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Abstract

Abstract Background: Gliomas, characterized by aggressiveness and invasiveness, remain incurable after conventional therapies.

The molecular mechanisms driving the progression and maintenance of glioma are still poorly understood. Methods: PDIA4

expression was analyzed via Gene Expression Profiling Interactive Analysis (GEPIA) which data were from TCGA and GTEx

databases. We estimated the prognostic value of PDIA4 using Kaplan–Meier survival analysis and the Cox proportional

hazard model. The functional enrichment analysis was done by using cluster Profiler package in R language, including gene

ontology (GO) analysis comprised of cellular component (CC), molecular function (MF), and biological process (BP), and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In addition, correlation between PDIA4 and immunity were

analyzed by Protein-protein interaction (PPI) analysis, RNA extraction and Real-time RT-PCR. Results: In this study, we

identified PDIA4 was highly expressed in gliomas and closely correlated with poor prognosis. The association with IDH1

and different patterns of gliomas also indicates the potential biological processes that PDIA4 involves in the development of

tumor. Mechanistically, PDIA4 interacts with multiple immunological components to promote an immunosuppressive tumor

microenvironment (TME). Conclusions: Our results confirm PDIA4 is an efficient biomarker of gliomas, with implications for

prognosis and therapeutic strategies. Keywords: PDIA4, glioma, prognosis, biomarker, immune cells

Background

Gliomas are one of the most common malignant tumors in the central nervous system (CNS) and account for
nearly 75% primary tumors in adults1. According to the histopathological features and prognostic factors,
World Health Organization (WHO) classified gliomas into four grades (I-IV), from which the glioblastomas
(GBMs) are categorized as the most malignant subtype (grade IV)2. The tradition multimodal therapeu-
tic strategies against gliomas, which include advanced neurosurgery, radiation and chemotherapy, cannot
dramatically improve the prognosis in glioma patients. Patients with GBM still have dismal prognosis,
with median overall survival time less than 17 months3. The tolerance against multiple treatments and
invariably relapse of gliomas are extensively studied as consequences of molecular or chromosomal sub-
types, oncogenic activations and distinct metabolic immunosuppressive tumor microenvironment (TME)3-6.
Pursuing better understanding of molecular landscape in gliomas, novel markers are successively detected
with important clinical significance. Various discoveries, such as promoter mutations in TERT, mutations
in IDH1/IDH2, co-deletion of chromosome arms 1p/19q and H2K27M-mutant are clearly associated with
improved homogeneity in clinical outcomes and are referred as critical predictors in clinical practice3,7-9.
Further strengthening the knowledge of such molecular alterations will definitely benefit our perception of
gliomas from different perspectives. In this regard, investigate novel molecular biomarkers or driver genes will
facilitate the establishment of comprehensive understanding about tumor promotion and the development
of better therapeutic strategies to cure this disease.

The protein disulfide isomerases (PDIs) were originally discovered to enrich in endoplasmic reticulum (ER)
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and participate into the procedures of protein folding10. Encoded by P4HB gene, PDI is a 57-kDa redox-
dependent protein with multi-domain structure11. Performing as critical ER enzymes, PDIs majorly involve
in the oxidoreductase and chaperone activities which mediate the redox state and maintain the proper folding
and function of proteins11,12. The biological functions of PDIs are identified as reductase, oxidase and
chaperone in ER which have been associated with abundant physiopathologic mechanisms, such as infection,
coagulation, cellular viability, neurodegeneration and immunization10,13-16. PDIA4, one of the largest PDI
members, comprises 645 amino acids and three classical CGHC active motifs. Similar to other PDI members,
PDIA4 initiates coagulation and enhances formation of thrombus via series cascades reaction17. Besides the
classic biological functions of PDIA4, emerging evidence indicate the potential association between PDIA4
and the development of tumor17. The upregulated expression of PDIA4 was detected in a variety of tumor
cell lines as well as human lung adenocarcinoma tissue, the expression of PDIA4 mediates the inhibition
of mitochondrial apoptosis-induced tumor death18. Further study revealed that PDIA4 promotes tumor
progression through the reduction of caspases 3/712. The ectopic expression and function of PDIA4 had
also been reported in ovarian cancer. In ovarian carcinoma, PDIA4 was found to take part in the drug-
resistance phenotype and can serve as a critical prognostic marker19,20. Moreover, in pancreatic carcinoma,
hepatocellular carcinoma and esophageal squamous cell carcinoma, the increased expression of PDIA4 was
respectively observed and associated with tumor development21-25. In our previous studies, we have already
described PDIA4 as one of the prognostic markers in lower-grade gliomas and the potential association
between PDIA4 and immunosuppressive TME26. From this perspective, we conduct further experiments to
study the molecular mechanisms and behaviors of PDIA4 in gliomas.

