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Abstract

Aerodynamics is the top-level of fluid mechanics science which is deals with the flow of air over bodies like aircraft or any

other solid surface. Boundary layer can be classified into hydrodynamics and thermal boundary layer and had wide range of

applications in the Aerodynamics. The present work examines the hydrodynamics boundary layer theory over a flat plate. It

is interested subject due to its wide range of applications in industry and nature like airplane, missiles, rocket etc. the three

laws of physics (mass, momentum and energy) had been derived and then the governing equations of boundary layer had been

derivded. The boundary layer is sub-divided into three regions or zones, which they are the laminar, transition and turbulent

boundary layer. The Integral Momentum Von-Karman Equation is derived in-full details over the flat plate and then it is used

to derived the main parameters in the laminar and turbulent regions like rate of growth of each layer, skin friction coefficient,

shear stress and drag coefficient. It is worthy to mention that despite various velocity profiles for laminar region, there is only

one profile for the turbulent region which is the seventh root law that suggested by Prandtle. Also, for laminar boundary layer,

Blasius proposed a solution that can be used to obtain the drag. The transition zone us discussed also and it is worthy to

mention that the analysis of this region is limited in the textbooks of fluid flows and heat transfer.

Nomenclature Nomenclature

Symbol Description
τw Wall – Shear stress Eq. (1.1)
µ Dynamics viscosity Eq. (1.1)
du
dy Velocity gradient in y direction Eq. (1.1)

ρ Density Eq. (1.2)
U∞ Free stream velocity
Recr Critical Reynolds number
x x – direction
y y – direction
z z – direction
u Component of velocity in x – direction
v Component of velocity in y – direction
w Component of velocity in z – direction
P Pressure
F Force
a Acceleration
ax Component of acceleration in x – direction Eq. (3.19a)
ay Component of acceleration in y – direction Eq. (3.19a)
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Nomenclature Nomenclature

az Component of acceleration in z – direction Eq. (3.19a)
Wx The work in the x – direction Eq. (3.41)
Wy The work in the y – direction Eq. (3.42)
Wz The work in the z – direction Eq. (3.43)
U Instantaneous velocity Eq. [4.1]

´

u (t) fluctuating velocity

u time average velocity Eq. [4.2]
ṁ Mass flow rate
δ∗ Displacement thickness Eq. (5.5)
θ Momentum thickness Eq. (5.7)
δ∗∗ Kinetic energy thickness Eq. (5.8)

y Dimensionless length of boundary layer development

U Dimensionless velocity of boundary layer development
Cf Skin friction coefficient Eq. (7.17)
Do dimensionless parameter of velocity profile Eq. (7.18)
δ Boundary layer thickness
FD Drag force
CD Drag coefficient Eq. (7.22)
Rex Local Reynolds number
Reδ Local Reynolds number at the boundary layer thickness Eq. (7.28)
ReL,t Local Reynolds number of laminar layer at the transition zone Eq. (7.46)
δL,t Laminar boundary layer thickness at the transition region
δT,t Turbulent boundary layer thickness at the transition region
xT,t Turbulent length in the transition region

Learning Objective

After completion the reading of this chapter, you should be able to

1. Define the boundary layer theory and its three regions (laminar, transition and turbulent) and the
critical Reynolds number for internal and external flow.

2. Derivation the fluid flow and heat transfer laws of physics (mass, momentum and energy) in full –
details

3. Definition the turbulence and the different between Navier – Stokes equations and the Reynolds equa-
tions.

4. Derivation the boundary layer thickness, momentum thickness and energy thickness
5. Knowledge of the hydrodynamics boundary layer governing equation.
6. Derivation the Momentum Integral Equation for laminar and turbulent regions.
7. Starting from the Momentum Integral Equation to find an expressions for the rate of growth of bound-

ary layer thickness for laminar, transition and turbulent regions.
8. Derivation an expression of drag coefficient in terms of Reynolds number for each boundary layer

thickness
9. Recognize the laminar and turbulent velocity profile

Introduction

The boundary layer theory is an interesting subject for the researchers among the world due to its wide
range of applications in aerospace engineering like aerodynamics, flows over aircrafts like missiles, airplane,
road vehicles and ships. One of the crucial applications of boundary layer is the determination of the drag
coefficient of flat plate at zero incidences, flows over airfoil, ships, road vehicles and aircraft. The calculation

2
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of the drag is very important as it effects on the fuel consumptions and stability of the body. These days,
the fuel resources are decreases and its prices goes up and the fuel consumption is highly influenced by the
boundary layer over the road vehicles and aircrafts [1]. Also, one of the problems from the boundary layer is
the separation and the stall phenomenon and for this reason there are many aerodynamics modifications to
control or delay the separation as it leads to more fuel consumptions. Finally, there are applications in heat
transfer between the fluid and the body as in the combustion chamber of spark ignition engines. The flow
over a thin flat plate is the first case study of the boundary layer equations of Prandtl (4 February 1875 –
15 August 1953) solved later exactly by Blasius (9 August 1883 – 24 April 1970) in his PhD dissertation on
1908.

When a fluid flows past a solid surface, the velocity of the fluid at that solid surface must be the same as
that of the solid surface. If the solid surface is stationary, then the fluid velocity at the surface is zero.
So that there is a region close to the surface where the velocity increases from zero at the solid surface to
the mean stream velocity (U∞). In this way, the boundary layer is a narrow region near the solid surface
over which both velocity gradient and shear stress are large. It is also known as shear layer theory. The
boundary layer theory can be divided into two main types which they are hydrodynamics and thermal layers.
The present work illustrates the hydrodynamics boundary layer. The hydrodynamics boundary layer can
be divided into two three region or zones, laminar, transition and turbulent as indicated in Figure 1. The
well – known Reynolds number is used to distinguish between each layer. For this reason before discussing
the hydrodynamics boundary layer it is required to write a section illustrates the concepts of turbulence,
Reynolds number and the three laws of physics (mass, energy and momentum of fluid). Form the first look
on the schematic diagram it can be noted that the laminar flow is parallel and the fluid flows in on layers
gliding smoothly on the adjacent layers. The viscous forces are higher than the inertia forces which makes
the laminar flow with small Reynolds number and thus there is no tendencies towards turbulence, eddies
formations and instabilities. Beside that the velocity profile is parabolic. So as the flow moves further, there
will be eddies formation with higher increasing in Reynolds number which it an indicator on the turbulence
had been begun. The velocity profile in turbulent flow regime is logarithmic.

