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Abstract

Land subsidence caused by groundwater overexploitation is a critical global problem. Spatial distribution of land subsidence
is crucial for environmental management and land planning due to the sensitive nature of land-surface gradients. Given the
nonlinear relationship of subsidence and long-term drawdown from groundwater exploitation, and the heterogeneity of the
aquifer in the Choshui River alluvial fan, a developed spatial regression model can effectively estimate nonlinear and spatially
varying subsidence. That is, the root-mean-square-errors (RMSEs) of annual subsidences are less or equal to 0.8 cm. Considering
various data inputs in the Choshui River alluvial fan, the spatial regression model offers a robust method for estimating the
spatial patterns of subsidence using drawdown as observations. Results show that the largest water-level cone of depression
occurs in the distal fan area. Nonetheless, the calculated subsidence bowl closely approximates the observed one located much
farther inland. Without requiring extensive calibration or an elaborate numerical groundwater flow and subsidence model,
the model provides reasonable and detailed patterns using a spatially varying relationship between drawdown and resulting
land subsidence. Results indicate that the spatial regression model reasonably estimates the spatial distribution of the skeletal
storage coefficient in the aquifer system. The large coefficient that represents inelastic compaction occurs in the inland areas,
whereas the small coefficient that represents elastic compaction occurs along the coastal area. Furthermore, this model is

relevant for water policy or land subsidence regulation.

Introduction

Land subsidence caused by excessive groundwater exploitation is a severe problem in numerous cities and
regions, including Shanghai (Shen and Xu, 2011; Xu et al., 2016), Mexico City (Kirwan and Megonigal,
2013), Bangkok (Phien-Wej et al., 2006), Iran (Amiraslani and Dragovich, 2011; Rahmati et al., 2019), Las
Vegas (Bell et al., 2008; Hoffmann et al., 2001) and the San Joaquin Valley in California (Faunt et al., 2016;
Poland, 1972). These areas with problematic subsidence have long been monitored; their distribution and
extent of subsidence and water-level decline are well established as the result of the compaction of fine-
grained aquitards and interbeds due to aquifer overexploitation (Bonl et al., 2016). The removal of water
from storage in fine-grained silts and clays, interbedded within the aquifer system, causes these highly com-
pressible sediments to compact and cause land subsidence. Furthermore, large-scale groundwater utilization
from human activities causes environmental problems (Rahmati et al., 2019), such as land degradation, soil
salinization and desertification.

Land subsidence is correlated with variations of the aquifer system pore pressures or water-level response
to pumping (Burbey, 2001). The drawdown of water levels leads to land subsidence from over-extraction of
groundwater (Bell et al., 2008; Galloway and Burbey, 2011). However, generating the subsidence—drawdown



relation is critical to better understand and predict the spatial distribution of land subsidence. Accurate
modeling requires observations of land deformation and water levels over months to years of time (Faunt
et al., 2016; Kim, 2000; Yan and Burbey, 2008). To model the subsidence-drawdown relation, traditional
numerical groundwater flow models such as MODFLOW (Mahmoudpour et al., 2016; Shearer, 1998; Zhou et
al., 2003) combined with a post-processing software package such as GMS (Parhizkar et al., 2015) can provide
water-level and flow distributions of the system under observation. Thus, land subsidence can be simulated
from changes in water pressure within the aquifer system coupled with the SUB Package (Hoffmann et al.,
2003b). A coupled numerical model that incorporates the concepts of three dimensional poroelasticity based
on Biot’s consolidation theory (Biot, 1941, 1955) is developed for simulating three dimensional displacement
of solids within unconsolidated aquifers in response to induced changes in water pressure (Burbey, 2006;
Burbey and Helm, 1999). Elastic (recoverable) and inelastic (permanent) compaction from stress—strain dia-
grams (Epstein, 1987; Hanson, 1989; Riley, 1969) can be identified. Fine-grained sediments tend to compact
inelastically if the effective stress exceeds the preconsolidation stress. Decreasing hydraulic heads, such as by
increasing effective stresses, causes a small amount of elastic compaction if the effective stress remains less
than the preconsolidation stress (Galloway and Burbey, 2011). However, uncertainty still exists in traditional
numerical models because heterogeneous geological conditions cannot be described in the same detail that
occurs in nature.