Methods

2.1 Data sets

The Patient clinical annotation and gene expression data used in this study were obtained from publicly
available databases. The TCGA lower grade glioma and glioblastoma (GBMLGG) dataset, which included
genomic data and phenotypic data, was obtained from the University of California, Santa Cruz, Xena browser
(https://xenabrowser.net/). Another cohort of glioma patients (LGG and GBM) was obtained from Chinese
Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/) and the mRNA sequencing data (RSEM) and
clinical data were downloaded.

2.2 Differential expression analysis

Gene Expression Profiling Interactive Analysis (GEPIA) is an interactive web platform for gene expression
analysis, which includes 9,736 tumors and 8,587 normal samples from TCGA and GTEx databases and its
gene expression data have been re-computed from raw RNA-Seq data based on the UCSC Xena project and
a uniform pipeline for solving the imbalance between tumor and normal data27. The differential expression
analysis of PDIA4 between gliomas and normal brain tissues was performed using GEPIA.

2.3 Survival analysis

Kaplan–Meier survival analysis and the Cox proportional hazard model were used to estimate the prognostic
value of PDIA4 based on TCGA and CGGA datasets using R language packages (survival and survminer).

2.4 Gene ontology (GO) enrichment analysis

The functional enrichment analysis, including gene ontology (GO) analysis comprised of cellular component
(CC), molecular function (MF), and biological process (BP), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway, were performed via the cluster Profiler package in R language28. Enriched ontological
terms with adjusted P value < 0.05 were regarded as statistical significance.

2.5 Analysis of stromal and immune infiltration

Analysis of stromal and immune infiltration was performed as described in our previous article29. The scores,
calculated by the ESTIMATE algorithm30, were downloaded from https://bioinformatics.mdanderson.org/estimate/.
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The pre-calculated TCGA data based on xCell31 was downloaded from http://xcell.ucsf.edu/. Then the cor-
relation between PDIA4 expression and ESTIMATE scores and 64 cell types from the TCGA glioma dataset
were analyzed using R language.

2.6 Protein-protein interaction (PPI) analysis

The Search Tool for the Retrieval of Interacting Genes32, an online database, was used to identify proteins
that can interact with PDIA4 and construct PPI networks.

2.7 Cell lines and culture

The human glioma cell lines (U87, U251, and T98G) and the normal glial cell line HEB were cultured in
DMEM with 10% FBS and antibiotics (100 μg/ml penicillin and 100 μg/ml streptomycin), and maintained
in standard culture condition.

2.8 RNA extraction and Real-time RT-PCR

Total RNA was extracted from cell lines or human tissues by Trizol reagent (Invitrogen) according to the
manufacturer’s protocol. Then, total RNA was quantified and 1 μg of RNA was reverse-transcribed with the
Reverse Transcription Kit (Thermo Fisher Scientific). Q-PCR was performed using SYBR Premix Ex Taq II
(Takara Bio). β-Actin mRNA was used to normalize the expression of genes. The primers used were showed as
follows: PDIA4: F: 5’- GGCAGGCTGTAGACTACGAG-3’and R: 5’- TTGGTCAACACAAGCGTGACT-3’
GAPDH: F: 5’-GGGAGCCAAAAGGGTCAT-3’ and R: 5’-GTCCTTCCACGATACCAA-3’.

2.9 Statistical analysis

Statistical computations and the creation of figures were performed with several packages (ggplot2, survival,
survminer, corrplot) in the statistical software environment R, version 3.5.3 (http://www.r-project.org).