Figure 1 Development of the hydrodynamics boundary layer over a flat plate [2]

Boundary layer theory is a subject connected with the study of velocity gradient, shear stress, forces and
energy loss in the boundary layer. For laminar flow, the shear stress can be calculated from Newton’s law:

τw = µdu
dy (1.1)

While for turbulent flow, the shear stress can be obtained from the equation inserted below:

τw = 0.0233ρU
7
4

(
ν
y

)0.25

(1.2)

Reynolds number

The Reynolds number is a criterion which defines the nature of flow if it is laminar, transitional or turbulent
by measuring its inertial and viscous forces are given by the equation inserted below[1, 3, 4]:

3
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Re = ρ U∞ x
µ (2.1)

Where Re is the Reynolds number; ρ is the density of air; U∞ is the free stream velocity; x is the typical
length scale of the system; µ is the dynamics viscosity

As illustrated before, the Reynolds number is used to categorize the nature of the flow type in three regions
as illustrated below in Figure 2.

Figure 2 Fluid flow visualization over a flat plate [4]

It is found experimentally, that the turbulent flow occurs at Reynolds number more than the critical Reynolds
number as tableted in Table 1

Table 1 Critical Reynolds number for internal and external fluid flows

Type of Flows Type of Flows Type of Flows

External fluid flow External fluid flow Internal fluid flow
Along surface Around an obstacle
Recr≥ 5e + 5 Recr≥ 2e + 4 Recr≥ 2300

Governing Equations

The governing equations of fluid dynamics and heat transfer are the mathematical and physical statements
of the three famous conservation laws of physics:

1. ”The mass of a fluid is conserved”
2. ”The rate of change of momentum equals the sum of the forces on a fluid particle (Newton’s second

law)”
3. ”The rate of change of energy is equal to the sum of the rate of heat addition to and the rate of work

done on a fluid particle (first law of thermodynamics)”

The behaviors of fluid will be described in terms of macroscopic properties such as temperature, pressure,
velocity and density of fluid as well as space and time derivatives. The fluid element for derivation the
conservation laws of physics will be in a 3 dimensional Cartesian coordinates as explained in Figure 3 that

4
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inserted below;

Figure 3 Schematic representation of fluid element [5].

P.S. The fluid thermophysical properties will be as a function of space and time and they write asρ =
ρ (x, y, z, t) , T = T (x, y, z, t) , P = P (x, y, z, t) , u = u (x, y, z, t)for density, temperature, pressure and veloc-
ity of fluid.

P.S. Taylors series forward and backward will be used up to first two terms measure from the central point.
For example;

forward Taylors series:u (x+ x) = u (x) + δυ

greekxx (3.1)

backward Taylors series

u (x− x) = u (x)− δυ

greekxx (3.2)

In this way, if we select the pressure for example;

forward Taylors series

P2 = P + δΠ

greekxδξ

ενγλιση2 (3.3)

βαςκωαρδ Ταψλορς σεριες

5
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P2 = P − δΠ

γρεεκxδξ

ενγλιση2 (3.4)

ὃνσερvατιον οφ Μασς [5]

ΔΜσψς

Δτ
= 0 (3.5)

∂
∂t

∫
ςv
ρδV +

∫
cs
ρV • n dA = 0 (3.6)

Ρατε οφ ινςρεασες οφ μασς ιν φλυιδ ελεμεντ ςαν βε ςαλςυλατεδ φρομ τηε εχυατιον ινσερτεδ βελοω·

∂
∂t

∫
ςv
ρδV = ∂ρ

∂t δξδψδζ (3.7)

Ρεγαρδινγ τηε νετ ρατε οφ μασς φλοω ρατε τηρουγη εαςη φαςε οφ τηε φλυιδ ελεμεντ ωηιςη ις τηε δενσιτψ

μυλτιπλιεδ βψ τηε vελοςιτψ ςομπονεντς περπενδιςυλαρ το τηε φαςε βψ τηε ςροσς σεςτιοναλ αρεα ας ιλλυστρατεδ

ιν Φιγυρε 4. Τηε αναλψσις ις ινσερτεδ βελοω·

Figure 4 Mass in and out of the box of the fluid [5]

Now let ”ρu” is the mass flow rate per unit area at the center of the element, then with help of forward finite
difference scheme along the x – direction

Forward FDM along the right surface

∂ρu
∂x =

ρυex+δx− ρυe
ςεντερ

englishδx/2

ρυe x+δx = ρυe center + ∂ρu
∂x
δξ

english2

Backward FDM along the left surface

∂ρu
∂x =

ρυe
ςεντερ

− ρυex−δx

englishδx/2

6
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ρυe x−δx = ρυe center − ∂ρu
∂x
δξ

english2

Net rate of mass in x – direction = (ρuex+δx − ρυe x−δx)δyδz

=
{
ρυe center + ∂ρu

∂x
δξ

english2-
(
ρυe center − ∂ρu

∂x
δξ

english2δψδζ

=
{
ρυe center + ∂ρu

∂x
δξ

english2- ρυe center + ∂ρu
∂x
δξ

english2δψδζ

Net rate of mass in x direction = ∂ρu
∂x δξδψδζ (3.8)

Similarly at y – direction

∂ρv
∂y =

ρvey+δy− ρve
ςεντερ

englishδy/2Forward FDM along the right surface

ρve y+δy = ρve center + ∂ρv
∂y
δψ

english2

∂ρv
∂y =

ρve
ςεντερ

− ρvey−δy

englishδy/2Backward FDM along the left surface

ρve y−δy = ρve center − ∂ρv
∂y
δψ

english2

Net rate of mass in x – direction = (ρvex+δx − ρve y−δy)δxδz

=
{
ρve center + ∂ρv

∂y
δψ

english2-
(
ρve center − ∂ρv

∂y
δψ

english2δξδζ

=
{
ρve center + ∂ρv

∂y
δψ

english2- ρve center + ∂ρv
∂y
δψ

english2δξδζ

Net rate of mass in y direction = ∂ρv
∂y δξδψδζ (3.9)

Similarly at z – direction

∂ρw
∂z =

ρωez+δz− ρωe
ςεντερ

englishδz/2Forward FDM along the right surface

ρωe z+δz = ρωe center + ∂ρw
∂z

δζ

7
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english2

∂ρz
∂z =

ρωe
ςεντερ

− ρωez−δz

englishδz/2Backward FDM along the left surface

ρωe z−δz = ρωe center − ∂ρw
∂z

δζ

english2

Net rate of mass in z – direction = (ρwez+δz − ρωe z−δz)δxδy

=
{
ρωe center + ∂ρw

∂z
δζ

english2-
(
ρωe center − ∂ρw

∂z
δζ

english2δξδψ

=
{
ρωe center + ∂ρw

∂z
δζ

english2- ρωe center + ∂ρw
∂z

δζ

english2δξδψ

Net rate of mass in z direction = ∂ρw
∂z δξδψδζ (3.10)

Thus;

Net flow rate of mass flow rate =
[
∂ρu
∂x + ∂ρv

∂y + ∂ρw
∂z

]
δξδψδζ

∂ρ
∂t δξδψδζ+

[
∂ρu
∂x + ∂ρv

∂y + ∂ρw
∂z

]
δxδyδz = 0

∂ρ
∂t + ∂ρu

∂x + ∂ρv
∂y + ∂ρw

∂z = 0 (3.11)

The above equation represents the continuity equation which is one of the fundamental equations of fluid
mechanics. It is valid for transient, compressible or incompressible fluid flow. It can be written in vector
form as follow;

∂ρ
∂t +∇ • ρV =0 (3.12)

Two special cases that the researchers interested on them due to wide range of their applications in engineer-
ing and industry like solar collectors, internal pipe flow, nanofluid enclosure along with natural convection
which they are;

1. For steady, compressible fluid flow whick makes the density as a function of space only;∇ • ρV =
0 (3.13)

2. For incompressible flow;∇ •V = 0 (3.14)∂u∂x + ∂v
∂y + ∂w

∂z =

0 (3.15)
3. Momentum Equation

Before derivatives the momentum and energy equations, it is very important to full – understanding the
following concept which is called Material Derivative.

