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Abstract

We report implementation of a hierarchical equations of motion (HEOM) module within the open-source Libra software. It
includes the standard and scaled HEOM algorithms for computing the dynamics of open quantum systems interacting with
a harmonic bath. The module allows computing evolution of the reduced density matrix as well as spectral lineshapes. The
truncation, filtering, and “update list” schemes as well as OpenMP parallelization allow for further computational saving. The
package is written in a mix of C++ and Python languages, delivering the best compromise between user friendliness and
efficiency. The Python layer of the package takes advantage of standard Python libraries, such as h5py which allows efficient
storage and retrieval of the generated results. The package can be seamlessly used within Jupyter notebooks; its careful design
shall provide the maximal convenience and intuitiveness to its users.
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We report implementation of a hierarchical equations of motion (HEOM) module within the open-source
Libra software. It includes the standard and scaled HEOM algorithms for computing the dynamics of open
quantum systems interacting with a harmonic bath. The module allows computing evolution of the reduced
density matrix as well as spectral lineshapes. The truncation, filtering, and “update list” schemes as well as
OpenMP parallelization allow for further computational saving. The package is written in a mix of C++
and Python languages, delivering the best compromise between user friendliness and efficiency. The Python
layer of the package takes advantage of standard Python libraries, such as h5py which allows efficient storage
and retrieval of the generated results. The package can be seamlessly used within Jupyter notebooks; its
careful design shall provide the maximal convenience and intuitiveness to its users.

Keywords — nonadiabatic dynamics, excited states, system-bath, dissipative environment, open quantum
systems, molecular dynamics

1. Introduction

The hierarchical equations of motion formalism (HEOM) is a numerically exact, nonperturbative method to
study the dynamics of open quantum systems interacting with harmonic baths. Pioneered by works of Kubo
and Tanimura,1 further developed by Ishizaki, Tanimura, and Fleming,2 HEOM has found applications
in a variety of contexts, such as in spectroscopy and excitation energy and charge transfer studies.2–8 In
particular, the method has found numerous uses in studying exciton transfer and coherence dynamics in
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biological systems, such as in the Fenna-Mathews-Olson (FMO) complexes.9–11 The HEOM calculations
allowed accurate calculations at low temperatures, whereas perturbative approaches such as Redfield12,13
or Forster12,14fail.15–22 The HEOM has often been used to obtain numerically exact results for spin-Boson
problems across several regimes, and it can be used as a reference methodology for other approximate
methods8,23–25 applied to modeling open quantum systems.

Despite the great utility and potential of the method, it has been a rather niche approach, likely due to
its computational complexity. As a result, only a handful of open-source software implementing HEOM
dynamics and spectra calculations has been made available. Notably, these are the Fortran codes from
the Tanimura group,26including a GPU implementation,27 the PHI code from the Schulten group,5,6 which
emphasizes an efficient CPU parallelization, as well the nanoHub implementation of Kreisbeck and Kramer.28
Although these codes have been utilized in the past, they are designed as standalone programs with fixed user
interaction protocol. A modular all-Python implementation of HEOM is also available within the QuTiP2
program for quantum optics.29 Although it is flexible in its design, it is primarily meant to be used within
Python programs and may not be easily used within C++ codes.

In this work, we present our own implementation of the HEOM method within the Libra library.30 Libra is
a comprehensive, open-source, quantum dynamics package. Adding HEOM to the Libra repertoire not only
provides researchers with easy access to the method, but also allows them to integrate the method easily into
already established workflows. The HEOM implementation reported in this work emphasizes modularity,
transferability, and user friendliness via intuitive and flexible Python interface. Our code includes multiple
distinctive features, such as the ability to compute absorption spectra, general system bath coupling, and
more. The essential components of the HEOM code are written in C++ in a very modular fashion, so
that they can be used within other C++ codes. The openmp parallelization and scaled HEOM are enabled
for better efficiency. The low-level components are exposed to Python for their use in Python programs,
including in Jupyter notebooks. They can be used in various independent contexts or organized into pre-
defined workflows. Our higher-level Python modules provide implementation for the corresponding workflows
for computing population dynamics and absorption spectra as well as provide auxiliary functions for storing
and analyzing the data produced.

This paper aims to establish the required vocabulary and provide a brief overview of the underlying concepts
and methodologies for users and developers to be able make a connection between the implementation and
the underlying theory. We explain the package organization and some key algorithmic details. We illustrate
the use cases and explain how users can setup the calculations with the HEOM module of the Libra package.
Some qualitative features of the dynamics in various types of environments are demonstrated.

2. Scientific Background

2.1. Key definitions of HEOM

The dynamics of a quantum system embedded into an environment (“bath”) can often be described by the
Hamiltonian of the form:

H =
∑N−1
n,m=0 |n〉Hnm 〈m| +

∑N−1
n=0 |n〉

∑Nn−1
b=0

(
p2b,n

2 + 1
2ω

2
b,nx

2
b,n

)
〈n| +

∑N−1
n=0 |n〉Fn 〈n| . (1)

Here, the first sum represents the electronic Hamiltonian of the quantum system, the second term represents
the phonon Hamiltonian describing the dynamics of the bath modes on every electronic state, and the last
term represents the linear electron-phonon (vibronic) coupling Hamiltonian describing the perturbation of
the quantum system by the environmental degrees of freedom. The matrix elements Hnn correspond to state
energies, and Hnm = Hmn, n 6= mcorrespond to electronic (or excitonic, depending on the interpretation)
couplings. The numbers are assumed to be independent of the bath degrees of freedom (DOF). The number
N represents the total number of quantum states, Nnis the number of the bath modes coupled to the n-th
quantum state, pb,n and xb,n are the mass-weighted normal modes’ momenta and coordinates for a mode b

2
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in a quantum staten , and ωb,n are the normal mode frequencies for a mode b in a quantum state n . Finally,
the variableFn describes the way a quantum state n is coupled to various modes and can be expressed as
the following:

Fn =
∑Nb−1
b=0 fb,nxb,n. (2)

Often, the quantum states { |n〉}are understood as site (molecular) states, but one can also associate them
with a set of quantum states of a single system. The bath operators, Fn, can be more general and can be
considered as a user-defined control parameter describing system-bath interactions.