Reasonable estimates of the subsidence-drawdown relation can be obtained from regression models using
land subsidence and drawdown data, provided sufficient subsidence data and water-level records are availa-
ble for the area of investigation (Yan and Burbey, 2008). However, drawdown and subsequent compaction
of compressible hydrogeologic layers can result in spatially non-uniform and heterogeneous land subsidence
of the hydrogeological system (Galloway et al., 1998a; Hoffmann et al., 2003a; Teatini et al., 2006). The
subsidence—-drawdown relation is rarely well correlated and therefore seldom readily applied in multi-linear
regression analyses (Jiang et al., 2015). Moreover, the subsidence-drawdown function is found to be far more
heterogenous than most previous studies suggest (Sundell et al., 2019). Spatial regression (SR), i.e. geo-
graphically weighted regression (GWR), is a local form of linear regression used to model spatially varying
relationships (Fotheringham, et al., 2003). Such methods are powerful for capturing the effects of spatially
heterogeneous processes and can identify spatial nonstationarity in the subsidence-drawdown relation by
allowing regression coefficients to vary spatially. However, previous studies on SR merely consider the relati-
onship between subsidence and groundwater level variation at starting and ending times without considering
any compaction processes (Shang et al., 2011).

The present study aims to estimate the spatially variable land subsidence distribution based on accumulated
drawdown between ground-based observations and to improve the limitations of linear regression methods,
which typically fail in spatial hydrogeologic settings. The SR-based method developed in this study provides
a reliable model of the spatial relationship between accumulated drawdown and the resulting land subsidence.
The model coefficients are expected to provide the spatial patterns of elastic and inelastic storage coefficients
of the aquifer. In addition, a spatial subsidence map is proposed based on only the groundwater drawdown
distributions in the aquifer system.

Study area and data
Study area

The Choshui River alluvial fan is located in the mid-western coast of Taiwan and includes the counties of
Changhua and Yunlin. The Choshui River runs from east to west through the study area (Fig. 1a), which
covers approximately 1800 km?, and bisects the two counties. The alluvial plain is surrounded by natural
geographical boundaries that include the Taiwan Strait to the west, the Central Mountain Ridge to the
east, the Wu River to the north, and the Beigang River to the south (Yu and Chu, 2010). The measured
groundwater levels of the aquifers indicate that the system has two major flow directions, one from the
eastern mountain area to the northwest in Changhua and the other in a southwest direction in Yunlin.

Fig. 2 shows a hydrogeological profile of the Choshui River alluvial fan that comprises Aquifers I, I1-1, II-2,



IT1, and IV (F1-F4 in Fig. 2) measured from the land surface downward. Aquitards (T1-T3) separate the
aquifers. Aquitards are most relevant in the distal-fan and mid-fan areas and gradually diminish in thickness
toward the east. The proximal-fan represents the major recharge area of the aquifer system (Jang et al.,
2008; Yu and Chu, 2010).The distribution of sediments in the alluvial fan transitions from largely gravel, to
sand, and then to clay from the proximal fan to the distal fan. Moreover, Aquifer II is the major aquifer of
the Choshui alluvial plain because of its large spatial extent and acceptable depth for groundwater extraction
(Liu et al., 2004; Yu and Chu, 2010).

Given the insufficient surface water supply in the alluvial fan, residents extract groundwater to supplement
their demands for irrigation, aquaculture, and household domestic use, especially in dry seasons. Ground-
water is the major source of water for civilian and agricultural use and represents approximately 240,000
m?/day in the study area. The majority of water is used in agriculture, such as rice paddies, with 1.8
and 1.5 billion cubic meters per year on average for Changhua and Yunlin, respectively (Lee et al., 2018).
Groundwater overdraft causes serious land subsidence in the area, especially during droughts. An area
of approximately 300 km? experiences significant subsidence (> 3 cm/year in 2015), despite the enforced
restrictions on groundwater exploitation. Fig. 1b shows spatial pattern of observed land subsidence.

Required data for this investigation

This investigation uses monthly groundwater level observations in 2015. The water-level observations of
aquifer layers 1, 2, 3, and 4 obtained from 33, 40, 28, and 28 monitoring wells, respectively, are evenly
distributed over the entire Choshui River alluvial fan (Fig. 1a).