Results

Association of PDIA4 with clinicopathological characters in gliomas

According to the hypothesis that PDIA4 plays a critical role in glioma aggressiveness, we first measured
the expression of PDIA4 in glioma tissues compared with normal brain tissues. The remarkably increased
expression of PDIA4 was observed in both GBM samples and Low-Grade glioma (LGG) samples (Figure 1A,
p¡0.001). To further validate this result, we performed Q-PCR in glioma cell lines. The results documented
that the mRNA expression of PDIA4 was elevated in glioma cell lines when compared with normal glial cell
line (Figure 1B). Moreover, PDIA4 expression was positively correlated with glioma histological grade in
both TCGA and CGGA cohort (Figure 1C). It’s widely recognized mutations in isocitrate dehydrogenase
genes (IDH1 and IDH2) have strong connections with tumor behaviors in gliomas. Patients with IDH-mutant
(IDH-Mut) histology exhibited better prognosis than IDH-wildtype (IDH-Wt). Intriguingly, we also observed
the elevated expression level of PDIA4 in IDH-Wt subtype of glioma when compared with IDH-Mut tumors
(Figure 1D). Additionally, we evaluated the expression of PDIA4 in different patterns of glioma. The results
showed higher expression of PDIA4 in mesenchymal and classical subtypes rather than neural and proneural
subtypes (Figure 1E).

The expression of PDIA4 is correlated with prognosis in glioma patients

Based on the findings that PDIA4 was aberrantly expressed in gliomas and showed strong relationships
with histological grade and specific molecular subtype, we further studied the prognostic value of PDIA4
by Kaplan-Meier survival analysis with data obtained from TCGA and CGGA datasets. We found a
marked correlation in the expression of PDIA4 and the poor prognosis of glioma patients (Figure 2A, B,
p¡0.001).Moreover, we validated this correlation in both GBM cohort and LGG cohort. Results indicated the
high expression of PDIA4 was consistently correlated with poor patient outcomes in both the GBM group
(Figure 2C, D) and LGG group (Figure 2E, F). To study whether PDIA4 is an independent prognostic factor
in glioma, we also performed the Cox regression analysis with data obtained from TCGA and CGGA. In
multivariate analysis, after adjusting many clinical factors, such as patient age, patient gender, WHO grade
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and IDH status, the results suggested the expression of PDIA4 was a strong predictor in patients with glioma
(Table 1, Table 2).

Functional enrichment of PDIA4 in glioma

To understand the mechanism of PDIA4 promoting tumor growth and illustrate the key signaling regulated
by PDIA4, we performed GO functional enrichment analysis.

Data from both TCGA and CGGA were analyzed by Pearson correlation analysis and genes with |R|¿0.6
were collected for functional enrichment. As a consequence, 408 terms of biological process (BP), 110 terms
of cellular component (CC), 40 terms of molecular function (MF) were identified from TCGA database,
and 140 terms of BP, 56 terms of CC, 15 terms of MF were identified from CGGA database respectively
(Supplementary Table 1, 2). The top 10 terms of BP mainly enriched functions of neutrophil mediated
immune function (Figure 3A, B). The MF enrichment indicated functions predominantly involved in trans-
ferase activities, cell adhesion and molecule binding (Figure 3C, D). Meanwhile, genes from CC terms showed
significant association with focal adhesion, cell-substrate junctions and endoplasmic reticulum lumen (Figure
3E, F). Besides, we also conducted KEGG pathway analysis with selected genes. The results revealed strong
correlation between PDIA4 related genes and important biological signalings, such as protein processing in
endoplasmic reticulum, human immunodeficiency virus 1 infection and apoptosis (Figure 3G, H).

The correlation between PDIA4 and immunity.

Considering the results from GO and KEGG pathway analysis which elucidated strong connections between
PDIA4 and immunological functions, we next performed examinations to confirm this phenomenon. Firstly,
we examined the association between expression of PDIA4 and immune scores. The results showed that
the PDIA4 expression had relatively lower correlation with both stromal score and immune score in GBM
patients (Figure 4A). However, in LGG samples, we could find strong correlation between PDIA4 and stromal
or immune scores (Figure 4B). Moreover, we studied the correlation between PDIA4 and 64 non-cancerous
cell types to determine the critical cellular components involved in PDIA4 associated immunological process.
The results revealed there were 46 cell types were correlated with PDIA4, among which 33 types were
positively related whereas 13 types were negatively related (Figure 4C, Table 3). Notably, the cellular
components which exhibited dramatic correlation with PDIA4, such as astrocyte, M1 macrophages, CD4+