Physically, any property is a function of space and time. The space is represented by the coordinates (x, y,
z) and time which is denoted as t. so that we can write the total or substantive or material derivative which
is denoted as ∅ as indicated below;

D∅
Dt = ∂∅

∂t + ∂∅
∂x

dx
dt + ∂∅

∂y
dy
dt + ∂∅

∂z
dz
dt (3.16)

dx
dt = u, dy

dt = v, dz
dt = w

8
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D∅
Dt = ∂∅

∂t + u∂∅∂x + v ∂∅∂y + w ∂∅
∂z (3.17)

So that the acceleration can be written as below;

a = DV
Dt = ∂V

∂t + u∂V∂x + v ∂V∂y + w ∂V
∂z (3.18)

A shorthand notation for the material derivatives operator is;

D∅
Dt = ∂∅

∂t + (V•∇) (3.19)

Where the V is the velocity vector and it is given by=u î +v ĵ +w k̂, the velocity gradient is denoted as ∇
and it is given by∇∅ =∂∅

∂x î +∂∅
∂y ĵ +∂∅

∂z k̂

As an example; acceleration – components will be;

ax = ∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z (3.19a)

ay = ∂v
∂t + u ∂v∂x + v ∂v∂y + w ∂v

∂z (3.19b)

az = ∂w
∂t + u∂w∂x + v ∂w∂y + w ∂w

∂z (3.19c)

Newton’s law physically states that ”the rate of change of momentum of a fluid particle equals to the sum
of forces on the particle”. Mathematically, it could be written as inserted below∑
F = m a (3.20)

There are two major forces acting on fluid particle;

Surface forces

• Pressure forces
• Viscous forces

Body forces

• Gravity force
• Centrifugal force
• Coriolis force
• Electromagnetic field

It is commonly on CFD problems related to heat transfer and fluid mechanics to include two forces which is
a surface force as a separated force and the body force as a source term.

Now let us analysis the surface forces or stresses which contains normal stress and shear stress. The shear
stress is nothing but the force magnitude divided by the area. The stress opposite in the direction to the
proposed direction as shown in Figure 5.

9
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Figure 5 fluid element with the normal and shear stress applied on it [6]

Net force in the x – direction in the right and left face is[
σxx + ∂σxx

∂x
δξ

english2-
(
σxx − ∂σxx

∂x
δξ

10
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english2δψδζ = ∂σxx

∂x δξδψδζ (3.21)

Net force in the x – direction in the top and bottom face is[
τyx +

∂τyx
∂y

δψ

english2-
(
τyx − ∂τyx

∂y
δψ

english2δψδζ =
∂τyx
∂x δξδψδζ (3.22)

Net force in the x – direction in the front and back face is[
τzx + ∂τzx

∂z
δζ

english2-
(
τzx − ∂τzx

∂z
δζ

english2δψδζ = ∂τzx
∂z δξδψδζ (3.23)

δΦs =
(
∂σxx

∂x +
∂τyx
∂y + ∂τzx

∂z

)
δξδψδζ (3.24)

Now it is the time to write down the first form of the equation of motion in the x – direction by conjunction
the body and surface forces∑
F = δm ax ,

∑
F = δΦs + SM ,δm = ρδxδyδz , SM = ρg

ax = ∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z∑
F = δm ax(
∂σxx

∂x +
∂τyx
∂y + ∂τzx

∂z

)
δξδψδζ+ SM = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
δξδψδζ

By canceling δxδyδz and substitute the source termSM = ρgx(
∂σxx

∂x +
∂τyx
∂y + ∂τzx

∂z

)
+ ρgx = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
Then, we can obtain the x – component of momentum equation(
∂σxx

∂x +
∂τyx
∂y + ∂τzx

∂z

)
+ ρgx = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
(3.25)

Similarly we can obtain the y – component of momentum equation(
∂σyy

∂x +
∂τxy
∂y +

∂τzy
∂z

)
+ ρgy = ρ

(
∂v
∂t + u ∂v∂x + v ∂v∂y + w ∂v

∂z

)
(3.26)

Similarly we can obtain the z – component of momentum equation(
∂σzz

∂x + ∂τxz
∂y +

∂τyz
∂z

)
+ ρgz = ρ

(
∂w
∂t + u∂w∂x + v ∂w∂y + w ∂w

∂z

)
(3.27)

From fluid mechanics textbooks; The normal stresses [6];

σxx = −P + 2µ
(
∂u
∂x

)
(3.28)

σyy = −P + 2µ
(
∂v
∂y

)
(3.29)

σzz = −P + 2µ
(
∂u
∂x

)
(3.30)

The shearing stresses [6];

τxy = τyx = µ
(
∂v
∂x + ∂u

∂y

)
(3.31)

τxz = τzx = µ
(
∂w
∂x + ∂u

∂z

)
(3.32)

11
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τyz = τzy = µ
(
∂v
∂z + ∂w

∂y

)
(3.33)

Navier – Stokes Equations

These are one of the hardest PDEs that had never solved exactly and it is one of the one million USD
equations. These equations along with the conservation of mass and energy equations are the corner stone
of all of the fluid flow and heat transfer problems due to their wide range of applications. As there is not
exact solutions, an approximate solutions using CFD had been developed for various problems and using of
different models. Since the present work concentrates on the turbulent flow, various turbulence models will
be discussed in full – details later.