The parameters, {fb,n}, reflect the type of the electron-phonon interactions the bath induces, which can be
quantified by the bath spectral density:

Jn (ω) = π
2

∑Nn−1
b=0

f2
b,n

ωb,n
δ (ω − ωb,n). (3)

In many chemical applications, the baths are well described by the Debye spectral density, which describes
an overdamped Brownian motion of the energy gaps in a high-temperature regime:

Jn (ω) = ηγω2

englishω2 + γ2. (4)

Here, η is the bath reorganization energy, andγ = Γ
} is the frequency that corresponds to the system-bath

coupling energy, Γ. Throughout this account and in the Libra software, we utilize the atomic units, in
which} = 1, so } may be omitted in some equations, and, numerically, γ = Γ (although the two variables
have different units). Within the HEOM framework, the dynamics of the system’s reduced density matrix
(RDM), ρ0, can be described by the equations:25,31,32

ρ̇n = −i [H, ρn]−
∑M−1
m=0

(∑K
k=0 nmkγmk

)
ρn + ρ

(+)
n + ρ

(−)
n + Tn. (5a)

ρ
(+)
n = −i

∑M−1
m=0

[
Qm,

∑K
k=0 ρn+

mk

]
. (5b)

ρ
(−)
n = −i

∑M−1
m=0

∑K
k=0 nmk(Fmkcmkρn−

mk
− c∗mkρn−

mk
Fmk). (5c)

Tn =
∑M−1
m=0 ∆K [Qm, [Qm, ρn]]. (5d)

The HEOMmethod provides an exact, non-perturbative way of describing the dynamics of a quantum system
(the reduced density matrix evolution) in the presence of complex environment, whose degrees of freedom
are removed through integration. Although we report the implementation of the HEOM for the spectral
density given in Eq. 4, the formulations for more general spectral densities are possible.4,33–36

The first term on the right-hand side of Eq. 5a describes the quantum dynamics of an isolated quantum
system, the second term – the “quantum friction” - is due to the presence of the environment. The terms Eq.
5b and 5c describe coupling between ADMs of various tiers, and the term Eq. 5d describes the correction
to the HEOM truncation.

Here, {γk} and {ck} are the Matsubara frequencies and expansion coefficients, respectively, which describe
the decay of the autocorrelation function of the collective coordinate of the bath:

C (t > 0) =
∑K
k=0 ckexp(−γkt). (6)

Here, K defines the number of Matsubara frequencies. The Matsubara frequencies are defined by the system-
bath “interaction” time,1/γ (so that γ is a characteristic frequency of the bath) and by temperature β = 1

kBT
:

γ0 = γ. (7a)

γn = 2πν

englishβ = 2πνkBT, n ≥ 1, (7b)

3
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With the definition of the spectral density, Eq. 4, the Matsubara expansion coefficients are given by:31

c0 = 1
2γη

([
tan

(
γ

2kBT

)]−1

− i
)

, (8a)

ck = 4n
(2k)2−()2

= 4n

β2
[
( 2n
β )

2−(γ)2
] = 2ηkBT

γ0γn
γ2
n−γ2

0
, k ≥ 1. (8b)

The parameter ∆K entering Eq. 5d is a residual sum that is used to truncate the hierarchy:

∆K =
∑∞
n=0

cK+n

γK+n
. (9)

Finally, the matricesQn =
∑M−1
a,b=0 |a〉Qab,n 〈b| are the matrices describing how a phonon n is coupled to all

other electronic states,{ |a〉 , a = 0, . . . ,M − 1}. Here, M is the number of phonon modes. The off-diagonal
terms Qab,n correspond to the coupling of a phonon n to electronic couplings between pairs of states a and
b. In the simplest case, when each electronic state is coupled to a single (distinct) phonon, the operator Q
takes the form: Qn = |n〉 〈n| and M = N .

Eq. 5d is a good approximation when the hierarchy of equations is truncated at a finite number of equations.
It is not present in the original formulation, with the infinite hierarchy of equations.