In addition, annual subsidence rates for 2015 from 662 leveling points (Fig. la) have been collected. A
leveling network amounting to over 1,000 km in length is used to calculate subsidence for every 1.5 km
interval along the leveling routes. Leveling specifications satisfy a loop closure of less than 3v/K mm, where
K is the length of the leveling circuit in kilometers. The vertical accuracy of leveling data is generally
within 1 cm (Hung et al., 2010). Leveling has a high degree of accuracy but is time consuming and expensive
compared with GPS. The leveling and groundwater level data are obtained from the Water Resources Agency
of Taiwan.

Data Analysis Methods
Model development

Based on Terzaghi’s principle of effective-stress (Hoffmann et al., 2003a), the nonlinear stress—compaction
relation is typically linearized with respect to preconsolidation stress (Shen and Xu, 2011). The calculation
of total aquifer system compaction (subsidence) can be linearized where incremental changes in effective
stress (hydraulic head) are typically small, as

Az = SpAh, (1)

where Az is the subsidence, Sy, is the skeletal storage coefficient, and h is the change in hydraulic head. If the
effective stress remains less than the preconsolidation stress (or less than the past maximum drawdown), the
compaction is entirely elastic. In this study, the soil rebound (volume expansion after removal of mechanical
stress) is disregarded from h, which represents the annual cumulative drawdown or the total annual change
in hydraulic head (Chu and Chang, 2009). Rebound tends to be less than 10% of the original subsidence
(Chaussard et al., 2014a). The total annual drawdown is then stated as:

Ah =3, he, (2)

where hy = hyy1 — by if . In this one-year case, the time step ¢ varies from 1-12 representing the months of
the year.

Subsidence is a function of accumulated drawdown. Furthermore, a regression expression identifies the rela-
tion between subsidence and groundwater level. Equation (1) is extended to yield an estimate of subsidence
at observation i in a multi-layer aquifer, which can be expressed as:



zi =y, Shi + €, (3)

where [ is the layer number in the multi-layer aquifer,Sy is the [ th skeletal storage coeflicient in a multi-layer
system and z; is the land subsidence at observationi . This study uses the annual subsidence rate for 2015
and hy is the estimated total groundwater decline (drawdown) at observation 4 from aquifer layer [ .; is the
residual of the regression model. Equation (3) is further extended to allow for spatially varying subsidence
and drawdown in a multi-layer aquifer system as follows:

zi =, Skt (ui, vi) ha + Bo (ui, v;) + €4, (4)

where Sy (u;,v;) varies with the spatial coordinates (u;,v;) at observation ¢ and is the slope of the spatial
regression parameters in the [ th layer.5y (u;,v;) is the intercept at observationi of the spatial regression
parameters in the multi-layer system. The slope coefficient in Equation (4) without the intercept/3 represents
the skeletal storage coefficient Sy in each aquifer, which is required to accurately estimate subsidence from
drawdown.

Spatial coefficient estimation

The SR is an extension of ordinary least squares (OLS) (Fotheringham et al., 2003). Using the SR, the
estimated parameter matrixf (u;, v;) , which includesSgyq (u;, v;) at each observationi is expressed as:

B (ui,v;) = [HTW (us,v;) H " HTW (wi,v:) Z, (5)

where
H =

(1 amp;hag -+ amp;hag

amp; - amp;: |4 =
L amp;hpy--- amp; by,
>
, (6)
_Zn

W (ui,v;) = diag(wy (3), ... w; (7)...,w, (i), and (7)

B (ui, vi) = (Bo (ui, vi) , Sk (wi, vi) -, Sy, (uiyv3)) 7. (8)

H and Z represent the matrix form of h; andz; for the n observations and L layers used in this study.
W (ui,v;) is a spatial weight matrix based on the Euclidean and Gaussian distance decay-based functions
in the spatial domain. In this case, the Euclidean distance is expressed in meters. The parameter w; (¢)

between observations: and neighboring j in the spatial weight matrix is commonly used as a kernel and
2

represents a Gaussian distance decay-based function,w; (i) = exp (f%), where Dj; is the Euclidian distance

between observationsi and j .Dj; = \/ (u; — uj)2 + (v; — vj)zand b is the non-negative parameter known as
the bandwidth (Brunsdon et al., 1996; Chu et al., 2018). Bandwidth b can be determined by several criteria,
such as the cross validation (CV) procedure (Fotheringham et al., 2003). The CV procedure is used to select
the optimal parameters b :

CV(b) :Zi (Ali - AC;&i(b))Q - (9)

For comparison, the models for linear and spatial regressions i.e., OLS and SR are applied on all four
aquifer layers, including mixed and single layer drawdowns from different aquifers. Spatial estimation of the
drawdown is applied using inverse distance weighting (IDW). The models are developed using MATLAB.
Model 1 is based on the cumulative drawdown from all aquifer layers. Models 2-5 are based on only
drawdowns from Layers 1-4 without the y-intercept, respectively, as shown at a later stage.