Let us first obtained the Navier – Stokes Equation in x – direction;(
∂σxx

∂x +
∂τyx
∂y + ∂τzx

∂z

)
+ ρgx = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
∂
∂x

(
−P + 2µ∂u∂x

)
+ ∂

∂y

[
µ
(
∂v
∂x + ∂u

∂y

)]
+ ∂

∂z

[
µ
(
∂w
∂x + ∂u

∂z

)]
+ ρgx = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
Now let us develop the N – S equation in x – direction for a special case study which involves for incom-
pressible, Inviscid flow;

−∂P∂x + 2µ∂
2u
∂x2 + µ ∂

∂y
∂v
∂x + µ ∂

∂y
∂u
∂y + µ ∂

∂z
∂w
∂x + µ ∂

∂z
∂u
∂z + ρgx = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
Now, sinceµ ∂

∂y
∂v
∂x = µ ∂

∂x
∂v
∂yandµ ∂

∂z
∂w
∂x = µ ∂

∂x
∂w
∂z

and by put2µ∂
2u
∂x2 = µ∂

2u
∂x2 + µ∂

2u
∂x2

Then,

−∂P∂x + µ∂
2u
∂x2 + µ∂

2u
∂x2 + µ ∂

∂x
∂v
∂y + µ ∂

∂y
∂u
∂y + µ ∂

∂x
∂w
∂z + µ ∂

∂z
∂u
∂z + ρgx = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
−∂P∂x + µ∂

2u
∂x2 + µ ∂

∂x
∂u
∂x + µ ∂

∂x
∂v
∂y + µ∂

2u
∂y2 + µ ∂

∂x
∂w
∂z + µ∂

2u
∂z2 + ρgx = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
Let us re-arrange them so that we can use continuity equation;

−∂P∂x + µ∂
2u
∂x2 + µ ∂

∂x

[
∂u
∂x + ∂v

∂y + ∂w
∂z

]
+ µ∂

2u
∂y2 + µ∂

2u
∂z2 + ρgx = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
∴ ∂u

∂x + ∂v
∂y + ∂w

∂z = 0

−∂P∂x + µ∂
2u
∂x2 + µ∂

2u
∂y2 + µ∂

2u
∂z2 + ρgx = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
−∂P∂x + µ

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
+ ρgx = ρ

(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
In this way, the N – S Equation in x – direction will be

ρ
(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
= −∂P∂x + ρgx + µ

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
(3.34)

Similarly and using of the same procedure, we can obtain the N – S equations in

y – direction

ρ
(
∂v
∂t + u ∂v∂x + v ∂v∂y + w ∂v

∂z

)
= −∂P∂y + ρgy + µ

(
∂2v
∂x2 + ∂2v

∂y2 + ∂2v
∂z2

)
(3.35)

z – direction

ρ
(
∂w
∂t + u∂w∂x + v ∂w∂y + w ∂w

∂z

)
= −∂P∂z + ρgz + µ

(
∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2

)
(3.36)

Energy Equation

12
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Figure 6 demonstrates the two components of stresses which they are the normal and shear stresses on a
fluid particle. The normal stress is denoted as”σxx” and the shear stress is denoted by the symbol”τxy”.

Firstly, we consider the x – component of the forces due to pressure, normal and shear stresses components
as illustrated below in Fig. .

Figure 6 two components of stresses on a fluid particle [5]

Forces on the left and right faces are denoted as F1

F1 =
[(
P − ∂P

∂x
δξ

english2−
(
σxx − ∂σxx

∂x
δξ

english2δyδz +
[
−
(
P + ∂P

∂x
δξ

english2+
(
σxx + ∂σxx

∂x
δξ

english2δψδζ

F1 =
[(
−∂P∂x

δξ

english2+
(
∂σxx

∂x
δξ

english2δyδz +
[
−
(
∂P
∂x
δξ

english2+
(
∂σxx

∂x
δξ

english2δψδζ

F1 =
[(
−∂P∂x δξ

)
+
(
∂σxx

∂x δξ
)]
δψδζ

F1 =
[
−∂P∂x + ∂σxx

∂x

]
δξδψδζ (3.37)

Forces on the front and back faces are denoted as F2

13
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F2 =
(
τyx +

∂τyx
∂y

δψ

english2δxδy −
(
τyx − ∂τyx

∂y
δψ

english2δξδψ

F2 =
∂τyx
∂y δξδψδψ (3.38)

Forces on the top and bottom faces are denoted as F3

F3 =
(
τyx +

∂τyx
∂z

δψ

english2δxδy −
(
τyx − ∂τyx

∂z
δψ

english2δξδψ

F3 = ∂τzx
∂z δξδψδψ (3.39)

Then, the net forces in the x – direction is equal to the sum of all of the three forces;

Fx = F1 + F2 + F3 =
{[
−∂P∂x + ∂σxx

∂x

]
+

∂τyx
∂y + ∂τzx

∂z

}
δξδψδψ

Fx =
[
∂(−P+σxx)

∂x +
∂τyx
∂y + ∂τzx

∂z

]
δξδψδψ (3.40)

Now, the work done in the x – direction which is denoted as Wxwill be the product of the force by the
velocity;

Wx =
[
∂[u(−P+σxx)]

∂x +
∂[uτyx]

∂y +
∂[uτzx]

∂z

]
δξδψδψ (3.41)

Similarly, the surface stresses components in the y and z direction is given by the mathematical formula
indicated below;

Wy =
[
∂[vτxy]

∂x +
∂[v(−P+σyy)]

∂y +
∂[vτzy]

∂z

]
δξδψδψ (3.42)

Wz =
[
∂[wτxz]

∂x +
∂[wτyz]

∂y + ∂[w(−P+σzz)]
∂z

]
δξδψδψ (3.43)

Now, it is the time to collect the terms that contains the pressure together as indicated below;

−∂[uP]
∂x −

∂[vP]
∂x −

∂[wP]
∂x = −div (Pu)

The total work done on the fluid particle will be;

W = −div (Pu) +
[
∂(uσxx)
∂x +

(υτψξ)

english∂y +
∂(υτζξ)

english∂z +
∂(vσyy)
∂x +

(vτξψ)

english∂y +
∂( vτζψ)

english∂z + ∂(wσzz)
∂x +

(ωτψζ)

english∂y +
∂(ωτξζ)

english∂z (3.44)

Now let us find the Energy flux due to conduction heat transfer

14
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Figure 7 the net heat transfer in a control volume [5]

The net heat transfer in the x – direction is equal to[(
qx − ∂qx

∂x
δξ

english2−
(
qx + ∂qx

∂x
δξ

english2δψδζ = −∂qx∂x δξδψδζ

The net heat transfer in the y – direction is equal to[(
qy − ∂qy

∂y
δψ

english2−
(
qy +

∂qy
∂y
δψ

english2δξδζ = −∂qy∂x δξδψδζ

The net heat transfer in the z – direction is equal to[(
qz − ∂qz

∂z
δζ

english2−
(
qz + ∂qz

∂z
δζ

english2δξδψ = −∂qz∂z δξδψδζ

Then; the total heat rate per unit volume is the sum of all of the heat flow across the boundaries divided by
δxδyδz

−∂qx∂x = −∂qy∂y = −∂qz∂z = −div (q) (3.45)

The heat flux and the temperature gradient can related by Fourier’s law;

qx = −k ∂T∂x qy = −k ∂T∂y qz = −k ∂T∂z

15
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q = −k grad T

−div (q) = div (k grad T ) (3.46)

In this way, Energy Equation can be written as below;