2.2. Indexing and hierarchy tracking

Within HEOM, a set of auxiliary density matrices (ADMs),{ρn}, is introduced, with the ρ0being the RDM of
the quantum system, and is the main property of interest. The ADMs are indexed by the multi-dimensional
index (bolded):

n = (n00, n01, . . . , n0K , n10, n11, . . . , n1K , . . . , nM−1,0, nM−1,1, . . . , nM−1,K). (10a)

Here, M is the number of phonon modes in the system and K+1 is the number of Matsubara frequencies. For
simplicity, we take the indexing convention that quantum states’ indexing starts with 0 and ends atM − 1,
whereas the Matsubara frequencies’ indexing starts with 0 and ends at K. Thus, the length of the multi-
dimensional index vector is d = M ∗ (K + 1).

n+
mk = (n00, . . . , n0K , . . . , nm0, . . . , nmk + 1, . . . , nmK, . . . , nM−1,0, nM−1,1, . . . , nM−1,K). (10b)

n−mk = (n00, . . . , n0K , . . . , nm0, . . . , nmk − 1, . . . , nmK, . . . , nM−1,0, nN−1,1, . . . , nM−1,K) .(10c)

The tier of the ADM, n, is defined as the sum of all elements of the multi-component index vector n:

n = tier (n) =
∑M−1
m=0

∑K
k=0 nmk. (11)

2.3. Scaled HEOM

In the current version of Libra, we have also implemented the “scaled” HEOM of Shi et al.25 According to
the method, the scaled ADMs are constructed as:

ρ̃n =
(∏M−1

m=0

∏K
k=0 nmk! |cmk|nmk

)−1/2

ρn. (12)

Note that ρ̃0 = ρ0, that is one may propagate the dynamics in terms of the scaled ADMs, but the evolution
of the first (zero tier) member of the hierarchy would correspond to that of the original reduced density
matrix of the quantum system. In terms of the scaled ADMs, the HEOM takes the form:

dρ̃n
dt = −i [H, ρ̃n]−

∑M−1
m=0

(∑K
k=0 nmkγmk

)
ρ̃n + ρ̃

(+)
n + ρ̃

(−)
n + T̃n. (13a)

ρ̃
(+)
n = −i

∑M−1
m=0

[
Qm,

∑K
k=0

√
(nmk + 1) |cmk|ρ̃n+

mk

]
. (13b)

ρ̃
(−)
n = −i

∑M−1
m=0

∑K
k=0

√
nmk/ |cmk|(Fmkcmkρ̃n−

mk
− c∗mkρ̃n−

mk
Fmk). (13c)
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T̃n =
∑M−1
m=0 ∆K [Qm, [Qm, ρ̃n]]. (13d)

These equations are isomorphic to Eqs. 5 and reduce to them when
√

(nmk + 1) |cmk| → 1in Eq. 13b

and
√
nmk/ |cmk| → nmkin Eq. 13c. The main advantage of the scaled HEOM Eqs. 13 is that the scaled

densities become negligible for high tiers much more quickly than the unscaled ones. Based on this property,
the truncation and filtering can become much more efficient, allowing the converged results to be achieved
using smaller K and L values, where L is the maximal tier of ADM.

2.4. Filtering

The main complexity of the HEOM is the large (factorially-growing) number of ADMs and the corresponding
equations to solve. To combat this, the hierarchy is truncated at a certain tier level, L, and a minimal number
of Matsubara frequencies should be used. However, the results of the calculations should be converged with
respect to both parameters. The use of a finite number of ADMs is compensated by the truncation terms,
Eqs. 5d and 13d.

In addition to the use of scaled version of HEOM and truncation correction, the current implementation
allows filtering equations based on the |ρn| < tol1 or|ρ̇n| < tol2 criteria (for scaled or unscaled ADMs
and their derivatives). The norm of the matrix (whether ADM or its time-derivative) is computed as the
maximal magnitude of all matrix elements.25 The first criterion is used to turn off the computation of any
terms involving very small ADMs. The second criterion is used to turn off the computation of the time-
derivatives of the ADMs when such derivatives are expected to be very small. We construct two lists to
keep track of the information on whether to flag out (with 0) or flag in (with 1) the use of the corresponding
ADMs or recalculation of the corresponding time-derivatives. These lists can be updated with a user-defined
frequency to minimize the overhead in their updates. This approach is similar to the Verlet-list technique
often used in classical molecular dynamics simulations.

2.5. Spectra

The system’s RDM, propagated via HEOM,ρ0 (t), can be used to compute the line shapes of the absorption
spectrum as a Fourier transform of the dipole autocorrelation function (ACF):

I (ω) = 1
π Re

[∫∞
0

dteiωt 〈u (t)u (0)〉g
]
, (14)

The ACF is computed as a trace of the product of the time-dependent density matrix, ρ0 (t), and the
(time-independent) transition dipole moment matrix, µ, assuming one starts in the ground electronic state:

〈u (t)u (0)〉g = Tr [ρ0 (t)µ]. (15)

The initial density matrix is chosen as the ground state,ρ0 (0) = |g〉 〈g| .

3. Software Description

3.1. Software Architecture

The package consists of the Python and C++ layers. The former is represented by the “libra py.dynamics.heom”
module and implements the high-level functions of immediate importance to user. The latter is represented
by the “dyn/heom” library (libheom when compiled) in the core of the Libra software and implements
various functions that are used to construct the algorithms at the higher level, including in the “libra -
py.dynamics.heom” module (Figure 2). These functions are implemented in C++, although most of them
are exposed to Python via the Boost.Python library.37 They may be of higher interest to the methodology
developers.

5
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Figure 1. The architecture of the HEOM modules (Python and C++) in Libra.

The C++ functions can be classified into 3 main groups: a) initialization (Figure 1, left, black); b) compu-
tation (Figure 1, left, blue); and c) auxiliary functions (Figure 1, left, green). The first group includes the
functions: “gen hierarchy” that constructs the list of multidimensional index vectors, Eq. 10a, “setup bath”
that computes the Matsubara frequencies, {γn}, and the corresponding coefficients, {cn}, all according to
Eqs. 7 and 8, respectively. “compute matsubara sum” that computes the sum of type Eq. 9, “initialize -
el phonon couplings” that computes the matricesQm used in Eqs. 5 or 13 asQm = |m〉 〈m| . The latter is
useful when user does not desire to specify such matrices in the input and wants to use the assumption that
each states is coupled to only one bath mode.