memory T cells, CD8+ T cells, Tregs and eosinophils have already been demonstrated to play critical roles
in the glioma TME. We further validate the correlation between PDIA4 and immune properties via classic
immunological markers. The results suggested that PDIA4 was closely related to several immunosuppressive
factors, especially the dendritic cell, M2 macrophage, monocyte and T cell exhaustion markers (Table 4).
Besides, we subjected PDIA4 to Protein Interaction Analysis (PPI) to study the regulatory network of this
protein. Based on the results, we found that PDIA4 could interact with several heat shock proteins (Figure
4D). And the functional study revealed these genes were closely related to stress-reduced responses and
endoplasmic reticulum which was consistent with the data described above. Meanwhile, the majority of
PDIA4-related genes, such as PDIA6, ERO1LB, ERO1L, HSPA5, HSP90B1 and HYOU1, were found to be
tightly involved in the tumor-promoting phenotype.

Discussion

Despite the current multi-therapeutic strategies against glioma, including modern neurosurgery, radiother-
apy, chemotherapy and immunotherapy, the prognosis of glioma patients remains poor due to the aggressive
features of this type of cancer. Novel efficient management for glioma requires comprehensive understanding
of the biological nature of this disease. The illustration of potential critical factors which overexpress and
play essential role in glioma progression is of great importance to increase our knowledge of this malignant
disease. Our present study first identified PDIA4 is a novel molecular marker which shows close relationship
with the clinicopathological characters and immunological surveillance of glioma, and provides alternative
strategies for the subsequent treatment of this disease.

PDIA4 was originally described to present in various biological processes, including coagulation33, thrombo-
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sis formation34,35and injury reaction36. Recently, mounting evidence reported the aberrant expression and
the potential mechanisms of PDIA4 participates in the development of multiple types of cancer12,17,18,21.
Moreover, our recent study documented that PDIA4 involved in the prognostic model in LGG, subsequently
participating in the immunosuppressive TME26. Based on these findings, the present study identified PDIA4
was not only overexpressed in glioma tissues, but also significantly consistent with WHO grade. Mechanis-
tically, PDIA4 was significantly associated with the IDH status and different subtypes of glioma. Also, our
study revealed increased mRNA expression of PDIA4 in glioma cell lines. Furthermore, we examined the
clinical importance of PDIA4 and found PDIA4 was an independent prognostic marker whose expression was
negatively correlated with outcomes of patients with glioma. To elucidate the critical functions of PDIA4 in
glioma, we conducted GO function and KEGG pathway analysis in both TCGA and CGGA datasets. As
a result, the PDIA4-related biological functions were mainly enriched in transferase activities, endoplasmic
reticulum responses and immunities.

The orchestrated immunological interactions within glioma TME have received increased focus and har-
nessing the immune system is becoming a hotspot in the field of oncology. Various components of glioma
TME, such as immune cells, cytokines and markers are coordinately interact with each other to establish the
immunosuppressive phenotype and promote the development of glioma5. From this perspective, advanced
clinical practices by targeting specific immunotherapies have already showed profound outcomes compared
to conventional therapy against glioma. As PDIA4 was previously revealed to participate in the immuno-
logical TME in LGG, we further detected its correlation with multiple immune factors. Consistent with our
further study, we found PDIA4 was tightly related to both the immune and stromal scores in LGG. The
relationship between PDIA4 and immune scores was relatively lower in GBM, which suggested the potential
heterogeneities between different grades of glioma. After checking the association between PDIA4 and 64
non-cancerous cells, we found significant linkage between 46 types of cell and PDIA4. Furthermore, we
studied the connections between PDIA4 and classic genes and markers of immune cells. Interestingly, the
dada showed close relationship with several infiltrating immune cells, such as monocytes, tumor-associated
macrophage and neutrophils, which are widely considered as immunosuppressive components in glioma TME.
Association had also been detected among markers of dendritic cells and PDIA4, which suggested us the
potential functions of PDIA4 in the process of antigen presentation and immune surveillance. Consistently,
our PPI analysis of PDIA4 indicated that the major proteins related to PDIA4 are members of heat shock
proteins or endoplasmic reticulum proteins which had also been reported as tumor promoting in various
cancers21,37-40.