ρDE
Dt == −div (Pu) +

[
∂(uσxx)
∂x +

(υτψξ)

english∂y +
∂(υτζξ)

english∂z +
∂(vσyy)
∂x +

(vτξψ)

english∂y +
∂( vτζψ)

english∂z + ∂(wσzz)
∂x +

(ωτψζ)

english∂y +
∂(ωτξζ)

english∂z + div (k grad T ) (3.47)

1. Turbulence
2. What is Turbulence?

Turbulence is a the top level and a leading subject of fluid flow researches and during the last century some
of the famous mathematician worked in this specific area like Reynolds, Taylor, Von – Karman, Parbdtl
and his PhD student Blasius. Turbulence may be defined as a random, irregular, unpredictable motion
in which each quantity of fluid flow properties fluctuates continuously with respect to the time and space
[5]. Turbulence leads to increases drag, mixing, energy dissipation and heat transfer beside that it is a 3 –
D flow [7]. For example, Figure 8 displays the water jet image visualized using laser-induced fluorescence
technique under turbulent flow. It can be seen how the turbulence effect is high on the irregularity of the
water distribution. Also, the turbulence is a recommended technique to increases the flame speed which
enhance the heat release as illustrated in Figure 9 which is tangential swirl burner. Based on Figure 10 it
can be seen that the instantaneous velocity fluctuate about its average value and can be written as indicated
below;

U = u+
´

u (t) (4.1)

Where
´

u (t) it is the fluctuating velocity

u it is the time average velocity and can be calculated from

u = 1
t

∫ t
0

U dt (4.2)

Hosted file

image9.emf available at https://authorea.com/users/311520/articles/442218-on-the-theoretical-
and-mathematical-analysis-of-hydrodynamics-boundary-layer-fluid-flows-regimes

Figure 8 An axisymmetric water jet image measured visualized using laser-induced fluorescence technique
[8]

Hosted file

image10.emf available at https://authorea.com/users/311520/articles/442218-on-the-theoretical-
and-mathematical-analysis-of-hydrodynamics-boundary-layer-fluid-flows-regimes

Figure 9 Tangential air insert to generate more turbulence [9]
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Figure 10 Influence of Turbulence on velocity history [5]

Reynolds equations

In the Navier – Stokes equations, the turbulence motion had been neglected and only the mean viscous
stresses and the apparent turbulent stresses had been taken in the considerations. In this way, the laminar
and turbulent fluid flows can be treated in a common frame work of the Navier – Stokes equations. Thus, if
the turbulences stresses included in the equation of motion, then the resulted equation called the Reynolds
equation.

From fluid mechanics textbooks; The normal stresses [6];

σxx = −P + 2µ
(
∂u
∂x

)
− ρ´

u
2

(4.3)

σyy = −P + 2µ
(
∂v
∂y

)
− ρ´

v
2

(4.4)

σzz = −P + 2µ
(
∂u
∂x

)
− ρ ´

w
2

(4.5)

The shearing stresses [6];

τxy = τyx = µ
(
∂v
∂x + ∂u

∂y

)
− ρ´

u
´
v (4.6)

τxz = τzx = µ
(
∂w
∂x + ∂u

∂z

)
− ρ´

u
´
w (4.7)

τyz = τzy = µ
(
∂v
∂z + ∂w

∂y

)
− ρ ´

w
´
v (4.8)

If we substitute the above formulas eq. (4.3) – (4.8) in the Navier – Stokes equation, the Reynolds equations
will be as indicated below;(
Du
Dt

)
= − 1

ρ
∂P
∂x + ν∇2u−

[
∂
∂x

(
´
u

2
)

+ ∂
∂y

(
´
u

´
v

)
+ ∂

∂z

(
´
u

´
w

)]
(4.9)

17
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(
Dv
Dt

)
= − 1

ρ
∂P
∂y + ν∇2v −

[
∂
∂x

(
´
v

´
u

)
+ ∂

∂y

(
´
v

2
)

+ ∂
∂z

(
´
v

´
w

)]
(4.10)

(
Dw
Dt

)
= − 1

ρ
∂P
∂z + ν∇2w −

[
∂
∂x

(
´
w

´
u

)
+ ∂

∂y

(
´
w

´
v

)
+ ∂

∂z

(
´
w

2
)]

(4.11)

In the present work, Navier – Stokes equation will be used instead of Reynolds equations for the boundary
layer analysis as it will be demonstrated in the next section.

1. Estimation of boundary layer characteristics
2. Displacement thicknessδ∗

It is the distance (y) by which the external free stream is effectively displaced to formulation of boundary
layer.

Figure 11 displacement thickness [2]

If a free stream of velocity U∞ is effectively displaced byδ∗. The loss of the mass flow rate per unit time is
given by:-

ṁ = ρ∞U∞δ
∗ (5.1)

The loss of the mass flow rate per unit time is given by:-

dṁ = ρ (U∞ − u) dy

Then the total mass flow rate per unit time is:

ṁ =
∫ δ

0
ρ (U∞ − u) dy (5.2)

By equation the above equations, we get

ρ∞U∞δ
∗ =

∫ δ
0
ρ (U∞ − u) dy

If the fluid flow is assumed to be incompressible i.e, the density remains constant, and then the above
equation will be written as follow;

ρ∞U∞δ
∗ =

∫ δ
0
ρ (U∞ − u) dy

18
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δ∗ =
∫ δ

0

(
1− u

U∞

)
dy (5.3)

In the fluid mechanics it is recommended to transform the equations into non-dimensional form. In this way;

Lety = y
δ and U = u

U∞
we will get;

δ∗ =
∫ 1

0

(
1− u

U∞

)
δδy

δ∗

δ =
∫ 1

0

(
1− U

)
dy (5.4)

momentum thickness

Now let us formulate an expression to the momentum thickness;

The loss of momentum flow of the free stream equals to:

= ρ∞U∞θ U∞ (5.5)

The total loss of momentum is given by;∫ δ
0
ρ (U∞ − u) u dy (5.6)

By equating the above two equations, we get

ρ∞U∞θ U∞ =
∫ δ

0
ρ (U∞ − u) u dy

For incompressible flow;U∞θ ∗ U∞ =
∫ δ

0
(U∞ − u) u dy

θ =
∫ δ

0
(U∞ − u) u

U∞2 dy =
∫ δ

0

(
1− u

U∞

)
u
U∞

dy

θ =
∫ δ

0
u
U∞

(
1− u

U∞

)
dy (5.7)

θ
δ =

∫ 1

0
U
(

1− U
)

dy

kinetic energy thickness

Finally, an expression for the kinetic energy thickness will be after derivation something like this;

δ∗∗

δ =
∫ 1

0
U

(
1− U

2
)
dy (5.8)

Momentum equation of hydrodynamics boundary layer over a flat plate

First of all, let us develop the governing equation of the hydrodynamics boundary layer.