The generation of the ADMs’ indices, the indexing convention, and the calculation of the mappings by the
function “gen hierarchy” is worth additional discussion. In our implementation, the hierarchy of ADMs is
constructed as shown in Figure 2. The function creates the tree structure representing the desired hierarchy
(Figure 2a) via a recursive algorithm. Starting with a d-dimensional all-zero vector, one can increment the
index of each of the d components by one to generate d new vectors. These vectors are the “proposed”
children nodes for a given iteration (hierarchy level increment). Before each of the new proposed vectors
is added to the final list of all the hierarchy indices{n}, it is compared to all of the previously added
children of the same tier (level) to ensure it is unique. The duplication is not possible among the vectors
of different tiers, so the comparison to all the previously added vectors is not needed and is not efficient
computationally. Considering only the members of the same tier in the uniqueness determination is one of the
time-consuming elements of the algorithm. Generating the hierarchy with all possible (non-unique) vectors
first and discarding them later is very time and memory consuming algorithm, and it can become unpractical
already for relatively low maximal tiers. Therefore, the uniqueness of the added vectors is verified on the fly
during the construction. This greatly reduces both CPU and memory requirements of the algorithm.

The newly added unique vectors at a given tier level (children of the nodes of a lower tier) are used as the
input for another iteration. Each of them would be considered a starting vector, to which the procedure
described above would be applied. As a result, a tree structure is created and traversed as illustrated in
Figure 2a. The traversal is organized in the width-first fashion, such that the lower-tier indices appear in
the {n} list before the d-dimensional indices of higher tiers (Figures 1a, 1b). According to Eq. 10, the
dimensionality of each multi-index vectors (a node of the tree) is d = M(K + 1).

6
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(a) (b)

Figure 2. Schematics describing the algorithm to construct the hierarchy of ADMs and compute their
mappings. In this example,d = 3. a) Each ADM of a given tier is coupled to d ADMs of the following tier.
Indices in red are duplicates of the already added ADM indices and are discarded. b) List of enumerated
d-dimensional index vector for tiers 0, 1, and 2. Note that vectors of a given tier follow before the vectors
of the following tier and there are not duplicate vectors. The matrices n+ and n− contain the indices of the
ADMs that are coupled to a given ADM via raising or lowering one of its components by one.

The tree traversal returns an enumerated list of d-dimensional vectors. In computing time-derivatives of the
ADMs, Eqs. 5 and 13, one also needs to quickly access the ρn(+) andρn(−) ADMs knowing just the index of
thed-dimensional vector n. For quick access, the “gen hierarchy” function also computes the mapping tables
for such quick access (Figure 2b). The mapping n+, for instance, can be thought as a Nadm×d matrix, such
that its element (i, j) contains a sequential index (scalar integer) of the ρn+

j
, if the analogous sequential

(scalar) index of the vector n is i. Likewise, the element (i, j) of the matrixn− contains the sequential
index of theρn−

j
such that the index of the vectorn is i. In other words, if we start with the i-th vector, n,

and increment its j-th element by one, the element n+ [i] [j] will return the index of such a multi-component

7
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vector in the overall set of vectors. If there is no such vector (e.g. due to the truncation of the hierarchy),
the matrix elements are set to -1. This concept is better understood from a careful examination of Figure
2b.

The second group of C++/Python functions includes: “compute deriv n” which computes the time-derivative
of a given ADM, n, according to Eqs. 5 or 13, “compute heom derivatives” that performs the computation
of time-derivatives of all ADMs (this is where the openMP parallelization is currently involved), and “filter”
function that updates the flags which determine whether each of the ADMs should be used in computing
the right-hand side of the ADM time-derivatives in Eqs. 5 and 13. In addition, the Python-exposed function
“compute heom derivatives” has a particular importance in constructing the solver of the HEOM.

The integration of the HEOM is done via a general-purpose 4-th order Runge-Kutta integrator (RK4)
method, implemented in Libra in the “libintegrators” sub-library. It solves a set of differential equations
that can be represented in a matrix format as:

Ẋ = f(X; params). (16)

One of the parameters the RK4 function accepts is a function itself, the one that computes the time-
derivatives of the ADMs. Passing functions as arguments is one of the convenient features of Python, since
the functions are treated as objects and are similar to other types of arguments in this regard. Unlike C++,
where one needs to specify the signature of the function that is being passed, Python doesn’t require such
extra care. Of course, the RK4 function that calls the argument function would need to know the signature
of the latter as well as how to unpack the returned results, so the developer needs to ensure the consistency
of the expected function call invocation with the function’s signature and expected output. However, these
details can be hidden in the function being called, whereas the interface of the RK4 function won’t change.

Since every function passed to the RK4 general-purpose solver may have a varied number of parameters,
the RK4 function also expects a dictionary of parameters. These parameters would then be passed to the
RK4 argument-function. In the present context, the “compute heom derivatives” is the function that is
being passed to the “RK4” solver. The parameters of “compute heom derivatives” are therefore passed
to the “RK4” function a dictionary of arguments. This dictionary contains parameters such as Matsubara
frequencies, Matsubara coefficients, electron-phonon coupling matrices, and so on. The parameters dictionary
can have extra key-value pairs, not needed directly by the “compute heom derivatives”, but used to control
the execution of the RK4 algorithm. This way, one may define a common dictionary of all parameters and
pass it to many functions with the idea that only the parameters that are relevant to the calculations will
be utilized.