To evaluate the model performance, the common measures R and RMSEs are used on the basis of observation
data and estimated values at these points.

Results and discussion

The subsidence-accumulated drawdown relation was built in linear and spatial regressions; that is, the SR
model. First, a relation between total subsidence and multi-layer drawdowns was accurately formulated, and
the spatial patterns of subsidence were subsequently estimated.

Overview of subsidence and drawdown

Fig. 3 displays the correlation between subsidence and variations in groundwater level. The subsidence—
drawdown relation is nonlinear (correlation coefficient = 0.27, 0.54, 0.57, and 0.54, respectively, in each of
the four aquifer layers). Groundwater drawdowns in Layers 24 are similar (correlation coefficient = 0.84
in Layers 2 and 3; 0.78 in Layers 2 and 4). Drawdowns in Layer 1 (unconfined aquifer) vary spatially
over shorter distances compared to those of the confined aquifer (Layers 2-4). Figs. 1b and 4 show the
spatial distribution of annual observed subsidence and accumulated drawdown, respectively, for 2015, when
the maximum annual permanent subsidence is approximately 7 cm (Fig. 1b). The spatial distribution of
subsidence reveals a bowl in the central area of Yunlin (Hwang et al., 2008). Within the study area, the
maximum accumulated drawdown in Layers 1-4 ranges from 15-20 m (Fig. 4). The cumulative drawdowns
implies that similar cones of depression are located in Layers 2—4 in the southwest distal fan area, near the
coast. Drawdown cones are located along the distal fan and mountain areas in Layer 1. Compared with the
four-layer drawdown pattern, the drawdown is greatest in Layer 2 in the study area. In addition, drawdowns
in Layers 2—4 are highly correlated (Fig. 3), while Layer 3 is most closely correlated to the subsidence of the
four-layer drawdown model (Fig. 3).

The compression behavior of clay agrees with Terzaghi’s consolidation theory (Liu et al., 2004). Land subsi-
dence with inelastic compression continues as water levels continuously decline. The inelastic compression of
fine-grained aquifer interbeds is likely responsible for the vast majority of subsidence problems, based on the
compressibility and total thickness of fine-grained deposits throughout the region (Galloway et al., 1998b;
Galloway and Sneed, 2013). The cone of maximum drawdown occurs in the distal fan area, whereas the
current major subsidence bowl occurs inland. Consequently, the cone of maximum drawdown fails to fully
coincide with the location of the subsidence bowl (Erban et al., 2014). In the coastal area or distal fan area,
the rate of pumping is proposed to decrease to stabilize or reduce water level declines. This subsequently
reduces land subsidence, given that the largest occurrence in the inland area induced by heavy withdrawal of
groundwater. This is a sensitive environmental concern because the Taiwan High Speed Rail is constructed
through the central subsidence area, which might pose a serious threat to its operation (Hwang et al., 2008;
Tung and Hu, 2012).

Model performance

The performance of SR such as the RMSEs in the multi- or single-aquifer system (RMSE = 0.6-0.8 cm) is
better than that of OLS (RMSE = 1.58-2.11 cm) (Table 1). The best models are appear to be Model 1
in the multi-aquifer system and Model 4 in the single-aquifer system. However, the subsidence-drawdown
model using OLS is not appropriate due to its poor performance (Table 1). The SR is more accurate than
that of OLS. Results of OLS reveal a subsidence—drawdown function with negative a slope for Layer 1 (high
drawdown -low subsidence exists in the proximal fan) but a positive slope for Layers 2, 3, and 4 in Model 1
(Table 2). Compared with Models 2-5, the best SR with the lowest RMSEs occurs in Model 4 because the
subsidence-drawdown correlation is the highest, but the poorest model with highest RMSE is Model 2 due to
its low subsidence-drawdown correlation (Fig. 3). Considering the validation using the GPS data of ground
surface (Fig 1), the RMSEs of Model 4 using linear regression and SR are 1.52 and 0.67 cm, respectively.
Validation of our subsidence model with available GPS data provides consistent and accurate results.