The navier-stoke equation in x-direction that derived in section 3;

ρ
(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
= −∂P∂x + ρgx + µ

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
(3.34)

Assumptions

1. The flow is steady and the fluid is incompressible.
2. The viscosity of the fluid is constant
3. The pressure variation in the direction perpendicular to the flow is negligible.
4. Viscous – shear forces in the y-direction is negligible.
5. Fluid is continuous both in time and space.

After applying the assumptions mentioned before, we get

u∂u∂x + v ∂u∂y = ν ∂
2u
∂y2 (6.1)
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The equation mentioned above is representing the equation of motion of the momentum equation for hydro-
dynamics boundary layer.

The next pages, two mathematical solutions will be used to solve the momentum equation for hydrodynamics
boundary layer. One of the solutions is approximate which is called Von – Karman and the second is the
Blasius Exact solution.

1. Von-Karman Momentum Integral Equation
2. Derivation of the Momentum Integral Equation

Let us consider control volume of ABCD as in Figure 12 below

Figure 12 Control volume of Von-Karman Integral Momentum Equation [10]

Mass flow rate entering the c.v. upstream (ab):

ṁ1 =

∫ δ

0

ρυδψ (7.1)

Mass flow rate leaving the c.v. downstream (dc):

ṁ2 =

∫ δ

0

ρυδψ+
d

dx

[∫ δ

0

ρυδψ

]
dx (7.2)

The net mass flow rate is

ṁ2 − ṁ1 =

∫ δ

0

ρυδψ+
d

dx

[∫ δ

0

ρυδψ

]
dx−

∫ δ

0

ρυδψ

ṁ2 − ṁ1 =
d

dx

[∫ δ

0

ρυδψ

]
dx (7.3)

Momentum flux entering ab =∫ δ
0
ρu2dy (7.4)
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Momentum flux entering cd =∫ δ
0
ρu2dy + d

dx

[∫ δ
0
ρu2dy

]
dx (7.5)

Momentum flux entering through bc is given by

U∞ ∗ (ṁ2 − ṁ1) = U∞
d
dx

[∫ δ
0
ρυδψ

]
dx (7.6)

Now the total drag force must be equal to the rate of change of momentum in flow and out flow;

−FD = Momentum Fluxeout − Momentum Fluxein

−FD =
∫ δ

0
ρu2dy + d

dx

[∫ δ
0
ρu2dy

]
dx−

∫ δ
0
ρu2dy− U∞ d

dx

[∫ δ
0
ρυδψ

]
dx

−FD = d
dx

[∫ δ
0
ρu2dy

]
dx− U∞ d

dx

[∫ δ
0
ρυδψ

]
dx

−FD = ρ d
dx

[∫ δ
0

[u
2 − uU∞]dy

]
dx (7.7)

Let us multiplying and divided Eq. (7.7) byU∞
2

U∞2

−τwdx = ρ d
dx

[∫ δ
0
U∞

2

U∞2 [u
2
− uU∞]dy

]
dx

τw = ρU∞
2 d

dx

[∫ δ
0

u
U∞

(
1− u

U∞

)
dy
]

τw = ρU∞
2 d

dx

[
δ
∫ 1

0
U
(

1− U
)
dy
]

(7.8)

The above expression is the Von-Karman M.I.E. valid for laminar and turbulent shear layer. It has the
following form with some manipulation;

LetI = θ
δ =

∫ 1

0
U
(

1− U
)
dy (7.9)

τw = ρU∞
2 d

dx

[
δ
∫ 1

0
U
(

1− U
)
dy
]

(7.10)

τw = ρU∞
2 dθ

dx (7.11)

τw = ρU∞
2I d

dx (7.12)

Laminar Boundary Layer

There are many Laminar velocity Profiles like the inserted below;

U = y (7.13)

U = 3
2y −

1
2y

3
(7.14)

U = 2y − y2
(7.15)

U = sin π
2 y (7.16)

skin friction coefficient

Firstly, an expression of skin friction coefficient will be developed

Cf = τw
1
2ρU∞

2 → τw = 1
2ρU∞

2 ∗ Cf (7.17)

From Von-Karman IME:τw = ρU∞
2I d

dx (7.12)
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Equate the above Eq. (7.12) with Eq.(7.17)two expression of the shear stress, we find out;

1
2ρU∞

2 ∗ Cf = ρU∞
2I d

dx

Cf = 2 ∗ I ∗ d
dx = 2 d

dx (7.13)

Rate of growth of L.B.L. over a flat plate

Now we will develop an expression of the rate of growth on flat plate

Cf = τw
1
2ρU∞

2 (7.17)Also, From Newton’s law:τw = µ∂u∂y (1.1)

Cf =
µ du

dyew
1
2ρU∞

2 (7.18)

Cf = 2µ
ρU∞2

du
dy

⌉
y=0

Sincey = y
δ and U = u

U∞
we will get;

du
dy

⌉
y=0

= d
δδy

(
U∞U

)⌉
y=0 = U∞

δ
dU
dy

⌉
y=0

Cf = 2µ
ρU∞2 ∗ U∞δ

dU
dy

⌉
y=0

= 2µ
ρδΥ∞

dU
dy

⌉
y=0

Let us assume dimensionless parameter of velocity profile Do = dU
dy

⌉
y=0

Cf = 2µDo
ρδΥ∞

(7.18)

Now let us equalize the Eq. (7.13) with Eq.(7.18) ; 2µDo
ρδΥ∞

= 2 ∗ I ∗ d
dx

This is 1st ODE can be solved simply using the separation of variable method

d
dx = µDo

ρδΥ∞I∫
δδδ =

∫
µDo
ρU∞I

dx→ δ2

2 = µDo
ρU∞I

x+ c

at x = 0, δ = 0→ c = 0

δ2

2 = µDo
ρU∞I

x butRe = ρU∞x
µ → ρU∞

µ = Re
x

δ2

2 = x∗Do
I∗Re x→ δ =

√
2Do
I

x√
Rex

δ =
√

2Do
I

x√
Rex

(7.19)

Drag coefficient for flat plate

The drag force is the component of force on a body acting parallel to the direction of motion.