The feature of passing functions as arguments of other functions is also utilized in other Libra modules, such as
in the trajectory surface hopping approaches. There, one can define a Python function that would compute
some essential properties of the system (Hamiltonian, derivatives, etc.) for a given input of coordinates.
Such a Python function can be passed to the dynamical algorithms (e.g. propagation) using a common
interface. The user is then free to redefine the arguments functions to suit their needs – to either define a
model Hamiltonian or to setup a call of external electronic structure packages and extracting the needed
information from their output. In this mode, the user doesn’t need to know the details of the implementation
of the dynamical procedures and only needs to care about the input/output signatures and the internal
computations of the function passed as an argument.

Finally, the third group of C++/Python functions comprises the auxiliary functions “scale rho” and “inv -
scale rho” to convert between pristine and scaled ADMs, Eqs. 12, and the functions “pack mtx” and “un-
pack mtx” to transform between two representations of the ADMs. Namely, the set of all ADMs used in
HEOM calculations,{ρn, n = 0, . . . , Nadm − 1}, can be represented as a list of M ×M matrices. However,
the RK4 function implemented in the “libintegrators” library expects a single matrix of the function argu-
ments. Because of this expected format, the list of the M × M ADMs is packed into a singleNadmM ×M
matrix ρ, which can then be passed into the RK4 function. The function f (. . .) appearing in Eq. 16 is the
“compute heom derivatives”. Internally, the input ADMs matrix is unpacked inside of this function, and the
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derivatives are computed for each ADM independently. In fact, this is where we have added the OpenMP
parallelization. The computed time-derivatives,

{
d
dt ρ̃n

}
, are then packed into a single matrix format to be

used within the general-purpose RK4 integrator.

The “scaled” ADMs and their time-derivatives are considered fundamental in our implementation: the
integration and the computation of the time-derivatives, as well as filtering and truncation, are done within
the framework of the “scaled” variable, with the “unscaled” ones being a special case. The unscaled variables
are only updated before storing them to the results (memory or on disk), but do not directly participate in
the dynamics.

Figure 3. The computational workflow of the “run dynamics” function of the “dynamics.heom” module.

The second part of the current HEOM implementation is the Python module, ”dynamics.heom” (Figure
1, right), which encompasses a number of workflows for intuitive and convenient user-software interaction.
The module contains two main sub-modules “compute” and “save”. The “compute” sub-module defines
high-level functions for transforming and handling data as well as a “run dynamics” function, which serves
as the entry point for users to execute HEOM calculations. The workflow of this function (Figure 3) involves
calling both the Python-level functions and the Python-exposed C++ functions of the “dyn/heom” module.

It is worth describing the structure of the main computational unit – the “run dynamics” function – in
somewhat more detail. First, the simulation parameters are passed into this function as a Python dictionary.
A local copy is first created. The keywords present in this dictionary are checked and if some expected
keywords are not found (e.g. user didn’t specify them), they are initialized to the default values defined in
the “run dynamics” function. The operation is done via the “check input” function of the util.libutil library
of Libra:

import util.libutil as comn

comn.check input(params, default params, critical params)

One can specify a list of keywords that are considered critical (needed for the execution of the code), but that
cannot generally be assigned to default values (e.g. system-specific). The program terminates if the input
dictionary does not provide any key-value pair with the key names listed in the “critical params” variable.
The function “check input” would modify the local copy of the control parameters dictionary, to setup the
undetermined variables to the default values, but it would not affect the original instance of the parameters
dictionary, which is important in a situation when the same parameters dictionary is passed into several
consecutive calls of the “run dynamics” function. On the implementation side, we exercise caution to copy
the input dictionary by value (via copy constructor) to the internal variables, whose key-value pairs may

9
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be reset to some default values. The approach of setting up the default values and indicating the critical
parameters is widely used in other modules of the Libra code, including the modules for fully quantum
(“exact”) and trajectory-surface hopping (“tsh”) calculations.

Another sub-module of the “dynamics.heom” is the “save” module. It implements methods to store results
of simulations in HDF5 format. The archiving of the results computed in the dynamics can be done in a
regular mode, such that the HDF5 files are updated on the fly. However, this mode is very time-consuming
and an alternative mode, “memory” (“mem”), is preferred. In the “mem” mode, all the propagated variables
are stored in the operating system (RAM) for the entire duration of the calculations and are saved to the
disk only when the propagation phase is completed. This saving mode is much faster, but it has an obvious
drawback of potential data loss if the calculations are terminated prematurely. In addition, lengthy and
complex simulations in this mode may require an increased amount of operating memory the user needs to
reserve on their computational systems.

Finally, the “plot” module is present in the “dynamics.heom” module and is intended to provide “out-of-
box” recipes for plotting results of calculations. However, such printing is rather straightforward and may
be easier to customize in the users’ scripts. For these reasons, the “plot” module can be regarded as a
placeholder for the time being. It is worth mentioning that an analogous “plot” module is present in other
higher-level modules of Libra, such as “tsh” and “exact”. The plotting of the results of those calculations
may be somewhat more involved and the “plot” does define certain plotting recipes.