Conclusions

Based on our findings, our study is the first time to describe the novel function of PDIA4 and we propose
a new linkage between PDIA4 and various immune components in glioma. PDIA4 is highly expressed in
glioma and significantly related with the clinical outcomes. The tumor promoting character of PDIA4 is
potentially mediated by the immune system because of the certain connections with multiple immune factors
in the glioma TME. The detailed molecular mechanism of PDIA4 and the development of glioma need to
be further illustrated. To this end, our study provides novel possibilities for future discoveries to find new
therapeutic approaches by targeting PDIA4 for immunotherapy in glioma.
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Figure 1. PDIA4 is highly expressed in gliomas and significantly associated with tumor aggressiveness.

1. Differential expression of LCTL in brain lower grade glioma (LGG) and glioblastoma (GBM) compared
to levels in normal brain tissues.

2. The relative mRNA expression level of PDIA4 in the normal glial cell line HEB and glioma cell lines.
3. The PDIA4 expression in glioma of WHO grade II-IV based on both TCGA and CGGA datasets.
4. The expression of PDIA4 in IDH subtypes of gliomas based on both the TCGA and CGGA datasets.
5. PDIA4 expression pattern in different molecular subtypes of glioma (classical, mesenchymal, neural,

proneural) in the TCGA dataset.

Figure 2. PDIA4 is a prognostic factor for glioma patients.

(A-B) Kaplan–Meier survival analysis showing that high PDIA4 expression predicts poor prognosis for glioma
patients based on both the TCGA and CGGA datasets.

(C-D) Kaplan–Meier survival analysis showing that high PDIA4 expression predicts poor prognosis for
glioblastoma multiform (GBM) patients in both the TCGA and CGGA datasets.

(E-F) Kaplan–Meier survival analysis showing that high PDIA4 expression predicts poor prognosis for lower
grade glioma (LGG) patients in both the TCGA and CGGA datasets.

Figure 3. Functional enrichment analysis of PDIA4 in TCGA and CGGA cohorts

(A-B) The top10 biological process terms of GO enrichment analysis based on TCGA and CGGA datasets
respectively.

(C-D) The top10 molecular function terms of GO enrichment analysis based on TCGA and CGGA datasets
respectively.

(E-F) The top10 cellular component terms of GO enrichment analysis based on TCGA and CGGA datasets
respectively.

(G-H) KEGG pathway analysis based on TCGA and CGGA datasets and the top 10 terms were visualized
respectively.

Figure 4. PDIA4 correlated with ESTIMATE algorithm/xcells scores in glioma and the PPI network

(A) PDIA4 expression was positively correlated with immune score and stromal score in glioblastoma mul-
tiform (GBM) patients.

(B) PDIA4 expression was positively correlated with immune score and stromal score in lower grade glioma
(LGG) patients.

(C) PDIA4 expression was significantly correlated with 46 cell types, as calculated by xcells in glioma.

(D) Protein-protein interaction (PPI) network of PDIA4.

Table 1 Univariate and multivariate analysis based on the TCGA Dataset.

Variable Univariate analysis Univariate analysis Multivariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P
PDIA4 1.618 (1.477-1.773) <0.001 1.271 (1.149-1.406) <0.001
Gender 1.012 (0.826-1.241) >0.05 0.977 (0.793-1.205) >0.05
Age 1.027 (1.018-1.035) <0.001 1.011 (1.002-1.019) <0.05
WHO grade 3.979 (3.227-4.906) <0.001 2.142 (1.621-2.831) <0.001
IDH status 3.238 (2.616-4.009) <0.001 1.846 (1.422-2.397) <0.001
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Table 2 Univariate and multivariate analysis based on the CCGA Dataset.

Variable Univariate analysis Univariate analysis Multivariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P
PDIA4 1.618 (1.477-1.773) <0.001 1.271 (1.149-1.406) <0.001
Gender 1.012 (0.826-1.241) >0.05 0.977 (0.793-1.205) >0.05
Age 1.027 (1.018-1.035) <0.001 1.011 (1.002-1.019) <0.05
WHO grade 3.979 (3.227-4.906) <0.001 2.142 (1.621-2.831) <0.001
IDH status 3.238 (2.616-4.009) <0.001 1.846 (1.422-2.397) <0.001