Fig. 5 shows the total estimated land subsidence calculated from linear regression and SR using all-layers



(Model 1) and single layer drawdowns (Models 2-5). In a linear regression, the estimated land subsidence
bowl occurs in the distal fan area (near the coast), but also in the proximal and distal fan areas in Model 2
due to the variable drawdown patterns occurring in Layer 1. The estimated maximum subsidence in the OLS
models occurs at the boundary area of Yunlin, whereas in the SR models subsidence occurs in the inland
area of Yunlin (Fig. 5). However, the estimated pattern using OLS does not match the observed subsidence.
The SR explicitly considers spatially dependent models to overcome the spatial variability of land subsidence
mapping because the SR extends the linear regression by estimating a set of spatial parameters rather than
one single set of parameters (Brunsdon et al., 1996; Fotheringham et al., 2003). The model RMSEs are less
than or equal to 0.8 cm so that the spatial regression can be used to model spatially varying relationships
between subsidence and drawdown in the aquifer system.

Spatial model coefficient and implication

Fig. 6 exhibits the spatial pattern of regression slope coefficients of the SR in Layers 1-4 for Models 2-5. The
regression coefficient distribution varies spatially. The patterns of spatial coefficients are typically similar in
Layers 2, 3, and 4. Most coeflicients have a positive slope for total drawdown and subsidence (Fig. 6). Only
the proximal fan and the area close to Wu River exhibits a negative relation between the total drawdown
and land subsidence (Fig. 6). A negative relation can occur where unloading causes a small soil rebound or
where drawdown continues but the subsidence rate declines due to recharge effects (i.e., rainfall, ponds/lakes,
canals, and irrigation).

The long-term trend of hydraulic head and vertical displacements are useful to estimate the inelastic skele-
tal storage coefficient for subsidence features (Miller and Shirzaei, 2015). The spatial patterns of skeletal
storage coefficients in four layers can be estimated using the slope coefficients of spatial regression (Fig. 6),
which also reflect the skeletal storage coefficients of the aquifers. In Fig. 6(c), the large coefficient value
(purple color) represents inelastic compaction in the inland area, whereas the small coefficient value (blue
color) represents elastic compaction in other areas. The resulting subsidence pattern clearly suggests elasto-
plastic mechanical behavior, which includes elastic and inelastic skeletal storage in over-consolidated and
normally consolidated soils (Hung et al., 2012; Liu et al., 2004). In recent decades, the excessive pumping
of groundwater has resulted in serious subsidence problems along the coast. This subsidence coincides with
the increase of aquaculture fisheries since the 1970s. Currently, the rate of compaction in the coastal area is
declining. However, the subsidence bowl is moving inland due to over-pumping in this region (Hwang et al.,
2008). Interferometric Synthetic Aperture Radar (InSAR) offers a powerful and useful method for identifying
regional land subsidence (Biirgmann et al., 2000; Boni et al., 2016; Chaussard et al., 2014b; Galloway et al.,
1998b; Hoffmann et al., 2001). The present findings match the results from previous InSAR interferograms
for the study region (Tung and Hu, 2012). Moreover, the advent and use of GPS has made land subsidence
monitoring more efficient and cost effective. However, GPS is limited because it measures only the surface
deformation at point locations (Hosseini et al., 2007). The approach developed in the present study provides
robust and accurate maps of estimated land subsidence that are far more spatially descriptive than those
that GPS typically provides.

In the developed models, spatial patterns of subsidence are estimated solely on the basis of drawdown in-
formation. The effect of groundwater-level changes on land subsidence can be modeled using a stress—strain
relationship with the elastic or inelastic skeletal storage coefficient of the underlying aquifers. However, the
entire system includes leveling surveys, borehole extensometer data, and multilayer monitoring of groundwa-
ter levels, with the aim to better understand the hydrological and mechanical processes of the aquifer system
and to characterize the spatial distribution of land subsidence with a traditional numerical model (Zhang et
al., 2014). Characterizing the hydrogeological setting of the aquifer system is a critical step to accomplish
this goal (Liu et al., 2004). The observational data used to characterize hydrogeology is limited (Hubbard
and Rubin, 2000) including the hydraulic diffusivity of the confining layer, the distance from the pumping
wells, length of the recovery cycle, and the thickness of confining layers. All of these factors can influence
the shape of stress—strain hysteresis loops (Burbey, 2001).