3.2. Software Functionalities and Sample code snippets.

3.2.1. Calculation of density matrix evolution

An example snippet to run the HEOM calculations using Libra is shown in Figure 4. As we discuss above,
the main function to call is the “run dynamics” of the “libra py.dynamics.heom” module. The major fraction
of the snippet only sets up the parameters needed to run the calculations. In particular, one can define the
system’s Hamiltonian matrix as one of the Libra’s built-in data types “CMATRIX” that holds the complex-
valued matrices of arbitrary dimensions. In this example, we illustrate a setup for a 3-level system, similar
to the one utilized previously by Shi et al.25 In this model, two higher energy states are degenerate and are
separated from the ground state by the Ω = 1.5 J gap, where J is the electronic coupling. Unlike the model
of Shi et al., in this demonstration we make all pairs of states coupled to each other through the matrix
elementsHij = Hji = −J, i 6= j . We start the simulation with a ground-state density matrix,ρ = |0〉 〈0| .

10
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Figure 4. An example snippet to run the HEOM calculations within a Jupyter notebook.

The user needs to define the parameters of the bath, simulation, output, and choose the approximation control
options. The user can also setup a desired type of electron-phonon coupling (system-bath correlation). In
this example, we define the coupling matrices (representing the operators Eq. 2) to reflect one of the simplest
scenarios – the coupling of a single bath mode to a single electronic state, such thatQm = |m〉 〈m| ,m = 1, 2.
The zero’s mode is not coupled to any of the electronic states, Q0 = 0. The Qm matrices define the type of
correlation of bath and quantum degrees of freedom and may be a subject of particular investigation. For
instance, one may want to couple the bath’s phonon 0 to the lowest two states at the same time, in which
case one could defineQ0 = |0〉 〈0| + |1〉 〈1| . One can also anti-correlate the response of states 0 and 1 to
the same phonon, say 1, in which case one would defineQ1 = |0〉 〈0| − |1〉 〈1| .

The parameters dictionary “params” in the above snippet defines the critical parameters affecting the whole
HEOM set – the number “KK” that defines the number of Matsubara terms (KK + 1), the highest tier
level of the hierarchy (“LL”), as well as the properties of the bath – reorganization energy (“eta”), system-
environment interaction rate, which can be associated with the decoherence rate13(“gamma”), and bath
temperature (“temperature”).

The snippet also illustrates the concept of the on-demand print-out/storage of the results. With the variable
“mem output level” set to 3, all possible properties (so far “timestep”, “time”, and “denmat”) could be
saved in the output files. However, one needs to explicitly include these keywords in the list of “properties -
to save”. The output level variable determines the outputs of which dimensionality/complexity can be saved.
The value of 0 would normally save the scalar data, the value of 1 would save everything up to 1 D arrays
(e.g. total energy vs. time), the value of 3 would save a 3D data such as a series of density matrices (each
is a 2D entry) as a function of time (adding another dimension). However, one may have many irrelevant
properties (as far as the goals of a particular simulation are concerned) one doesn’t want to save. The
“properties to save” variable allows one to exclude saving such data by not listing the corresponding data
names in it. Note also that listing the properties to save is required for them to be saved. Thus, just setting
the “mem output level” parameter to 3 will not save anything if the “properties to save” list is empty.

A few other variables of note are the “do scale” which turns on/off the scaled HEOM, Eq. 13, the “trunca-
tion scheme”, which chooses one of four truncation schemes, Eqs. 5d, 13d, the “adm tolerance”, which sets
the threshold for discarding the ADMs,|ρ̃n| < tol1, and the “adm deriv tolerance”, which sets the threshold
for skipping the integration of some HEOM equations,

∣∣ d
dt ρ̃n

∣∣ < tol2. With the variable “filter after steps”
one can control the frequency of the updates of the active HEOM equations to be integrated as well as the
updates of the “no-zero” ADMs to be used in computing time-derivatives. Ideally, this update can be done at
every step, but one can gain some computational savings when increasing this parameter. It should be noted
that the convergence with respect to these parameters should always be tested to ensure the meaningfulness
of the computed results.
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(a) (b)

Figure 5. Density matrix evolution in the 3-state problem described in snippet, Figure 4: a) a snippet
to read and plot the computed density matrix from the generated HDF5 file; b) the time-dependence of
populations (diagonal matrix elements) and coherences (off-diagonal matrix elements).

The results of HEOM calculations are stored in an HDF5-format file, called by default “mem data.hdf” and
stored in the automatically-created directory defined by the “prefix” keyword of the input parameters. The
“dynamics.heom” module utilizes the “libra py.data savers” module, which defines the convenience classes to
temporarily store arbitrary data in RAM, to save it in the HDF5 files all-in-once or on-the-fly, and to control
other relevant properties of the produced HDF5 files, such as internal storage type and the compression level.
In turn, the “data savers” module utilizes the “h5py” library38 that enables Python to create and read the
HDF5 files.

The HDF5 files produced by the “heom.save” module have the data groups called identically to the entries
of the “properties to save” list in the input parameters dictionary. Each data group contains the metadata
about the stored entry (e.g. the dimensionality of the archive) and the data itself. The latter is stored
in the dataset always called “data”, such that one can access the density matrix e.g. via the following
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instruction “f[“denmat/data”][:, :, :]” (e.g. see Figure 5a). The results can be easily plotted using the
standard “matplotlib” library39,40 (Figure 5b).
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(a) (b) (c)
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(d) (e) (f)

Figure 6. Qualitative trends in population dynamics of an open 2-level system as computed via HEOM.
The variation of the dynamics with respect to: a, d) bath reorganization energy; b, e) decoherence rates;
and c, f) temperature. All systems converged w.r.t Matsubara frequency and hierarchy level. The upper
row corresponds to∆E = 100 cm−1 and the lower row corresponds to∆E = 200 cm−1.