FD = w
∫ L

0
τwdx From one surface

For two upper and lower surface;

FD = 2 ∗
[
w
∫ L

0
τwdx

]
FD = 2wLτw

The drag coefficient isCD = FD
1
2ρU∞

2A
= 2FD

ρU∞2A
(7.20)

Cf = 2µDo
ρδΥ∞

(7.18)but δ =
√

2Do
I

x√
Rex
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Cf = 2µDo

ρU∞∗
√

2Do
I

x√
Rex

= 2µDo

ρU∞x∗
√

2Do
I

1√
Rex

Cf =
√

2DoI
Rex

(7.21)

Cf = 1
L

∫ L
0
Cf xdx = Cf = 1

L

∫ L
0

√
2DoI
Rex

dx = 1
L

√
2DoΙμ
ρU∞

∫ L
0

dx√
x

= 2
L

√
2DoΙμ
ρU∞

√
L

CD = 2
√

2DoΙμ
ρU∞L

=
√

8DoI
ReL

= 2
√

2
√

DoI
ReL

CD = 2
√

2DoI
ReL

(7.22)

∴ CD = 2Cf

Note:

Blasius is one of the PhD students of Prandtl. The full-detailed of this solution is discussed in Fluid Mechanics
books that the reader can read them. However, we will summarized only the obtained formula of

Blasius Exact Solution

Rate of growth of L.B.L. is δx = 5.0√
Rex

(7.23)

Local skin friction coefficient:Cf = 0.664√
Rex

(7.24)

Average skin friction coefficient:Cf = CD = 1.328√
ReL

(7.25)

As an example to explain the laminar boundary layer, let us assume we have the simplest laminar velocity

profile which isU = y

We shall use the rate of growth formula inserted below;

δ
x =

√
2Do

I Rex

Do = dU
dy

⌉
y=0

= 1

I =
∫ 1

0
U
(

1− U
)
dy =

∫ 1

0
y
(
1− y

)
dy = 1

6

Then, δ
x = 3.464101615√

Rex

Let us obtained the local skin friction coefficient using the formula inserted below;

Cf x = 2 ∗ I ∗ d
dx = 2 ∗ 1

6
d
dx

{
3.464101615√

Rex
x
}

= 1
3
d
dx

{
3.464101615 ν0.5

U∞0.5x0.5x
}

Cf x = 1
3 ∗ 3.646

(
ν
U∞

)0.5
d
dxx

0.5 = 1
3 ∗ 3.646 ∗ 0.5

(
ν
U∞

)0.5

1/x0.5 =
√

3
3

(
ν

U∞x

)0.5

Cf x = 0.5773502692√
Rex

, Commonly written as Cf x = 0.577√
Rex

The drag coefficient is more convenient in the aerodynamics researches, in this way, we shall find out its
expression for this profile;

Cf = 1
L

∫ L
0
Cf xdx = 1

L

∫ L
0

0.577√
Rex

dx = 1
L

∫ L
0

0.577 ν0.5

U∞0.5x0.5 dx

Cf = 0.577
L

(
ν
U∞

)0.5 ∫ L
0
x−0.5dx = 0.577

L

(
ν
U∞

)0.5
x0.5

0.5

∣∣∣L
0

= 0.577
0.5

(
ν
U∞

)0.5
L0.5

L

Cf = 1.154700538 ∗
(

ν

U∞L

)0.5

=
1.1547√

ReL
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The same procedure can be used for other laminar velocity profile. We tableted the famous velocity profiles
and their characteristics below in Table 2;

Table 2 Velocity Profile of Laminar Boundary Layer Characteristics

Velocity profile Rate of growth δ/x Drag Coefficient Cf

U = y 3.464101615√
Rex

1.1547√
ReL

U = 3
2y −

1
2y

3 4.64√
Rex

1.292√
ReL

U = 2y − y2 5.48√
Rex

1.46√
ReL

U = sin π
2 y

4.795√
Rex

1.31√
ReL

Blasius Exact Solution 5√
Rex

1.328√
ReL

Turbulent boundary layer

Unlike the L.B.L. there is only one well-known turbulent velocity profile which is known as the seventh root
law profile that suggested by the Prandtl:

U = y
1
7 (7.26)

Local stream-function coefficient

Let us formulate an expression of the local stream-function coefficient in turbulent boundary layer.

τw = 0.0233ρU
7
4

(
ν
y

)0.25

(7.27)

Cf =
τw

1
2ρU∞

2 =
0.0233ρU

7
4

(
ν
y

)0.25

1
2ρU∞

2 =
0.0466 ρU

7
4

(
ν
y

)0.25

ρU∞
2

at y = δ → U = U∞

Cf =
0.0466 ρU∞

7
4 ( νy )

0.25

ρU∞2 = 0.0466ν0.25

U∞0.25δ0.25
= 0.0466

Re0.25δ

Cf = 0.0466
Reδ0.25

(7.28)

Rate of growth of turbulent boundary layer

The derivation is starting by writing the M.I.E. ;

τw = ρU∞
2 dθ

dx

τw = ρU∞
2I d

dx

I =
∫ 1

0
U
(

1− U
)
dy =

∫ 1

0
y

1
7

(
1− y

1
7

)
dy = 7

72

τw = 7
72ρU∞

2 d
dx →

τw
ρU∞2 = 7

72
d
dx (7.29)

Cf = τw
1
2ρU∞

2 → 1
2Cf = τw

ρU∞2 (7.17)

Let us equalize Eq. (7.17) with Eq. (7.29), we get 7
72

d
dx = 1

2Cf (7.30)

But we have already obtainedCf = 0.0466
Reδ0.25

(7.28)

Substitute Eq. (7.28) in Eq. (7.30)
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1
2

{
0.0466
Reδ0.25

}
= 7

72
d
dx→

1
2

0.0466ν0.25

U∞0.25δ0.25
= 7

72
d
dxThis is 1st ODE will be solved simply using separation of variable

method∫ x
0

0.23965
(

ν
U∞

)0.25

dx =
∫ 0.25

0
δδδ→ 4

5δ
5/4 = 0.23965

(
ν
U∞

)1/4

x

δ = 0.3812325351
(

ν
U∞

)1/5

x4/5 = 0.3812325351
(

ν
U∞

)0.2
x
x0.2

δ = 0.3812325351x
Rex0.2

δT
x = 0.38123

Rex0.2 (7.31)

1. Characteristics of turbulent boundary layer
2. Displacement thickness

δ∗

δ =
∫ 1

0

(
1− U

)
dy

U = y
1
7

δ∗

δ =
∫ 1

0

(
1− y

1
7

)
dy = 1

8

δ∗ = 1
8 ∗ δ = 1

8 ∗
0.38123x
Rex0.2 = 0.04765

Rex0.2 x

δ∗ = 0.04765
Rex0.2 x (7.32)

Momentum thickness

θ
δ =

∫ 1

0
U
(

1− U
)
dy =

∫ 1

0
y

1
7

(
1− y

1
7

)
dy = 7

72

Similarly, we get θ = 0.03706
Rex0.2 x (7.33)

Energy thickness

By the same approach, we shall getδ∗∗ = 0.0667
Rex0.2 x (7.34)

Skin friction coefficient for turbulent boundary layer

Cf = 0.0466
Reδ0.25

(7.28)

Cf = 0.0466ν0.25

U∞0.25δ0.25
= 0.0466 ∗

(
ν
U∞

)0.25

∗
(

1
δ

)0.25

δ
x = 0.38123

Rex0.2 → δ = 0.38123
Rex0.2 x (7.31)

Substitute Eq. (7.31) into Eq. (7.28), results;