Table 3 Correlation ship between PDIA4 and 64 types of non-cancerous cells

xcells category Pearson’s r (95%CI) adj.p

B cells lymphoids 0.089(-0.042˜0.217) *
CD4+ memory T cells lymphoids 0.541(0.442˜0.627) ***
CD4+ naive T cells lymphoids 0.175(0.045˜0.298) ***
CD4+ T cells lymphoids -0.021(-0.151˜0.109) .
CD4+ Tcm lymphoids -0.091(-0.219˜0.04) *
CD4+Tem lymphoids 0.054(-0.076˜0.183) .
CD8+ naive T cells lymphoids 0.127(-0.004˜0.253) **
CD8+ Tcm lymphoids -0.413(-0.515˜-0.299) ***
CD8+ Tem lymphoids 0.055(-0.075˜0.184) .
CD8+T cells lymphoids 0.062(-0.069˜0.19) .
Class switched memory B cells lymphoids -0.295(-0.409˜-0.171) ***
Memory B cells lymphoids 0.003(-0.127˜0.133) .
naive B cells lymphoids -0.002(-0.132˜0.129) .
NK cells lymphoids -0.094(-0.222˜0.036) *
Natural killer T cells (NKT) lymphoids 0.043(-0.088˜0.172) .
Plasma cells lymphoids -0.359(-0.467˜-0.24) ***
pro B cells lymphoids 0.006(-0.124˜0.136) .
Tgd cells lymphoids 0.038(-0.093˜0.168) .
Th1 cells lymphoids 0.394(0.278˜0.499) ***
Th2 cells lymphoids 0.198(0.07˜0.32) ***
Tregs lymphoids -0.627(-0.7˜-0.541) ***
Activated dendritic cells (aDC) myeloids 0.468(0.36˜0.564) ***
Basophils myeloids -0.325(-0.437˜-0.204) ***
Conventional dendritic cells (cDC) myeloids 0.02(-0.111˜0.149) .
Denritic cells (DC) myeloids 0.234(0.107˜0.354) ***
Eosinophils myeloids -0.491(-0.584˜-0.385) ***
Immature DC (iDC) myeloids 0.202(0.074˜0.324) ***
Macrophages y myeloids 0.551(0.454˜0.636) ***
Macrophages M1 myeloids 0.593(0.501˜0.671) ***
Macrophages M2 myeloids 0.441(0.329˜0.54) ***
Mast cells myeloids 0.061(-0.07˜0.189) .
Monocytes myeloids 0.401(0.286˜0.505) ***
Neutrophils myeloids 0.286(0.162˜0.401) ***
Plasmacytoid dendritic cells (pDC) myeloids -0.093(-0.22˜0.038) *
Astrocytes others 0.767(0.707˜0.815) ***
Epithelial cells others 0.517(0.415˜0.607) ***
Hepatocytes others 0.331(0.21˜0.442) ***
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xcells category Pearson’s r (95%CI) adj.p

Keratinocytes others 0.064(-0.067˜0.193) .
Melanocytes others 0.002(-0.128˜0.133) .
Mesangial cells others 0.505(0.401˜0.596) ***
Myocytes others -0.163(-0.287˜-0.033) ***
Neurons others -0.687(-0.75˜-0.612) ***
Sebocytes others 0.273(0.148˜0.389) ***
Common lymphoid progenitors (CLP) stem cells 0.565(0.47˜0.648) ***
Common myeloid progenitors (CMP) stem cells 0.007(-0.123˜0.137) .
Erythrocytes stem cells 0.092(-0.038˜0.22) *
Granulocyte-macrophage progenitor(GMP) stem cells 0.138(0.008˜0.264) ***
Hematopoietic stem cells (HSC) stem cells 0.283(0.158˜0.398) ***
Megakaryocytes stem cells -0.01(-0.14˜0.121) .
Megakaryocyte-erythroid progenitors (MEP) stem cells 0.273(0.148˜0.39) ***
Multipotent rogenitors (MPP) stem cells -0.015(-0.145˜0.116) .
Platelets stem cells -0.399(-0.503˜-0.283) ***
Adipocytes stromal cells -0.01(-0.141˜0.12) .
Chondrocytes stromal cells 0.026(-0.104˜0.156) .
Endothelial cells stromal cells 0.412(0.297˜0.514) ***
Fibroblasts stromal cells 0.376(0.259˜0.483) ***
ly Endothelial cells stromal cells 0.248(0.122˜0.366) ***
Mesenchymal stem cells (MSC) stromal cells -0.196(-0.318˜-0.067) ***
mv Endothelial cells stromal cells 0.333(0.212˜0.444) ***
Osteoblast stromal cells 0.108(-0.022˜0.235) **
Pericytes stromal cells -0.171(-0.295˜-0.042) ***
Preadipocytes stromal cells 0.385(0.268˜0.49) ***
Skeletal muscle stromal cells 0.128(-0.002˜0.254) **
Smooth muscle stromal cells 0.393(0.277˜0.498) ***