In this study, further calibration of the model is not required, unlike other numerical models that typically



require an inverse modeling component for calibration purposes. The fundamental benefit of inverse modeling
is its ability to automatically estimate parameter values that produce the best fit between observed and simu-
lated hydraulic heads and flows (Franssen et al., 2009; Poeter and Hill, 1997). However, limitations include
model uncertainty (hydrogeologic characterization of the system), and measurement and parameter uncer-
tainties (Hgjberg and Refsgaard, 2005). For example, the numerical model contains parameter uncertainty
due to the unknown pumping rates, which can limit the ability to adequately characterize key hydrologic
parameters. Therefore, this method can be used efficiently for subsidence management and might be widely
used for subsidence prediction solely based on drawdown. Subsidence is influenced by drawdown due to
persistent pumping and effects of dry—wet cycles and seasonal variations of groundwater levels (Kouda et al.,
2015). This subsidence—drawdown model can be relevant in terms of policy or land subsidence regulation.

Conclusions

This study implements a spatial regression-based subsidence-mapping scheme on the basis of groundwater-
level observations and offers an effective method to explore the spatial patterns of subsidence through its
correlation with drawdowns, without the use of complex hydrogeologic models. The model developed here
is based on a SR method and is easy to fit between the total drawdown and subsidence observations. A
goodness-of-fit better than OLS (RMSEs are less than or equal to 0.8 cm) is achieved. Without requiring
a more detailed hydrogeologic investigation and extensive calibration, this model offers reasonable detail
regarding the spatial patterns of land subsidence using a non-linear and spatially varying relationship between
the water-level observations and resulting land subsidence. This model can be relevant for water resource
policy or land subsidence regulation.

The developed model accurately estimates the spatial pattern of land subsidence. The estimated subsidence
bowl occurs in the inland area of Yunlin, similar to the actual observed subsidence bowl location. However,
the drawdown cone occurs in the coastal area west of the subsidence bowl. The model can estimate the
spatial pattern of subsidence that is highly related to the hydrogeological properties and drawdown history,
which impacts the location of the observed subsidence bowl. Results also show that the model coefficients
accurately reflect the skeletal storage coefficients of the aquifer. The large coefficient value represents in-
elastic compaction in the inland area, whereas the small coefficient value represents the elastic compaction
that occurs along the coastal area. The coefficient patterns represent elastic and inelastic skeletal storage
coeflicients in over-consolidated and normally consolidated soils.

In a future study, the recharge effects and hydrodynamic lag that exists between the drawdown and subse-
quent subsidence can be considered. The prediction of long-term subsidence or subsidence time series can
then be investigated.
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Table 1. Model performance comparison for OLS and SR (Model 1: Layers 1-4; Models 2: Layer 1; Models
3: Layer 2; Models 4: Layer 3; (e) Models 5: Layer 4)

R? in OLS R? in SR RMSE (cm) in OLS RMSE (cm) in SR
Model 1 0.42 0.98 1.58 0.60
Model 2 0.31 0.97 2.11 0.79
Model 3 0.31 0.97 1.73 0.75
Model 4 0.37 0.98 1.64 0.67



R? in OLS R? in SR RMSE (cm) in OLS RMSE (cm) in SR

Model 5 0.33 0.97 1.66 0.73

Table 2. Model coefficients, namely, slopes for OLS and SR (Model 1: Layers 1-4; Models 2: Layer 1; Models
3: Layer 2; Models 4: Layer 3; (e) Models 5: Layer 4)

Slope in OLS Average Slope in SR
Model 1 -0.316* (Layerl) 0.114* (Layer2) -0.204 (Layerl) 0.172 (Layer2)
0.492* (Layer3) 0.130* (Layer4) 0.372 (Layer3) 0.070 (Layer4)
Model 2 0.813* (Layerl) 0.880 (Layerl)
Model 3 0.530* (Layer2) 0.520 (Layer2)
Model 4 0.526* (Layer3) 0.476 (Layer3)
Model 5 0.650* (Layer4) 0.675 (Layer4)

Note: *Coefficient in OLS is statistically significant with p-value < 0.05
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