Cf = 0.0466 ∗
(

ν
U∞

)0.25

∗
(

1
0.38123
Rex0.2 x

)0.25

= 0.0466 ∗
(

ν
U∞

)0.25

∗ Rex
0.20.25

0.381230.25 x0.25

Cf = 0.05930470493 ∗
(

ν
U∞

)0.25
Rex

0.05

x0.25 = 0.05930470493 ∗
(

ν
U∞x

)0.25

Rex
0.05

Cf x = 0.05930470493
Rex0.2 (7.35)

Finally, the wall shear stress will be;

τw = 1
2ρU∞

2Cf x = 1
2ρU∞

2
{

0.05930
Rex0.2

}
= 0.02965 ∗ ρU∞

2

Rex0.2 (7.36)

Mixed (Transition) Boundary Layer Region

The schematic diagram of the external flow over a flat plate is inserted below;
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Figure 13 External flow illustrating the transition zone [11]

Firstly, let us develop an expression of turbulent boundary layer thickness at the transition region in terms
of Reynolds number at the laminar boundary layer region as explained below;

However, for laminar zone, sine profile will be selected as a special case study;U = sin π
2 y

δL,t =
4.795 xL,t√

ReL,t
= 4.79

(
ν

U∞ xL,t

)0.5

xL,t = 4.79
(

ν
U∞

)0.5

xL,t
0.5 (7.37)

Multiplied and divided the above equation by
(
U∞
ν

)
1/2

δL,t =
4.795 xL,t√

ReL,t
= 4.79

(
ν

U∞

)
0.5xL,t

0.5∗
(
U∞
) 1

2

(
ν
U∞

) 1
2

δL,t = 4.79
(

ν
U∞

)1/2

ReL,t
0.5 (7.38)

Thus,δT,t = 1.4δL,t (7.39)

δT,t = 1.4 ∗ 4.79
(

ν
U∞

) 1
2

ReL,t
0.5 = 6.706

(
ν
U∞

) 1
2

ReL,t
0.5

δT,t = 6.706
(

ν
U∞

) 1
2

ReL,t
0.5 (7.40)

Secondly, let us find out a general expression of turbulent layer in the transition region;

δT,t =
0.38123 xT,t

ReT,t0.2
=

0.38123 xT,t(
U∞ ξT,t

ν

)0.2 = 0.38123
(

ν
U∞

)0.2

xT,t
0.8 (7.41)

By equalizing Eq. (7.40) with Eq. (7.41);

6.706
(

ν
U∞

) 1
2

ReL,t
0.5 = 0.38123

(
ν
U∞

)0.2

xT,t
0.8

xT,t
0.8 = 6.706

0.38123

(
ν
U∞

)0.8

ReL,t
0.5

xT,t = 36.023469 ν
U∞

ReL,t
5/8 (7.42)

Finally, as aerodynamics researchers we are more interest in obtaining a formula for drag coefficient at the
transition zone;
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The effective length of turbulent layer is given by;LT = L−Xt +XT,t

D =
∫ L−Xt+XT,t

0
τw dx = 1

2ρU∞
2
∫ L−Xt+XT,t

0
Cfdx

The local skin friction coefficient in the turbulent region can be obtained from the equation inserted below;

Cf = 0.0593
Rex0.2

D = 1
2ρU∞

2
∫ L−Xt+XT,t

0
0.0593
Rex0.2 dx

D = 0.0593
2 ρU∞

2
∫ L−Xt+XT,t

0
ν0.2

(U∞ x)0.2
dx

D = 0.0593
2 ρU∞

2
∫ L−Xt+XT,t

0

(
ν
U∞

)0.2

x−0.2dx

D = 0.0593
2 ρU∞

2
(

ν
U∞

)0.2 ∫ L−Xt+XT,t
0

x−0.2dx

D = 0.0593
2 ρU∞

2
(

ν
U∞

)0.2
(L−Xt+XT,t)0.8

0.8

D = 0.0593
2∗0.8 ρU∞

2
(

ν
U∞

)0.2

(L−Xt +XT,t)
0.8

(7.43)

Let us first simplify (L−Xt +XT,t)
0.8

by multiplying and divided it by
(
U∞
ν

)
(L−Xt +XT,t)

0.8
=
(

ν
U∞
∗ U∞

ν
(L−Xt +XT,t)

)
0.8 =

(
ν
U∞
∗ (ReL − Ret + ReT,t)

)0.8

(7.44)

∴ D = 0.0593
2∗0.8 ρU∞

2
(

ν
U∞

)0.2 (
ν
U∞
∗ (ReL − Ret + ReT,t)

)0.8

∴ D = 0.0593
2∗0.8 ρU∞

2
(

ν
U∞

)0.2 (
ν
U∞

)0.8

(ReL − Ret + ReT,t)
0.8

∴ D = 0.0593
2∗0.8 ρU∞

2 ν
U∞

(ReL − Ret + ReT,t)
0.8

∴ D = 0.0370625 ρU∞ν (ReL − Ret + ReT,t)
0.8

(7.45)

The drag coefficient is nothing but the drag divided by 1
2ρU∞

2S

Cd = D
1
2ρU∞

2S
=

0.0370625 ρU∞ν(ReL−Ret+ReT,t)
0.8

1
2ρU∞

2L∗1

Cd =
2∗0.0370625 ν(ReL−Ret+ReT,t)

0.8

U∞L

Cd = 0.074125
(
U∞L

)
(ReL − Ret + ReT,t)

0.8

Cd = 0.074125
ReL

(ReL − Ret + ReT,t)
0.8

Since ReT,t =
U∞ XT,t

ν

The equivalent length of turbulent layer in the transition zone(XT,t) is given for sine laminar profile as
derived previously,

xT,t = 36.023469 ν
U∞

ReL,t
5/8

ReT,t = U∞
ν
XT,t = U∞

ν
36.023469 ν

U∞
ReL,t

5/8

ReT,t = 36.023469 ReL,t
5/8

In this way, we finally get
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Cd = 0.074125
ReL

(ReL − Ret + ReT,t)
0.8

Cd = 0.074125
ReL

(
ReL − Ret + 36.023469 ReL,t

5/8
)0.8

(7.46)

Chapter Summary and study guide

The present chapter demonstrates the mathematical analysis of the hydrodynamics boundary layer over a
flat plate. The main important points can be summarized in the following points:

• The boundary layer over a flat plate are three regions :laminar, transition and turbulent region. It
is worthy to mention that the transition region analysis in the text book is limited and we hope the
explanation of the transition region in the present chapter could help to the engineering students in
better understanding of this region.

• The governing equations of fluid mechanics :mass, energy and momentum of fluid had been derived in
– full details.

• The turbulence is also illustrated in this chapter with mention of important applications of the turbulent
flow.

• The governing equations of hydrodynamics boundary layer had been investigated also and then Von –
Karman solution for this equation is derived.

• We starting from the M.I.E. to derive an expression of the boundary layer thickness, drag, skin friction
coefficient, drag coefficient, shear wall stress in terms of Reynolds number for laminar, transition and
turbulent regions.
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