1.40 2.05 2.46 2.86 3.29 2.32 0.99 96% 94% 77%
farmgate price ratio: 0.15 1.13 1.66 1.99 2.31 2.66 1.88 0.80 96% 92% 48%
farmgate price ratio: 0.12 0.90 1.32 1.58 1.84 2.12 1.49 0.63 96% 88% 16%
farmgate price ratio: 0.09 0.70 1.03 1.23 1.43 1.65 1.16 0.49 96% 78% 1%
AVCR 10th 25th 50th 75th 90th mean std.dev. AVCR>1 AVCR>1.5 AVCR>2
wholesale price ratio: 0.22 2.01 2.22 2.55 2.98 3.31 2.60 0.55 99% 98% 90%
farmgate price ratio: 0.18 1.64 1.81 2.08 2.43 2.70 2.12 0.45 99% 95% 56%
farmgate price ratio: 0.15 1.33 1.46 1.68 1.96 2.18 1.71 0.36 98% 71% 22%
farmgate price ratio: 0.12 1.06 1.16 1.34 1.56 1.74 1.36 0.29 94% 30% 2%
farmgate price ratio: 0.09 0.82 0.91 1.04 1.22 1.35 1.06 0.22 56% 2% 0%

Note: Calculations based on the MP and AP estimates shown in table 5, against each of the price-ratio
assumptions in table 6.

Figures

Figure 1: Survey locations

[Figure 1 here]

Figure 2: Estimated AVCR over distribution of active carbon in sample

[Figure 2 here]

Note: Vertical red lines indicate 10% and 90thpercentiles of the distribution of POXC measures in the sample.
AVCR estimates use AP estimates from the fixed effects model with N*POXC*log(rainfall) interaction
(column 6 in table 2), and a farmgate maize-nitrogen price ratio of 0.15.

Figure 3: Estimated AVCR over distribution of seasonal rainfall in sample

[Figure 3 here]

Note: Vertical red lines indicate 10% and 90thpercentiles of the distribution of seasonal rainfall totals in
the sample. AVCR estimates use AP estimates from the fixed effects model with N*POXC*log(rainfall)
interaction (column 6 in table 2), and a farmgate maize-nitrogen price ratio of 0.15.
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Figure 1: Survey locations 
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Figure 2: Estimated AVCR over distribution of active carbon in sample 

 

Note: Vertical red lines indicate 10% and 90th percentiles of the distribution of POXC measures in 

the sample. AVCR estimates use AP estimates from the fixed effects model with 

N*POXC*log(rainfall) interaction (column 6 in table 2), and a farmgate maize-nitrogen price ratio 

of 0.15. 
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Figure 3: Estimated AVCR over distribution of seasonal rainfall in sample 

 

Note: Vertical red lines indicate 10% and 90th percentiles of the distribution of seasonal rainfall 

totals in the sample. AVCR estimates use AP estimates from the fixed effects model with 

N*POXC*log(rainfall) interaction (column 6 in table 2), and a farmgate maize-nitrogen price ratio 

of 0.15. 
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