As another illustration, we explore the qualitative dependence of population dynamics in a molecular dimer
system on the choice of system and bath parameters. The molecular dimer Hamiltonian is given by:
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H = 1
2∆E ∗ σz + V ∗ σx, (17)

where ∆E is the energy gap, V = 200 cm−1, is the electronic coupling between the two states, and σx andσz
are the Pauli matrices. For this example, we start with the base model given by Strumpfer and Schulten6

and vary the reorganization energy, η (Figure 6a, 6d), decoherence rates, γ (Figure 6b, 6e), and temperature
(Figure 6c, 6f). For these examples, the other parameters are as follows: time step = 0.1 fs, number of steps
= 10000, γ = 10 ps-1, temperature = 300 K, and η = 100 cm-1, unless otherwise specified. We observe that
increasing η, γ, and/or temperature increases the rate of thermalization. These trends can be rationalized
as follows. Reorganization energy quantifies how easy it is to perturb a system away from its equilibrium.
A bath with a larger reorganization energy changes would tend to counteract the displacement away from
equilibrium to a larger degree, and consequently would force faster thermalization. Small decoherence rates
lead to a longer preservation of quantum coherences, which is in turn promotes persistent population transfer
between involved states, which counteracts the idea of reaching thermal equilibrium. Note, this observation
is also consistent with the behavior of decoherence-corrected surface hopping approaches.41 Finally, a higher
temperature promotes more frequent “collisions” of the quantum system with the bath, which increases
energy transfer rates, and in turn allows the system to reach thermal equilibrium more quickly.

In addition, we vary the energy gap magnitude, ∆E to be either100 cm−1 or 200 cm−1, for each of the
bath parameters set. As expected, the equilibrium populations depend on the chosen∆E. However, we
also observe two notable trends. First, the rate of thermalization decreases with the increase of ∆E, which
is consistent with the slowing down of the population transfer for larger energy gaps, expected from the
simple Rabi oscillation consideration. This observation is also consistent with the recently reported surface
hopping calculations on quantum systems embedded in effective baths.41 Second, we observe that the rates
of thermalization become much more sensitive to the bath reorganization energy and decoherence rates for
larger energy gap system (Figure 6, panels d-f).
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(a) (b)

Figure 7. Evolution of the state populations of a seven-state system, modeling one unit of the FMO
pigment–protein complex. Simulations are performed at two temperatures: a) 77 K, chosen to model a
cryogenic temperature and limit decoherence, and b) 300 K, chosen to model physiological temperature.

We also illustrate the use of our HEOM implementation in modeling of exciton transfer in the FMO system, a
pigment–protein complex found in green sulfur bacteria.15 The complex consists of several identical units that
each contain seven bacteriochlorophyll molecules. Each of these molecules can be treated as an individual
state (site). The cite energies and couplings (in cm−1) are given by a 7 x 7 Hamiltonian:15

H =

410 amp;−87.7 amp; 5.5 amp;−5.9 amp; 6.7 amp;−13.7 amp;−9.9
amp; 530 amp; 30.8 amp; 8.2 amp; 0.7 amp; 11..8 amp; 4.3
amp; amp; 210 amp;−53.2 amp;−2.2 amp;−9.6 amp; 6.0
amp; amp; amp; 320 amp;−70.7 amp;−17.0 amp;−63.3
amp; amp; amp; amp; 480 amp; 81.1 amp;−1.3
amp; amp; amp; amp; amp; 630 amp; 39.7
amp; amp; amp; amp; amp; amp; 440


(18)

The calculations are conducted with the parameters: KK = 1 (two Matsubara frequencies), LL = 5 (maximal
hierarchy level), γ= 0.02 fs-1 (decoherence rate), and η= 35 cm-1 (reorganization energy). The 1 ps trajectory
with the integration timestep of 1 fs requires an order of thirteen minutes running with 1 thread, when run
on Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz. The resultant population dynamics (Figure 7) for both
the cryogenic temperature (panel a) and physiological temperature (panel b) matches those reported earlier
by Ishizaki and Fleming.15

3.2.2. Calculation of the absorption line shapes.

An example snippet to run the absorption line shape calculations is shown in Figure 8. It is structured
similarly to the one for the density matrix evolution (Figure 4), but has a number of exceptions. First of
all, the Hamiltonian is defined differently – the ground electronic state is not coupled to any of the excited
states, but the two states are coupled to each other via H12 = H21 = −J . Such a Hamiltonian corresponds
to the excitonic dimer, as for instance defined by Shi et al.25

In addition, we define the transition dipole moment operator, which couples the ground and excited states and
is given byµ =

∑2
n=1 ( |n〉 〈0| + |0〉 〈n| ). The matrix representation of this operator is given in lines 12-15
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of the snippet in Figure 8. The initial conditions in the absorption line shapes calculations are also different
from those in the bare population dynamics. In this case, although the system starts in its electronic ground
state,ρgs = |0〉 〈0| , the transition dipole moment operator evolves this initial density matrix to a different
state, in which coherences between the ground and each of the excited states are initialized,ρ0 (t) = µρgs.
This setup is done in lines 18-19 of the snippet.

Figure 8. An example snippet to run the HEOM-based absorption line shapes calculations within a Jupyter
notebook.