Table 4 Correlation analysis between LAYN and relate genes and markers of immune cells based on TCGA
database

Description Gene markers Pearson’s r(95%CI) P

CD8+ T cell CD8A 0.375 (-0.062-0.692) **
CD8B 0.322 (-0.123-0.659) *

T cell (general) CD3D 0.332 (-0.111-0.665) *
CD3E 0.433 (0.006-0.726) **
CD2 0.427 (-0.001-0.723) **

B cell CD19 0.201 (-0.248-0.579) .
CD79A 0.233 (-0.216-0.601) .

Monocyte CD86 0.616 (0.255-0.826) ***
CD115 (CSF1R) 0.617 (0.257-0.826) ***

TAM CCL2 0.569 (0.187-0.802) ***
CD68 0.806 (0.577-0.917) ***
IL10 0.355 (-0.086-0.68) *

M1 Macrophage INOS (NOS2) 0.386 (-0.05-0.698) **
IRF5 0.638 (0.289-0.837) ***
COX2(PTGS2) 0.354 (-0.087-0.679) *

M2 Macrophage CD163 0.555 (0.167-0.794) ***
VSIG4 0.651 (0.309-0.844) ***
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Description Gene markers Pearson’s r(95%CI) P

MS4A4A 0.66 (0.324-0.848) ***
Neutrophils CD66b (CEACAM8) 0.121 (-0.323-0.522) .

CD11b (ITGAM) 0.553 (0.164-0.793) ***
CCR7 0.34 (-0.102-0.67) *

Natural killer cell KIR2DL1 -0.039 (-0.459-0.395) .
KIR2DL3 -0.003 (-0.43-0.425) .
KIR2DL4 0.069 (-0.369-0.483) .
KIR3DL1 0.13 (-0.315-0.528) .
KIR3DL2 0.057 (-0.38-0.473) .
KIR3DL3 -0.374 (-0.691-0.064) **
KIR2DS4 0.051 (-0.385-0.468) .

Dendritic cell HLA-DPB1 0.644 (0.299-0.84) ***
HLA-DQB1 0.549 (0.159-0.791) ***
HLA-DRA 0.692 (0.376-0.864) ***
HLA-DPA1 0.652 (0.311-0.844) ***
BDCA-1(CD1C) 0.17 (-0.278-0.557) .
BDCA-4(NRP1) 0.876 (0.716-0.948) ***
CD11c (ITGAX) 0.529 (0.131-0.78) ***

Th1 T-bet (TBX21) 0.372 (-0.066-0.69) **
STAT4 0.081 (-0.36-0.491) .
STAT1 0.822 (0.608-0.925) ***
IFN-g (IFNG) 0.128 (-0.317-0.526) .
TNF-a (TNF) 0.158 (-0.289-0.549) .

Th2 GATA3 0.389 (-0.047-0.7) **
STAT6 0.808 (0.582-0.918) ***
STAT5A 0.735 (0.449-0.885) ***
IL13 0.076 (-0.364-0.488) .

Tfh BCL6 0.703 (0.394-0.869) ***
IL21 -0.154 (-0.546-0.293) .

Th17 STAT3 0.896 (0.759-0.957) ***
IL17A -0.083 (-0.493-0.358) .

Treg FOXP3 0.316 (-0.129-0.655) *
CCR8 0.098 (-0.344-0.505) .
STAT5B 0.756 (0.485-0.895) ***
TGFb (TGFB1) 0.8 (0.567-0.915) ***

T cell exhaustion PD-1 (PDCD1) 0.37 (-0.068-0.689) **
CTLA4 0.257 (-0.192-0.617) .
LAG3 0.484 (0.071-0.756) ***
TIM-3 (HAVCR2) 0.648 (0.305-0.842) ***
GZMB 0.243 (-0.206-0.607) .
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