First, the HEOM dynamics is computed to propagate the reduced density matrix of the system using the
familiar function “compute.run dynamics”. In this example, we execute the calculations twice – for two
different temperatures. Note how the second call of the function takes the parameters dictionary with only
two relevant parameters changed – “temperature” and “prefix”. The latter would ensure that we store the
results of these two calculations in separate directories. Once the RDM evolution is computed and the results
are stored in the output HDF5 file, the data can be read and used to compute the transition dipole moment
ACF, Eq. 15. This is illustrated in the snippet in Figure 9a. In particular, note how Eq. 15 is implemented
in a single line, thanks to object-oriented design and suitable operator overloads of the CMATRIX data class
within the core of Libra package. The ACFs for two considered temperatures are illustrated in Figure 9b.
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(a) (b)

Figure 9. Computing the transition dipole moment ACF: a) a code snippet detailing how to read the
propagated RDM and calculate the transition dipole moment ACF; b) the computed ACFs.

Finally, the computed ACFs can be Fourier-transformed (FT) to yield the spectra according to Eq. 14.
The FT of this type is implemented in the “libra py.ft” module. The underlying “ft2” function takes the
initial time-series of data to be computed, the range of the frequencies one is interested in, as well as the
corresponding resolution, which is related to the number of time-steps (the number of data points in the time-
series). The function yields a number of properties, including the sine and cosine FTs of the data (“ampl im”
and “ampl re”, in line 8, Figure 10a, “ampl re” is assigned to variable “intensity[]”), the absolute value of
the complex FT amplitude (variable “I”) and the square of its magnitude (variable “I2”). The constructed
frequency-domain grid (variable “W”) is also reported, primarily for plotting purposes. The computed
absorption line shapes (in the shifted and scaled axes) for two considered temperatures are illustrated in
Figure 10b.
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(a) (b)

Figure 10. Computing the absorption spectra: a) a code snippet illustrating a Fourier transform of the ACF
computed above; b) the computed absorption line shapes for the two temperatures considered.

3.2.3. Some complexity considerations

In this section, we discuss the computational requirements for running HEOM calculations and we assess
the runtimes expected for problems of various sizes. The main parameters that affect the complexity and
runtime of HEOM simulations are the maximal hierarchy level (L, defined by the parameter “LL”), the
number of Matsubara frequencies (K, defined by the parameter “KK”), and the number of quantum states
(M , defined by the dimensionality of the input Hamiltonian matrix). The latter two define the length of the
multi-dimensional index vectors enumerating ADMs, d = M ∗ (K + 1). The total number of distinct ADMs
is given by:
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NADM = (L+d)!
L!d! =

∏d
i=1

L+i
i . (19)

This number is returned by the “compute nn tot” function of our module. The factorial growth of the
number of ADMs w.r.t. any of the M, K or L parameters is the main reason for the method’s complexity.
Considering that the convergence w.r.t. to both K and L numbers should be achieved, the number of ADMs
can be quite large. Here, we considered a number of calculations with the systematically-varying “KK” and
“LL” parameters for a 2-level system, Eq. 17. The calculations are executed on Intel(R) Xeon(R) CPU
E5-2620 v3 @ 2.40GHz processors using only one thread. We separately measure the time to initialize the
calculations (Figure 11a) and integrate HEOM (Figure 11b).

(a) (b)
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Figure 11. The benchmarking of the run times for a) initialization of HEOM hierarchy; b) dynamical
calculations vs. the number of ADMs.

It is interesting to see that the initialization of the internal variables and the construction of the hierarchy
could be the quite more demanding than the actual integration, especially as the problem’s complexity to
grow to the order of 106 ADMs. This is likely do to fact that it is much more demanding to allocate large
chunks of memory (to accommodate all ADMs) than operate on the already allocated chunks. The absolute
values of the runtimes are also reasonable – for the problem with 106 ADMs, it takes only about 10 seconds
to advance 1 step forward. In many situations, the solutions converge much earlier than one hits this level of
complexity, so most of the time, the calculations are very fast. Although our present implementation could
be further optimized, especially for large problems, it may already be a viable tool for many projects.

4. Conclusions

The HEOM approach is now available in the modular open-source Libra software, starting from the version
v4.8.1. This version is available at the Zenodo server42 as well as from the Quantum Dynamics Hub GitHub
Libra software repository https://github.com/Quantum-Dynamics-Hub/libra-code. The current work pro-
vides a comprehensive account on the underlying theoretical foundations and terminology of the method, the
key algorithms used, and the important implementation details and use guidance. The detailed examples to
run the calculations presented in this work are available at the Zenodo server43 as well as from the GitHub
data repository https://github.com/AkimovLab/Project HEOM.

The present implementation features a user-friendly design of the Python-level modules for HEOM calcu-
lation, which shall facilitate the use of this method in Jupyter- or Python-based calculations. Our current
implementation considers a number of acceleration features, such as using the scaled HEOM method, fil-
tering the HEOM, using the concept of active equation lists, which are updated periodically to remove the
propagation of ADMs when the ADM’s time derivatives are negligible. A nearly trivial OpenMP paralleliza-
tion is incorporated in the step of computing ADM’s time-derivatives and leads to expected acceleration of
the computations. We have provided examples of using the code for propagating reduced density matrices
to describe quantum dynamics of open systems. We have illustrated the capabilities of the present HEOM
implementation in computing spectral line shapes. We have provided a number of examples on the expected
qualitative changes in the dynamics of quantum systems in response to variation of various properties of
the bath. We have provided some computational scalability and execution time benchmarks to guide the
potential users of this software in feasibility of various types of calculations.
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